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Abstract
Understanding the user behavior is paramount for the success of any website. Existing
approaches for understanding the user behavior in web applications exploit server web
logs. These logs contain details on how each user browsed, for instance, an online store.
Although server logs are useful to provide important insights concerning the user behavior,
they do not provide fine grained information about the actions they perform in the user
interface. To tackle this problem, this work proposes Footstep, an all-in-one system that
provides facilities for collecting, processing and analyzing logs gathered at client-side.
Footstep allows tracking users as they browse web pages, collecting the entire DOM-tree
information associated to each triggered event. Footstep also provides a graph-based
data model which facilitates the extraction of knowledge from collected logs. Finally, an
analytics tool is provided to display information regarding pages and elements audience,
the navigation flow between pages and elements, as well as conversion rates on pages and
elements.

Key-words: User behavior, web analytics, graph theory.



Resumo
Compreender o comportamento do usuário é primordial para o sucesso de um website.
As abordagens existentes que exploram análise do comportamento dos usuários utilizam
os logs de servidor. Esses logs possuem detalhes sobre o que cada usuário acessou, como,
por exemplo, uma loja online. Embora os logs sejam úteis ao fornecer uma boa percepção
a respeito do comportamento dos usuários, eles não fornecem informações detalhadas
sobre as ações realizadas pelos mesmos nas páginas acessadas. A fim de atacar este
problema, este trabalho propõe o Footstep, um sistema completo que fornece coleta,
processamento e análise dos eventos disparados pelos usuários, no nível dos elementos
das páginas. Footstep fornece rastreamento dos usuários à medida em que navegam pelas
páginas, coletando informações sobre a estrutura DOM dos elementos associados a cada
evento. Footstep fornece também um modelo de dados baseado em grafos que facilita a
extração de informação útil dos eventos coletados. Finalmente, uma ferramenta analítica
é fornecida para visualizar as informações a respeito das interações sobre as páginas
e elementos, como audiência, fluxos de navegação e taxas de conversão das páginas e
elementos.

Palavras-chave: Comportamento do usuário, análise web, teoria dos grafos.
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1 Introduction

Over the past years, efforts were made by both industry and academia to understand
and analyze the user behavior in web applications. In a highly competitive market, web
companies need to understand the behavior of their users in order to improve the user
experience. This need has lead to the development of analytics tools, capable of tracking
users’ events, measure audience, categorize pages, plot heat maps of pages, record the
users’ navigation, among other features. As different tools provide different features, it is
common that companies resort to more than one tool in order to acquire the information
they need.

The user experience in websites is important to please and retain visitors. In
e-business, it is paramount to provide pleasant and concise navigation and highly desirable
serving the right content at the right time for the users, as they can easily move to another
online retailer if their necessities are not satisfied (SCHAFER; KONSTAN; RIEDL, 2001).
Therefore, the success or failure of a web application is due to its potential to attract
and retain visitors. Thus, studies to understand and predict user’s behavior in Web
applications has become increasingly important (GÜNDÜZ; ÖZSU, 2003).

In today’s connected world, e-commerce companies offers the opportunity of browsing
endless product catalogs, comparing prices, enjoying deals, creating wish lists, from
anywhere, in a fast and easy way. As a result, e-commerce sales have grown much faster
than store sales over the past years in almost every product category. In order to improve
sales, business analysts try to identify the reasons that motivate customers to purchase,
or not, a given product (MOE; FADER, 2004; LIU et al., 2016).

Some of existing analytics tools rely on server logs in order to track the users’
actions in websites. Server logs present information regarding the resources accessed by
users such as pages, images and other files. Almost all web applications already implement
server logging for reasons such as monitoring, health of services, debugging, and so on.
On the other hand, server logs present a low level of detail, the identification of the user
session is not trivial, and it is very hard to extract useful information about the user
experience without any code instrumentation to enrich the logs.

Web logs may also be collected on the client side. Gathered in the user’s browser,
client logs provide more details about the user interactions, such as clicks, the movement
of the cursor, the use of the scroll bar and the keyboard. Moreover, by exploiting client
web logs it is possible to associate events to page elements, making it possible to spot
where a given interaction occurred, which allows tracking the user more precisely.

The volume of client log data is significantly larger than the volume of server logs.
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A large web application with high access rate can easily produce several gigabytes of log
data in a matter of few hours. In order to collect and store a large amount of data an
OLAP (Online Analytics Processing) system, built upon a fast ETL (Extract, Transform
and Load) architecture is required.

Collecting logs at client side can have some drawbacks depending on how the log
collection is designed (HERNÁNDEZ et al., 2017). Generally, it requires code injection
in web pages and depends on cookies or JavaScript code, leading to privacy concerns.
Another drawback could be the overhead in download time of web pages, affecting the
user experience or even slowing the users’ interactions. Therefore, the log collecting
mechanism must be designed to be fast without affecting the user experience.

Either server or client logs have to be translated to something that represents
an user interaction in such a way that analysts can extract information about the user
behavior. In other words, a data model is required to represent user interaction, containing
relevant data to describe the user’s actions over web pages. This model must be both
expressive enough in order not to lose any valuable information, and simple enough to be
easily stored in a database.

1.1 Motivation
Currently, there are several analytics tools available. In general, different analytics

tools provide different features for analyzing user behavior. For instance, Google Analitics
(2005) provides a highly customizable event tracking system; CrazyEgg (2005) provides
heat maps of web pages, and Hotjar (2014) offers facilities for recording the user interaction
on web pages.

Analytics tools must be properly configured before install into websites and often
require at least a minimum code injection in each web page. Some tools also require more
extensive code injection. Google Analytics, for instance, provides a mechanism to push
user defined events, called Custom Dimensions and Metrics. To use this feature, a specific
HTTP server call is needed, which methods require some coding development.

Therefore, analytics tools provide interesting features for tracking user events in
web applications. However, using this features requires learning inner details of the
available tools. Moreover, as most of these tools process server logs, it is not possible
to associate user events to page elements, making it hard to grasp the details of each
interaction. Finally, it is worth to notice that most of these tools are paid, and using
different analytics tools may be costly, specially for small business.

This scenario shows that efforts to provide facilities for understanding the user
behavior in web applications present limitations. This work proposes a system that aims
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at tackling these limitations.

1.2 Objectives
In order to help understanding the behavior of users in web applications, this

work proposes the Footstep system, an automated system grounded by graph theory
designed to collect and process events on web page elements’ level. The Footstep system is
built meeting the requirement of minimum code injection, providing real-time information
about web usage flow among pages and elements. To achieve this aim, the following
objectives were set out:

1. Define a graph model to represent web usage at web elements’ level;

2. Collect events from web pages in a less intrusive way, avoiding code injection and
minimizing data consumption. The collection mechanism must provide detailed
information about web page elements;

3. Provide a fast and reliable way to consume, process and translate the collected
events to the graph model;

4. Provide a feature for tagging pages and elements as user definition;

5. Build a visualization tool to extract and display web usage flow among pages and
elements.

Footstep system proposes a different approach to organize and analyze pages
and elements, it is built upon graph theory which brings a great capability of relations
identification and extraction. At the heart of this approach is a generalization procedure
that allows grouping similar pages and elements, what shortens the amount of analyzed
data. By exploiting the graph, it is possible to draw flow diagrams between pages,
determine which flow converts better, plot pages’ heat maps, identify elements with more
clicks and conversion rates, and analyze how far the user is from a conversion point.
Moreover, it is possible to set conversion points and measure the effectiveness of different
navigation flows.

1.3 Methodology
To achieve the aim of this research it was needed to develop new data models to

facilitate storing and processing client logs efficiently (objectives 1 and 4), and to build
an OLAP system to support the storage, processing and analysis of this data (objectives
2, 3 and 5).
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In order to achieve objective 1, a graph data model called UsaGraph (SIQUEIRA;
BALDOCHI, 2018) was developed. UsaGraph maps user interaction to four main types
of entities to describe an event triggered by user in web pages: User, Event, Page and
Element. Each entity was mapped to a specific node type in the model, containing each
one specific attributes describing the event in detail, such as its event type and trigger
date, the page and elements that this event was triggered on, and some attributes which
address the required level of detail.

For addressing objective 2, a JavaScript library was developed to listen to events
in web pages, collecting all required information to fulfill UsaGraph model needs. This
library was designed to be light and small in order not to affect the loading of web pages.
This library was also designed to push events in an economic fashion to the event collector
systems. Each event is automatically translated to a single HTTP call containing as less
bytes as possible without missing any important information.

A structure built upon a messaging broker tool and an asynchronous messaging
consumer was developed to accomplish objective 3. All events collected by the JavaScript
library are pushed to a server connected directly to the messaging broker queue, which has
the ability to receive and dispatch these events to several consumer systems. Therefore,
the messaging consumer tool retrieves the events from queues, processes and parses these
events to the UsaGraph model and persists them into the graph database.

To attain objective 4 and provide customization to UsaGraph, two types of nodes
were defined to enrich the model: PageLabel and ElementLabel. PageLabel is meant to
connect similar Page nodes by identifying different URLs that match the same pattern.
ElementLabel connect similar Element nodes by its tag and attributes similarity. A
document based database was used to hold user defined patterns to create PageLabel
nodes.

Finally, to achieve objective 5, a web application was developed to provide all
features to manage, monitor and visualize web usage flow. Using this application, administrators
can get the JavaScript code snippet to install in their pages in order to collect user
interactions. They can configure their URLs patterns to cluster pages in a flexible
way, monitor the audience on pages and on page elements, plot page heat maps, define
conversion points and detect abnormalities in users interactions, for instance, links that
pull users away of desired flows.

1.4 Dissertation structure
This dissertation is organized as follows:

Chapter 2 presents the state of art in user behavior analysis, showing the approaches
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for tracking, collecting and interpreting web usage. This chapter also presents the efforts
to detect characteristics that might give insights about the behavior of web users.

Chapter 3 describes how UsaGraph was designed, the purpose of each node type
and how they are connected, and, finally, what information can be extracted from this
graph model in order to get the desired information about user behavior.

The architecture of the Footstep system is presented in Chapter 4, detailing how
the specific objectives 3 and 4 were achieved, in other words, how events triggered by the
JavaScript library are consumed, parsed and stored as UsaGraph nodes.

Chapter 5 shows the experiments, presenting two different kinds of web systems
taking advantage of Footstep to extract useful information about their users’ interactions,
providing insights about design of pages and how elements can affect interactions.

Finally, Chapter 6 presents final remarks highlighting the contributions of this
work. This chapter also discuss future work.
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2 User Behavior on Web Applications

2.1 Initial considerations
Product designers always develop new products thinking of their usefulness. All

starts with the product design, when interaction and marketing issues are considered. An
important part of product design is the measure of its usability and often the product is
tested several times by a small groups of people in order to make sure that the product
release is feasible.

Product designers usually expect certain behavior of its consumers, but it is very
common that expectation and reality not always go together. Therefore, it is very
important to know the actual usage of the product after its release, if all is going as
designed and expected or if something unexpected is coming across. This is also known
as user experience, which can be measured by analyzing the user behavior. Thus, user
behavior analysis is important in order to assess the effectiveness of a product or service
(BERNASCHINA et al., 2017).

For web applications, specially in e-business, user behavior analysis is of paramount
importance. Retailers always want to increase their sales by making simple or significant
changes in their stores, and the same is true for e-commerce websites. Changes in the
design of user interfaces might result in a more pleasant user experience, increasing sales.
But the opposite may also be true: wrong decisions in web page design may affect sales
in a negative way.

In order to analyze the behavior of users on the Web, it is important to track
them, collecting their interactions in web logs and, then, analyzing these logs in order to
uncover relevant information to boost sales. Therefore, web tracking, web analytics and
web mining are relevant topics in order to support the analysis of user behavior in web
applications.

2.2 Web tracking
According to Ermakova et al. (2018), web tracking refers to a set of techniques for

websites to construct user profiles. In a broader sense, web tracking is also understood as a
widespread Internet technique that collects user data for purposes of online advertisement,
user authentication, content personalization, advanced website analytics, social network
integration, and website development (SANCHEZ-ROLA et al., 2017; MAYER; MITCHELL,
2012; ROESNER; KOHNO; WETHERALL, 2012; FOURIE; BOTHMA, 2007). For these
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goals, web tracking allows third-party or first-party websites to keep track of users’
browsing behavior, including browsing configuration and history (SANCHEZ-ROLA et
al., 2017).

Figure 1 presents an overview and conceptualization of modern web tracking,
showing the role of its major stakeholders. A user accesses websites from a local device
through an Internet Service Provider (ISP). Websites and ISPs may include tracking
technology, either in-house or made available by Tracking Providers, which provide services
to multiple sites (PUGLIESE, 2015). Tracking Providers support cross-site tracking and
data aggregation of individual browsing habits and interests, which is not possible for
in-house solutions. If the user switches to a different device or moves to another location,
cross-device tracking and mobile tracking can be applied (BROOKMAN et al., 2017).

Figure 1 – Overview and conceptualization of web tracking (ERMAKOVA et al., 2018).

Ermakova et al. (2018) state that three main aspects of web tracking are specially
relevant: the technology needed to support tracking users, the privacy concerns involved,
and the benefits to e-commerce applications.

2.2.1 Technological aspects

According to Mayer e Mitchell (2012) there are two types of tracking techniques:
stateful and stateless. Stateful tracking stores the data required for user identification
on the client side. On the other hand, stateless tracking gathers users’ browser and OS
information to proceed the identification.

Stateful tracking techniques exploit cookies, ETags and web storage (PUGLIESE,
2015). Cookies are used to store authentication data. The most common form of tracking
is by exploiting third-party cookies, which are used by domains that do not correspond to
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the currently visited website and are often caused by content provisioning of third parties
(PUGLIESE, 2015).

ETag, or Entity Tag, is part of the HTTP mechanism that provides web cache
validation and is intended to control how long a particular file is cached on the client side.
ETags can be exploited to track users in a similar way to persistent cookies, and a tracking
server can continually send ETags to a client browser, even though the contents do not
change in the server. By doing this, a tracking server can maintain a session with the
client machine that persists indefinitely (HASSAN; HIJAZI, 2017). Web storage involve
caches on the client device and can be accessed by browsers and plugins (PUGLIESE,
2015).

Stateless tracking is divided in active and passive fingerprinting (MAYER; MITCHELL,
2012). Fingerprinting is “the process of an observer or attacker uniquely identifying
(with a sufficiently high probability) a device or application instance based on multiple
information elements communicated to the observer or attacker” (COOPER et al., 2013).

Fingerprinting is ideally suited to identify the device used in the client side (PUGLIESE,
2015). Browser fingerprinting exploits JavaScript to this end. Canvas fingerprinting uses
the differences of pixel maps when rendering fonts and WebGL scenes in the browser.
Pugliese (2015) also mentions behavioral biometric features, namely those dynamics that
occur when typing, moving and clicking the mouse, or touching a touch screen. Such
behavioral biometric features can be used to improve stateless tracking.

According to Falahrastegar et al. (2016), increasing awareness of users on data
protection and privacy led to browser settings and extensions to delete or prevent certain
kinds of cookies and trackers, but new methods are constantly being developed and
changed continuously in order to track and identify users.

2.2.2 Privacy aspects

According to Mayer e Mitchell (2012), an user browsing history always present
sensitive information. It is possible to reveal users’ location, interests, purchases, employment
status, sexual orientation, financial challenges, medical conditions, news consumption, and
can be used as instrument for mass surveillance by intelligence agencies. Moreover, very
personal information regarding the user may be revealed by tracking tools, such as how
often a user drinks, smokes and consumes drugs, if the user is pregnant or in menopause,
etc (MAYER; MITCHELL, 2012).

These examples show that web tracking can have considerably negative consequences
for end users. There exist, however, several techniques can be applied to protect the
privacy of the user, such as third-party cookie blocking, clearing the client-side state,
blocking popups, AdBlock Plus, Adblock Edge, Ghostery, BetterPrivacy, Site Isolation,
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EFF’s Privacy Badger and private browsing mode (IKRAM et al., 2017).

End-users may take actions in order to protect them while browsing. For instance,
a private browsing mode prevents specific data from falling into the hands of other users
on the same computer; it also prevents long-term tracking based on stateful techniques.
But as long as JavaScript is enabled or certain plugins are installed, device fingerprinting
cannot be prevented (PUGLIESE, 2015). Therefore, Sanchez-Rola et al. (2017) suggest
disabling other secondary features used in web tracking. Disabling third-party cookies, for
instance, can be effective (PUGLIESE, 2015). Another option to fight web tracking is the
usage of antitracking web browsers, such as FlowFox (GROEF et al., 2012), TrackingFree
and Privaricator (NIKIFORAKIS; JOOSEN; LIVSHITS, 2015).

Akkus et al. (2012) suggest web analytics without tracking. Interestingly, even
those prototypes that were designed to protect privacy cannot protect end users against
all types of web tracking. Thus, despite the many efforts to protect the privacy of users,
being 100% protected is virtually impossible.

2.2.3 Commercial aspects

According to Gill et al. (2013), the collection and use of personal information
about users facilitates targeted advertising. Online companies usually apply web tracking
to analyze user browsing experience in order to optimize their websites (MELICHER et
al., 2016; PUGLIESE, 2015; SANCHEZ-ROLA et al., 2017). By using web tracking,
advertising companies are able to offer personalized content and advertisements to users
(CLARK; BLAZE; SMITH, 2015).

Ermakova et al. (2018) mentioned the existence of analytics services for third-party
websites designed to provide a better understanding of web usage by tracking visitors,
such as Adobe Analytics, Quantcast and Google Analytics. Social network companies also
provide social integration with single sign-on and track users actions to offer personalized
content (MAYER; MITCHELL, 2012). Prominent examples are Facebook like button
and Twitter tweet, commonly used to infer users preferences and trends (ERMAKOVA
et al., 2018).

2.3 Web Mining
Cooley, Mobasher e Srivastava (1997) defined Web Mining as “the discovery and

analysis of useful information from the World Wide Web”. This term is also defined as “the
application of data mining techniques in large web for large web datasets” (COOLEY;
MOBASHER; SRIVASTAVA, 1999).

Web mining is widely used to solve practical problems. Recommender systems
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takes full advantage from web mining to build powerful personalization systems (PIERRAKOS
et al., 2003). E-commerce sites increase their conversion rates (i.e., converting store visits
into purchases) by predicting each customer’s probability of purchasing based on history
of visits and purchases (MOE; FADER, 2004). The performance of web applications can
be measured from information extracted from log files (RUFFO et al., 2004), by modeling
log information into workload characterization of e-commerce websites.

According to Velásquez e Palade (2008), there are three types of data mining
techniques for web data:

• Web Content Mining: the content of each web page is used as input to mining
algorithms;

• Web Structure Mining: the data mining algorithms use as input the structure
of web pages and the links among them;

• Web Usage Mining: exploit the logs collected from web applications, which are
used together with external data (in general, profile data) such as the gender, age,
preferences, etc., of the user.

As the Web is a huge collection of heterogeneous, semi-structured and distributed
data, web mining is not a trivial task (VELÁSQUEZ; PALADE, 2008). In other to guide
such a complex task, web mining generally follows the KDD (Knowledge Discovery on
Databases) steps defined by Fayyad et al. (1996), specially the pre-processing, pattern
discovery and pattern analysis steps (SRIVASTAVA et al., 2000).

2.3.1 Web Content Mining

Web content mining aims at discovering and extracting useful information and
knowledge from the content available on web pages (KLEFTODIMOS; EVANGELIDIS,
2013). Web content mining is very similar to text mining, thus, well know algorithms
used in information retrieval may be applied to mine page contents. The main research
challenges in this area are (SRIVASTAVA; DESIKAN; KUMAR, 2005):

• Topic discovery, which exploit data mining techniques such as association rules and
clustering;

• Associative pattern extraction;

• Web page clustering; and

• Web page classification.
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2.3.2 Web Structure Mining

Web structure mining exploits the topology of hyperlinks of websites. This technique
may be used to classify the relevance of pages. For instance, Patil e Patil (2012) used web
structure mining to classify pages in two categories: relevant and transition. They used
this classification to evaluate the similarity of websites.

The literature reports the usage of web structure mining to solve relevant problems.
Li e Kit (2005) studied the correlation among the structure of websites and usability
problems. Keller e Nussbaumer (2012) developed the MenuMiner algorithm, which allows
the extraction of the content structure of large websites. Alqurashi e Wang (2014)
developed an approach based on graphs to analyze the navigability of websites.

2.3.3 Web Usage Mining

The term Web Usage Mining (WUM) was first introduced by Cooley, Mobasher e
Srivastava (1997), according to whom it was “the discovery of usage patterns from web
server logs”. According to Velásquez e Palade (2008), the aim of WUM is to find usage
patterns exploiting different data mining techniques, statistical analysis, association rules,
clustering, classification and sequential pattern detection.

Modern web applications are much more complex, because an “one size fits all”
website does not provide what users expect. Websites need to know the expectations and
needs of their users in order to provide the right content to the right audience. Thus,
according to Sudhamathy (2010), web logs need to be analyzed in order to provide usage
trends for website developers and administrators, with the aim to support application
adaptations.

Chen e Liu (2006) proposed an algorithm that cluster users according to interest
similarity detected in their navigation history. Lu, Yao e Zhong (2003) proposed an
algorithm that mines server logs in order to detect frequent access that characterize
the user navigation in websites. Masseglia, Poncelet e Cicchetti (2000) work exploits
association rules to detect relevant sequential patterns. By exploiting these patterns, the
developer is able to improve the navigation flow on websites.

2.4 Web Analytics
When users access resources in websites, server logs are usually generated. These

logs capture not only the fact that someone hit the website, but also the resource name,
time, Internet Protocol (IP), the website/page making the request, etc. As web traffic
raised, server log files got larger, and when a script was first written to automatically
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parse the log, extracting some basic metrics as depicted in Figure 2, Web Analytics was
officially born (KAUSHIK, 2007).

Figure 2 – A sample report from Analog, version 0.9 beta (KAUSHIK, 2007).

According to the Web Analytics Association, further renamed to Digital Analytics
Association (2012), “Web Analytics is the objective tracking, collection, measurement,
reporting and analysis of quantitative internet data to optimize websites and web marketing
initiatives”.

By the year 2000, with the popularity of the Internet growing fast, web analytics
gained visibility, and companies such as Accrue, WebTrends, WebSideStory, and CoreMetrics
appeared providing solutions to process and analyze massive amounts of data (KAUSHIK,
2007). In 2005, Google bought Urchin, a Web analytics software designed to track the
behavior of unique website visitors, which lead to creation of Google Analytics in 2006
(KAUSHIK, 2007).

Web analytics prior work explored basic metrics using log files, such as the number
of visitors and the visit duration. As data collection also evolved with the advent of
JavaScript tagging, basic metrics evolved to Key Performance Indicators, a.k.a. KPI, in
compliance of type of business (KAUSHIK, 2007).

Lamberti et al. (2017) proposed a framework to process data associated to a portion
of page, called viewport, and combine it with information about the page structure,
obtained from the page’s Document Object Model, the DOM-tree structure. Then, results
were presented using heat maps, a type of visualization of information that explores colors
to express numeric values, used to display clicks or mouse movements.

2.4.1 Web analytics modeling

As pointed in Section 1.1, the analysis of the user interaction requires an appropriate
data model, which needs to be expressive enough for representing the user interaction.
Server and client logs are noisy, non structured, verbal. The logs have to be structured
into something that can be stored and retrieved by analytics tools, in order to display
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valuable data about the behavior of users. Aiming the prediction of user’s next request in
a website, Gündüz e Özsu (2003) proposed a model that exploits visiting time and visiting
frequencies of pages to extract users’ interests, trying to predict navigation patterns.

Eirinaki, Vazirgiannis e Kapogiannis (2005) proposed variations of Markov models
to model navigational behavior. By extending the properties of Markov models, they
presented a probabilistic predictive model aided by PageRank algorithm to classify the
importance of pages according to users’ browsing.

Vasconcelos e Jr (2012) proposed a model, called COP model, to define a set of
declared interactions as tasks. In other words, by using their model it is possible to
define an optimal path for accomplishing a task. This approach measure the similarity
between the actual users’ interactions and the defined optimal path, in order to calculate
an usability index for each task. The COP model is defined by Container, Object and
Page, where object is any element of the page, surrounded by another page element named
container. This model was designed to define a set of properties to match web elements
by its HTML properties, such as tag name, id or class. That way, it is possible to cluster
events triggered over many different elements that share common properties.

Cattuto et al. (2013) mapped time-varying social network data into a graph-based
model transforming information about users’ interactions into labeled graph nodes and
relationships. This is another approach using graph theory to model web navigation
into graphs to improve mining efficiency by applying path traversal algorithms to extract
patterns from users’ navigation (MORE, 2014).

Iitsuka et al. (2017) took advantage from graph theory to establish relation between
products by extracting the difference between user browsing and purchase behaviors.
This approach revealed the superiority relation between competitive products, a win-lose
relation between products.

2.4.2 Web analytics architectural concerns

As mentioned in Chapter 1, lots of usage data are required to feed analyzers in
order to extract useful data that might represent meaningful information. To acquire that
amount of data, preferably in near real-time, it is required an architecture designed to
extract and process various types of data in a fast and efficient way (SABTU et al., 2017;
PHANIKANTH; SUDARSAN, 2016).

An ETL system, also known as Extract, Transform and Load system, is a good
choice to deal with the movement of heterogeneous and volatile data. On the other hand,
designing a real-time or near real-time data gathering and processing architecture requires
to take into consideration (SABTU et al., 2017):
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• Asynchronous data extraction;

• Multiple data source integration;

• Fast and reliable cleaning and transformation;

• Simple data model in compliance with the data warehouse requirements;

• High availability;

• Horizontal scalability.

Chen, Wang e Zhang (2017) proposed a distributed OLAP system to support
heterogeneous data types and large amount of calculation in making decisions for big
data. The proposed architecture for a distributed OLAP system presents four modules,
acquisition module, data storage module, OLAP analysis module and data visualization
module.

The data acquisition module purpose is mainly to collect structured non-streaming
data, such as data stored in relational database and unstructured streaming data, such as
log files. The data storage module is mainly to store raw and processed data. The OLAP
analysis module is to organize processed data and to provide services to data visualization
module. Finally, the data visualization module is to provide graphical presentation and
to offer subject analysis (CHEN; WANG; ZHANG, 2017).

Section 1.1 pointed some commercial tools designed to collect events at client side.
Some tools were designed to accomplish specific goals, others were designed as a full
customizable solution to map users’ interactions.

2.4.3 Google Analytics

According to W3Techs (2009), Google Analytics is used by 55.5% of all websites,
which represents a market share of 85.7%. It is a full customizable solution to gather
events at client’s side, store and visualize valuable information about website users, such
as page views, visits and visitors, conversion rates, and much more analytical information.
It depends on JavaScript snippet injection on each page in order to activate the collection
of data (GAUR et al., 2016).

Section 1.1 mentioned the Google Analytics way to customize events, called Custom
Dimensions and Metrics. It is a powerful way to collect user defined events, bringing
fine-grained information to analysis. However, some configuration and code injections are
required to enable websites to collect these Custom Dimensions and Metrics.
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2.4.4 CrazyEgg

CrazyEgg is a click analytics tool designed to record clicks made by users in a
website, analyze and interpret collected data and display events using graphical visualization
tools, such as heatmaps, scrollmaps, confetti view and overlay reports (KAUR; SINGH,
2016). It also requires a JavaScript snippet injection and some setup to acquire correctly
the interactions.

2.4.5 HotJar

HotJar is a tool also designed to collect users interactions, providing heat maps of
pages, conversion funnels and something different from the aforementioned tools, which is
a visitor recording Lamberti et al. (2017). It records videos from random and anonymous
users’ interactions, very useful to detect trouble with pages’ design, for instance, whether
a user is having trouble with a register form, or not able to place a purchase order. As
other tools, is also requires a JavaScript snippet injection.

2.5 Final remarks
The Footstep system exploits web tracking to provide user identification by the

use of cross-domain cookies. Footstep identifies users, not necessarily exposing personal
information, by defining a random ID at first user’s interaction, which is saved into a
cross-domain cookie.

The Footstep approach exploits Web Mining concepts, specially web structure
mining, by the automatic discovering and identification of pages’ elements related to
events, such as clicks and taps. The element discovering allows Footstep to measure
element audience and analyze how elements affect navigation and conversion.

Footstep also relies on Web analytics ideas by taking advantage of the UsaGraph
model to provide insights and information about the behavior of users, providing dashboards
and charts to display navigation flows, conversion rates, as well as pages and elements
audience.

Chapter 3 presents UsaGraph model, explains its characteristics and shows how
to take advantage from this model to extract useful information regarding on users’
interactions.
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3 UsaGraph Model

3.1 Initial considerations
Many efforts have been spent on analysis of user behavior and modeling is paramount

to translate human behavior to a computational environment. Each data model should
contemplate as many as the characteristics of the subject of study in an intuitive way.
In order to address a specific problem solution, a data model must take into account
computational and user defined requirements, such as acceptance criteria, response speed,
ease of use, available technologies and so on.

In order to define a concise data model, it is paramount to understand the situation,
which problems has to be tackled, how they should be solved and what are the expected
results.

Section 3.2 describes the main characteristics of users’ navigation. Then, section
3.3 explains how users’ interactions can be mapped to a graph data model.

3.2 Web navigation flow
One of the definitions of flow is the movement of something in one direction. Users

can navigate among web pages using links, opening a page, clicking on page elements,
filling and submitting forms, and so on. On the other hand, most websites are designed
to have a logical sequence of events, a concise data flow, as an e-commerce website, for
instance, which has a list of products, an add to cart feature, a shopping cart, a checkout
page and, finally, a thank you page, where users can see the purchased products. Each
user has its own life cycle inside a web page, a sequence of events telling a story about
the pages and page elements that the user had interacted with. In a high-level view, each
event triggered on a website shares the following characteristics:

• One user triggers an event;

• This event occurs in a page;

• This event may have a target element;

• The target element belongs to a structured tree of parent elements.
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3.3 Event data modeling
There are different ways to model data and each one has its strengths and weaknesses.

Our approach leverages from graph theory concepts, exploiting the facilities to extract
correlations from graph structures.

On web applications, events have properties and characteristics that can be expressed
by nodes and relationships among these nodes (SIQUEIRA; BALDOCHI, 2018):

• An event has an event type, a date when it was triggered, as well as information
about the mouse position;

• A page have an URL, a HTML document composed of HTML elements and it is
rendered in different browsers and devices;

• A user can be uniquely identified;

• A HTML element has a tag name and common attributes, such as id, name,
class, etc. It also belongs to a structured HTML document, forming the so called
DOM-tree structure, where each element has a parent element, until the root element
of the HTML document.

3.4 DOM-tree structure and event propagation
The Document Object Model (DOM) is an application programming interface

(API) for valid HTML and well-formed XML documents. It defines the logical structure of
documents and the way a document is accessed and manipulated. In the DOM, documents
have a logical structure organized as a tree of elements, since each element has a single
parent element and may have none or many children elements1.

Section 3.5.1 presents a hypothetical Register Page in Figure 5 to demonstrate
how to instantiate UsaGraph. Giving the same hypothetical register form, understand its
DOM-tree structure is paramount to illustrate how a triggered event can carry detailed
information about the target element. Listing 3.1 shows the HTML code of register page
with its elements placed under a well-defined document structure, technically known as
DOM-tree structure, and Figure 3 illustrates how elements are organized as a tree.
1 What is the Document Object Model? [online] <https://www.w3.org/TR/DOM-Level-2-Core/

introduction.html>

https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
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Listing 3.1 – Hypothetical Register Form HTML

<html >
<head >

<title >Website </title >
</head >
<body >

<div class="container">
<form id="form -register">

<input name="email" type="text" class="required" placeholder="E-mail" />
<input name="password" type="password" class="required" placeholder="Password" />
<button id="register" class="btn␣btn -primary">Register </button >

</form >
</div>

</body >
</html >

Figure 3 – Tree representation of HTML register page code.

When an event is triggered in a web page, it may occurs over an element or not.
For example, when a page is loaded, a document load event is triggered, which is not
necessarily triggered over one element, but is triggered in document level. On the other
hand, when event is triggered over an element, this event may propagates through this
element’s parents. In other words, taking the Register page as scenario, when user clicks
on password input, its click is also triggered over form, container div, body and html
elements. This chain of event propagation brings an opportunity to extract information
about websites’ structures, and how they are designed, how frequent elements are accessed.

It is important to notice that two distinct events may occur over two distinct
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elements under the same parent, which also receives these two events, thus both events
was triggered over the same parent element.

We exploit these properties and characteristics to build Usagraph – a graph-based
data model that is efficient for processing web logs.

3.5 UsaGraph Model
The UsaGraph model was designed to represent the characteristics described in

Section 3.3 using the graph theory. It is initially composed by four main types of nodes:
User, Event, Page and Element nodes. Each node User represents the user that triggers
an event, which is unique by the USER-ID identifier. Each node Event represents the
triggered event itself and stores the type, such as pageview or click for instance, and
the date time of the event. Each node Page is unique by its URL address. Each node
Element represents an element and its ancestors in the DOM tree, and stores information
such as the element’s tag name, id, class, name and type. The UsaGraph model is
further enriched by two more types of nodes: PageLabel and ElementLabel. Their
main purpose is clustering, respectively, Page and Element nodes, according to rules
that make it possible to generalize these nodes. The four main types are connected by
labeled relationships, following the characteristics presented in Section 3.3. Finally, pages
and elements can be generalized, labeled and grouped. UsaGraph model is graphically
represented in Figure 4.

Figure 4 – UsaGraph model.

The PageLabel node type is responsible to classify Page nodes according to some
predefined rule. It is possible to join pages by any URL’s pattern, or even by any
parameter present in URL. It is also possible to join pages according to business rules,
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such as home page, listings page or products page. It was designed to be an abstraction
of Page, a high-level way to represent them.

The ElementLabel node type has a similar purpose, but at Element node’s level.
It was designed to detect similarities between elements and, as opposite of PageLabel,
has a more restrict rule to cluster elements. It takes some of the main characteristics of
the elements to classify them as one ElementLabel:

• elements must have the same tag name;

• they have to be at the same level in document structure, belong to the same parents;

• same attribute id, if defined;

• same attribute name, if defined;

• same attribute type, if defined;

• at least one of the class attribute in common, if defined.

3.5.1 UsaGraph Instantiation

In order to present UsaGraph in action, let us consider a simple website register
page, illustrated in Figure 5. As an example, a user may open this page and perform
three clicks, the first one on the e-mail input field, the second on the password input
field and, finally, the third on the register button. This chain of events, translated to
UsaGraph model, can be represented by one User node, one Page node, four Event nodes
(one pageview, three clicks) and some Element nodes. Figure 6 shows the UsaGraph
representation of this user’s interaction. It is important to note that this extracted graph
has only the four main types of the UsaGraph nodes, because until now there is no need
to make any kind of generalization due to the simplicity of this scenario.

To demonstrate the generalization feature of our model, let us consider another
hypothetical scenario of two different pages from the same website, as in Figure 7. It
is possible to note some similarities between them. Both have header, products list and
footer sections, but display different products and links. Therefore, let us also consider
that these two pages belong to the same page type, i.e., the products page.

Since these two pages belong to the same page type, only one PageLabel is created
and labeled as PRODUCTS, and both Page nodes must be connected to it. From there,
their elements can be generalized, as long as they share most of its characteristics. To
demonstrate the element generalization, consider that two users are browsing these pages:
User A performs a click on Product ABC of Page 1, while User B clicks on Link 1 of
Page 2. After the translation of these two clicks to the UsaGraph model, we would have
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Figure 5 – Hypothetical website with a simple register form.

Figure 6 – Hypothetical scenario translated to UsaGraph model.

Figure 7 – Two different pages from same website.
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two distinct users’ interactions, as shown in Figure 8. The first gray area demarcates User
A’s interaction in Page 1, on Product ABC link element (and its ancestors elements). The
second gray area demarcates User B’s interaction in Page 2 on Link 1 link element.

Figure 8 – UsaGraph model representation of two clicks performed by different users, in
different pages.

The events’ target elements, Product ABC and Link 1 links, are placed in
different sections, respectively, in div with class products and div with class footer.
This means they could not belong to the same ElementLabel, that is, each target
element is linked to a respective new ElementLabel node. The same occurred with
theirs immediate parents, because they do not fulfill the requirements to be clustered
with the same element label. The elements div with class container and body could
be clustered. They are at the same position in DOM-tree document structure, shares tag
name and at least one class. So, one ElementLabel node was created for two elements
div with class container and other for two elements body. It is important to note
two new types of relationship created to reduce queries overhead: Event-IN->PageLabel
and Event-ON->ElementLabel relationships. As expected, the number of PageLabel and
ElementLabel is smaller than the number of Page and Element nodes. So, the creation
of these two relationships allows to query smaller graphs, instead of querying over Page
and Element nodes.

As mentioned in Section 3.5, the UsaGraph model was designed to take advantage
from graph theory to discover paths between pages and element labels. To demonstrate
how UsaGraph can be used to extract navigation flow patterns through pages and elements,
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let us consider two users navigation on a website. Their events represented by UsaGraph
model is shown in Figure 9.

Figure 9 – UsaGraph representation of events triggered by User A and User B.

Both users started accessing page label PL-1 and both also ended their navigation
in page label PL-4, so, it is possible to say that there is a flow of two users from PL-1
to PL-4. However, each user made a different path to reach PL-4. User A interacted
with two elements from PL-1, visited PL-2, then PL-3, and finally, PL-4, in a total of
9 events triggered. User B took only 7 events to reach PL-4, did not visit PL-2, never
interacted with elements EL-1, EL-2 and EL-4, illustrated by Figure 10. It is important
to point out that Figure 10 is only an illustration of extracted flow using PageLabel and
ElementLabel nodes, it is not a UsaGraph representation.

Figure 10 – Illustration of navigation flows from PL-1 to PL-4.

Figure 10 brings more insights about more valuable information that could be
extracted from UsaGraph model. It is possible, for instance, to measure the utility of
page’s elements. If the elements EL-1 and EL-2 were really important to users, something
is wrong, because User B could avoid them and reach page PL-3 directly. This directly
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affects the conversion. If a conversion point is defined, such as a page view on a specific
page, or click on a specific element, it is possible to determine the interactions that reached
this conversion point and the interactions that avoided it. Looking at Figure 9 again, if
the conversion point was defined as a page view on PL-2, only User A converted. However,
if the conversion point was defined as a click on EL-5, both users converted, although User
B converted faster, because it took fewer steps than User A to click on EL-5.

3.6 Final remarks
This chapter presented UsaGraph, a graph-based model that allows the representation

of client events so as to favour the discovering of usage patterns and other relevant
information for the management of any website.

The main advantage of the proposed model is the usage of detailed events, that
allows the identification of the page elements related to each user event. By exploiting this
data, it is possible to deliver more fine-grained information about the users’ navigation,
such as navigation patterns between pages and elements. It is possible, for instance, to
trace a specific user, at a specific time, and know where exactly he or she got lost from
a desired action. More importantly, UsaGraph allows the identification of the interface
elements related to the problem. Thus, identifying the source of the problem becomes
easier.

Chapter 4 presents the Footstep System architecture and how it was designed to
fulfill real-time ETL system requirements pointed out in Section 2.4.2.
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4 The Footstep System

4.1 Initial considerations
Tracking user actions using client logs usually requires collecting a large amount

of data. As modern e-business web applications have hundreds or even thousands of users
browsing their pages concurrently, several gigabytes of log data may be produced in a
matter of minutes.

An important feature of any analytics tool is its ability to provide up-to-date data
regarding the usage of a website. Thus, it is important to collect, store and process logs
as fast as possible.

There are several analytics tools designed to take advantage of browsers’ native
support to JavaScript, as discussed in Section 2.4.2. These tools usually provide libraries
to be installed on web pages. Ideally, those libraries should be small and collect events in
an economic fashion.

Available analytics tools are not fully capable to meet these requirements. On the
other hand, there are many tools and programming languages that can be combined to
build an approach that fulfill the required needs to deal with high volume of data in a
fast and effective way.

This chapter presents Footstep, an approach built to collect, transform, store and
process log data. Footstep collects client logs, parses this data exploiting the UsaGraph
model and stores the resulting nodes and vertexes in a graph database so as to allow
fast processing. Finally, Footstep provide a visualization tool that allows summarizing
valuable information for the management of websites.

4.2 Architectural overview
Figure 11 presents an overview of Footstep’s architecture, from collecting user

events on websites to the analysis of these events using a graph database. The designed
architecture is composed of four main modules: Gathering Events, Consumer & Parser,
Generalization and Analytics.

In order to collect events at users’ browsers side, the website must add a JavaScript
library responsible for capturing, translating and sending users’ events to the Events
Listener Service. The Gathering Events Module must be fast in order not to burden
the website experience, thus, it only passes on the events to an event queue, which is
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asynchronously processed. This queue must be consumed very quickly in order not to
become a bottleneck to the entire system. The Consumer & Parser Module is in charge
of consuming this queue, parsing events to the UsaGraph Model.

Then, all parsed events are persisted into a graph database. The Generalization
Module provides an application responsible for identifying and extracting navigation
patterns over the persisted events’ nodes. This application depends on another database,
which describes commons URL structures useful for clustering different pages’ URL’s.
Finally, the Analytics Module provides an application responsible for querying the database
and providing usable dashboards, charts and analytical data about navigation flows.

Figure 11 – Footstep architectural overview.

4.3 Gathering Events Module
The Gathering Events Module is composed by three components: Event Collector

JavaScript Library, Event Listener Service and Events Queue. Websites must reference the
JavaScript Library at the end of their HTML pages in order to capture users’ interactions
on pages. Each event captured by this library is sent to the Event Listener Service, which
is responsible to receive events and send them to the Consumer & Parser Module in a
asynchronous and fast way, using the Events Queue.
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4.3.1 Events collection library design

The Footstep architecture provides a JavaScript library, responsible for collecting
detailed client events, which was designed to be as unintrusive as possible and fully
customizable. This library was designed to collect web events like page view, click, key
up, focus, blur, tap, swipe, among others. For each collected event, information regarding
the target element and its ancestor in DOM-tree structure is also collected. For each
element and ancestor, the library collects the tag name and the following attributes: id,
class, name and type. It is important to mention that this library does not collect any
sensitive data, only DOM-tree elements (and some attributes) are collected, and users can
turn off the event tracking, if desired. Each event triggered by user is translated and sent
asynchronously to a collector system that logs this event in log files. It is recommended
to install this library at the end of the HTML document in order not to affect the users’
experience. In this way, when the library is loaded, all HTML document is already loaded
too.

Each collected event must be sent to the Event Listener Service using a HTTP
request. This can be achieved by using Asynchronous JavaScript and XML (Ajax). Ajax
calls require JavaScript object creation and may offer an overhead of processing at client
side. If the HTTP request is a GET method request, there is a lighter and tricky way
to do the same, that consists on appending an image tag on the HTML document whose
image source address is the URL of the HTTP request. When an image tag is placed
into the HTML document, the browser will try to access the image source in order to
display it. When browser tries to access this image URL, a HTTP GET call is made
to the server where URL points to. Thus, the only requirement to server is to respond
a transparent image, containing just a few bytes, in order to emulate a valid image to
place into the HTML document with no side effect to pages design. This mechanism is
fast, asynchronous, easy to implement and is inspired by the way Google Analitics (2005)
collects events.

As Section 2.4.3 mentioned, Google Analytics enable websites to collect fine-grained
events, by using Custom Dimensions and Metrics. However, to achieve this, websites must
inject some code in order to push events containing those custom information. Footstep
JavaScript library aims to address this shortcoming by automatic element detection and
send the entire element information among events to the Event Listener Service.

4.3.2 The anatomy of detailed client event

Section 3.5 proposed a model that represents an HTML document structure using
nodes and vertexes. Section 4.3.1 described how the collector library builds and sends
each action performed by the user to the collector system. Section 3.4 explained how
events propagate though elements and its parents. In order to capture events containing
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detailed information about elements, each event must be translated to a single call to the
Event Listener Service. To fulfill the requirement of economy of data transfer, each call
should be as short as possible and still contain detailed information. The level of detail
extracted by the collector library includes the following information:

• User’s identifier;

• User’s session identifier;

• Date when the event was triggered;

• Type of event (pageview, click, keyup, focus, blur, tap, swipe, etc.);

• Page’s URL where the event occurred;

• User agent information (browser, operating system, etc.);

• Mouse position (the exact position of the cursor, if the event was triggered by
mouse);

• Element that received the event and its ancestors in HTML document structure
(optional). Each element may have these information:

– Tag name (a, div, span, label, input, etc.);

– ID (HTML attribute: id);

– Classes (HTML attribute: class);

– Name (HTML attribute: name);

– Type (HTML attribute: type);

– Position (the exact position of element in document);

Each event to be pushed to the Event Listener Service must comply with a
predefined format in order to be further processed without any loss of information. Listing
4.1 shows events that are not related to elements, such as a page view. Listing 4.2 shows
events triggered on elements. It is important to mention that both Listing 4.1 and Listing
4.2 are represented in many rows just for a better understanding.

Listing 4.1 – Page view event (no element as target)
https ://EVENT -LISTENER -SERVICE -HOST/collect?

id=WEBSITE -ID&
u=USER -ID&
i=SESSION -ID&
e=EVENT -ID&
p=PAGE -URL&
ua=USER -AGENT



Chapter 4. The Footstep System 43

Listing 4.2 – Event performed on an element
https ://EVENT -LISTENER -SERVICE -HOST/collect?

id=WEBSITE -ID&
u=USER -ID&
i=SESSION -ID&
e=EVENT -ID&
p=PAGE -URL&
ua=USER -AGENT&
m=MOUSE -TOP ,MOUSE -LEFT&
el=t:TAG ,i:ID,n:NAME ,tp:TYPE ,c:CLASS ,ot:TOP ,ol:LEFT&
an=

t:AN -0-TAG ,i: ... ,c:AN -0-CLASSES , ... ,ol:AN -0-LEFT ,
t:AN -1-TAG ,i: ... ,c:AN -1-CLASSES , ... ,ol:AN -1-LEFT ,
...
t:AN -N-TAG ,i: ... ,c:AN-N-CLASSES , ... ,ol:AN-N-LEFT

This format was designed in this way to transfer less data through Internet and thus
impose less overhead to these calls, fulfilling the economy of data transfer requirement, so
each argument name is as short as possible and represent an unique type of information:

• Website’s identifier: id;

• User’s identifier: u;

• Session’s identifier: i;

• Event’s identifier: e;

• User Agent’s identifier: ua;

• Mouse position’s identifier: m;

• Element’s identifier: el;

• Element’s ancestors’ identifier: an.

Each element and ancestor element is translated to another predefined format,
containing information about its tags and some of its attributes, also represented by
unique short argument names:

• Tag name: t;

• Tag attribute id: i;

• Tag attribute class: c;

• Tag attribute name: n;

• Tag attribute type: tp;
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• Tag offset top position: ot;

• Tag offset left position: ol.

Taking the same hypothetical scenario described in Section 3.5.1, when the user
opens the Register page and performs three clicks, Figure 6 shows the UsaGraph representation
of these four events. Listings 4.3, 4.4, 4.5 and 4.6 demonstrate inner details of these events.

Listing 4.3 – Hypothetical scenario’s first event: Open register page
https ://EVENT -LISTENER -SERVICE -HOST/collect?

id=website&
u=user -id&
i=session -id&
e=pageview&
p=https%3A%2F%2Fwww.website.com%2 Fregister&
ua=Mozilla

Listing 4.4 – Hypothetical scenario’s second event: Click E-mail field
https ://EVENT -LISTENER -SERVICE -HOST/collect?

id=website&
u=user -id&
i=session -id&
e=click&
p=https%3A%2F%2Fwww.website.com%2 Fregister&
ua=Mozilla&
m=112 ,23&
el=t:input ,n:email ,tp:text ,c:register -input ,ot:100,ol:20&
an=t:form ,i:form -register ,ot:30,ol:10;t:div ,c:container;t:body

Listing 4.5 – Hypothetical scenario’s third event: Click Password field
https ://EVENT -LISTENER -SERVICE -HOST/collect?

id=website&
u=user -id&
i=session -id&e=click&
p=https%3A%2F%2Fwww.website.com%2 Fregister&
ua=Mozilla&
m=156 ,34&
el=t:input ,n:password ,tp:password ,c:register -input ,ot:150,ol:20&
an=t:form ,i:form -register ,ot:30,ol:10;t:div ,c:container;t:body

Listing 4.6 – Hypothetical scenario’s third event: Click Register button
https ://EVENT -LISTENER -SERVICE -HOST/collect?

id=website&
u=user -id&
i=session -id&
e=click&
p=https%3A%2F%2Fwww.website.com%2 Fregister&
ua=Mozilla&
m=215 ,51&
el=t:button ,i:register ,c:btn %20btn -primary ,ot:200,ol:40&
an=t:form ,i:form -register ,ot:30,ol:10;t:div ,c:container;t:body
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4.3.3 Event Listener Service

As Section 4.2 pointed out, events are captured in websites using the native
browsers’ support to JavaScript and sent to the Event Listener Service. The Event
Listener Service consists in a single Web service endpoint receiving meaningful data as
parameters. Section 4.3.2 described these parameters containing the required data to be
further translated to UsaGraph model.

Each call to Event Listener Service must take into account the economy of data
and this also applies to the service response. In fact, the Event Listener Service response
is useless. Once the Footstep JavaScript captured and sent detailed event to the event
listener, no response back is expected.

There are some ways to make HTTP calls from browsers, such as XMLHttpRequest
calls. But, based on Google Analytics, there is another tricky way to make GET HTTP
requests through HTML image sources. When browsers detect image tags, they evaluate
their source attribute expecting an image response, containing response headers such as
image/gif, image/jpeg, image/png. If Event Listener Service returns an image content
type response, it can be used as image tag source attribute. In other words, event listener
/collect calls respond a fake and transparent GIF image containing a minimum length
as possible. So, Footstep JavaScript place an image tag in page HTML document for
every event containing the collect call with detailed event parameters as image tag source
attribute.

4.3.4 Events Queue

To make a bridge between producer and consumer, our architecture exploits an
open source, lightweight message broker, widely used by many systems, called RabbitMQ
(2007), which supports multiple messaging protocols and meet high-scale, high-availability
requirements. RabbitMQ’s architecture (PIVOTAL SOFTWARE, INC., 2017), as shown
in Figure 12, has two structures designed to deal with producers and consumers (Exchanges
and Queues, respectively) (NANNONI, 2015). Producers should not be aware of the
routing of their messages, or even which consumers will ingest this information. For
the same reason, consumers ingest queues’ messages, regardless of the origin of those
messages. That logical separation between exchanges and queues brings flexibility on
message routing strategies. RabbitMQ can be also configured as a distributed system,
including many clusters, and can operate either synchronously or asynchronously.
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Figure 12 – Simplified RabbitMQ architecture.

4.4 Consumer & Parser Module
Consumer & Parser Module presents two main components: the Events Queue

consumer and the Events Parser. Data integration is paramount in Footstep architecture,
and there are several possibilities in terms of technology to implement distributed systems
capable of data exchange and processing. The Consumer & Parser Module is built upon
Apache NiFi (2006), a powerful and reliable system designed to performs data routing and
transformation, as well as system mediation logic. Apache NiFi is suitable for Consumer
& Parser Module because it has powerful ways to transfer and transform data.

4.4.1 Apache NiFi

Apache NiFi is highly configurable, contains many types of fully customizable
processors, responsible for consuming, processing, transforming and delivering data. All
processors run asynchronously and can connect to each other by queues, providing back
pressure mechanism and guaranteed delivery of data. The processors can be organized
and logically grouped into process groups, and further used as new components. Apache
NiFi provides a Web-based user interface called NiFi Flow. By using this tool it is possible
to add and connect processors as needed.

Apache NiFi version 1.4 offers many types of processors, such as queue consumers,
processors to read and write to different databases, for reading and writing files and
different kinds of text processors. Figure 13 depicts the screen where it is possible to
select a processor. Beyond selecting predefined processors, it is also possible to define and
implement custom processors.

NiFi processors operate over FlowFiles. A FlowFile is a data record, which consists
of a pointer to its content (payload) and attributes to support the content (APACHE NIFI,
2018). As NiFi is a flow-based architecture, understanding how FlowFiles are created and
transferred between processors is paramount to design and connect processors in a concise
way.
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Figure 13 – Apache NiFi - Add Processor Window.

4.4.2 Events Queue Listener

In a nutshell, Footstep’s Consumer & Parser Module is actually implemented and
organized as groups of processors in NiFi. All start with Events Queue Listener, a NiFi
processor responsible for consuming the event queue presented in Section 4.3. Consumer
processor is a NiFi processor designed to consume queues such as those provided by
RabbitMQ, among other types of messaging queues. Figure 14 shows the processor
configuration properties as RabbitMQ queue name, host and port to connect, and authorization
data.

The Events Queue Listener processor is connected to a processor group responsible
for parsing events to the UsaGraph model format, as depicted in Figure 15.

4.4.3 Events Parser

The Events Queue Listener processor is connected to the Parser process group,
which contains several processors responsible for reading and parsing events to extract
user, page, event type and HTML elements, and finally translate them to UsaGraph nodes
and vertexes. All parsing and text transformations are performed by specific processors
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Figure 14 – Events Queue Listener Processor.

Figure 15 – Consumer Processor and Parser Process Group.

which operate over text using Regular Expressions to extract specific parts according to
defined patterns. Figure 16 shows the processors inside Parser process group:
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• Parse and Define Event: responsible to read event log, identify the UsaGraph entities
(event type, user, page, elements);

• Generate CSV Files: prepare the parsed events to insert them into Graph Database;

• Save, Load and Delete CSV File: processor group responsible to call LOAD CSV
commands in Neo4j using CSV files containing parsed events;

• Neo4j Relationship Jobs: processor group containing several jobs to ensure UsaGraph
relationships between all entities extracted from event logs.

Figure 16 – Parser Process Group.

4.4.3.1 Parse and Define Event process group

Section 4.3.2 described how event log is built as a pre-formatted text containing
all relevant data to translate an event triggered by the user to the UsaGraph model.
The Footstep JavaScript library is responsible for encoding events in this format. Thus,
a further step is required to decode event logs, extracting all data to translate to the
UsaGraph model.

Inside the Parse and Define Event process group, as depicted in Figure 17, there
are three processors, named as Extract Event Parameters, Decode Page and Set Page,
Host, Date and Elements processors.

The first processor, Extract Event Parameters, is responsible for reading the event
log, extracting all parameters defined in Section 4.3.2 through regular expressions to NiFi
FlowFiles attributes, as Figure 18 shows.
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Figure 17 – Parse and Define Event process group.

Figure 18 – Extracting parameters from event log using regular expressions.

The second processor, Decode Page, decodes and cleans attributes as depicted in
Figure 19. These parameters need to be decoded due to the fact they were previously
encoded to be sent through /collect parameters to Events Listener Service.

And the third processor, Set Page, Host, Date and Elements, defines important
attributes to be further translated to UsaGraph model, as Figure 20 shows, such as
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Figure 19 – Decoding parameters from extracted parameters.

page_id, host, event_id, date_timestamp and others attributes.

Figure 20 – Refining and defining parameters from decoded parameters.
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4.4.3.2 Generate CSV Files processor group

A CSV file contains several fields separated by comma character, one record per
line. As Neo4j Import Guide (NEO4J, 2007a) recommends, one of the fastest ways to
import data into a Neo4J running database is by using LOAD CSV command to persist
nodes and relationships using CSV files present in Neo4j import folder.

Figure 21 presents Generate CSV Files processor group containing processors
responsible for organizing FlowFiles attributes previously extracted into CSV files in
order to persist them into Neo4j according to the UsaGraph model. This process group
also detects events triggered on elements in order to organize elements and its ancestors
to maintain the hierarchy according to the DOM structure, to be further persisted into
Neo4j as Element nodes.

Figure 21 – Generate CSV Files processor group.

4.4.3.3 Save, Load and Delete CSV Files processor group

This process group contains processors responsible for persisting CSV files into
Neo4j import group, for executing Neo4j LOAD CSV command and, finally, for deleting
CSV files after the import process.

4.4.3.4 Neo4j Relationships Jobs processor group

A final step is required to maintain consistency between imported nodes in Save,
Load and Delete CSV Files processor group. Each CSV line corresponds to nodes to be
inserted, but the relationships are part of the UsaGraph model. This process group calls
jobs responsible for joining Event nodes belonging to the same user’s interaction using
NEXT relationships. There are also jobs connecting Element nodes to respective Element
parent node, connecting Page nodes to PageLabel nodes and finally connecting Element
to ElementLabel nodes.
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4.4.4 Graph Database

UsaGraph model is built upon graph theory, therefore it is straightforward to use a
graph database to store events translated to nodes and vertexes. There are many available
technologies and databases designed to store graphs. Footstep stores its data into Neo4J
Neo4j (2007b), an open source native graph database, largely used by companies. Neo4J
is a mature solution in terms of database platform, supporting transactional applications
and graph analytics, providing drivers and APIs to developers, as well as tools to monitor
and manage databases, as shown in Figure 22.

Figure 22 – Neo4j’s Graph Platform (NEO4J’S GRAPH PLATFORM, 2007).

According to its developers, Neo4J is as a Labeled Property Graph Model, as Figure
23 illustrates. Nodes are the main data elements, which can have properties, stored
as key-value pairs. Relationships connecting two nodes are directed and can also store
properties. The term Labeled Graph Model comes from the fact that Neo4J uses labels to
identify and separate nodes and relationships into sets. The term Property Graph Model
comes from its ability to store properties into nodes and relationships, and also from the
possibility to add indexes and constraints to properties.

Neo4J provides a graph query language, called Cypher, described as a vendor-neutral
open graph query language with a familiar syntax that provides a readable way to
match patterns of nodes and relationships within graph datasets1. Cypher was available
exclusively for Neo4J, but in 2017 Neo4J Inc. decided to open source Cypher aiming to
leverage it as the SQL for graphs2. Cypher has a specific way to query for nodes and
relationships, as Figure 24 illustrates.
1 Cypher, The Graph Query Language <https://neo4j.com/cypher-graph-query-language/>
2 The Open Cypher Project <http://www.opencypher.org/about/>

https://neo4j.com/cypher-graph-query-language/
http://www.opencypher.org/about/
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Figure 23 – Neo4j’s Labeled Property Graph Model.

Figure 24 – Cypher syntax for matching nodes and relationships.

Neo4J has some different ways to insert nodes and relationships, such as CREATE
Cypher command to insert nodes, MERGE Cypher command to insert or update nodes,
LOAD CSV Cypher command to load nodes from CSV files, and there is also a Neo4J
import tool to create a graph database from scratch. Figure 21 presented the second part
of events parsing process, in which all parsed event data is saved as a CSV file.

4.5 Generalization Module
One of the limitations of our approach is the lack of ability to infer pages’ similarity

automatically. It is required an explicit manual intervention to make possible to say that
a given page A and another page B belongs to the same page set, or, using UsaGraph
terms, that two Page nodes connect to the same PageLabel node. This is possible by
configuring patterns that match Page URL’s, mapping them to a specific PageLabel.
Those patterns may contain static or dynamic parts in order to provide flexibility to the
URL matching algorithm.

Listing 4.7 illustrates the procedure of grouping pages into page sets. Giving an
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hypothetical website with products and services pages, if the generalization is defined
by how many parts an URL is divided, three PageLabel would be created: Home page,
One part pages and Two part pages. In this case, the generalization is made by simply
counting URL’s parts, thus, it is not necessary to define which dynamic parts belong to
which page type. By convention, URL parts defined with asterisk accepts anything.

Listing 4.7 – URL generalization by URL’s parts count
https :// www.website.com/ <- Home page
https :// www.website.com/products <- Products page
https :// www.website.com/products/product -A <- Product A page
https :// www.website.com/products/product -B <- Product B page
https :// www.website.com/services <- Services page
https :// www.website.com/services/service -c <- Service C page
https :// www.website.com/services/service -D <- Service D page

Generalizing by URL ’s parts:
https :// www.website.com/ <- Home page
https :// www.website.com/* <- One part pages:

Products , Services
https :// www.website.com /*/* <- Two part pages:

Products A, B;
Services C, D

Considering another hypothetical scenario, in which the same URLs presented in
Listing 4.7 are used, but now the aim is to identify products and services pages separately,
no matter whether the page is the list of products or the product page itself. Listing 4.8
illustrates how to separate pages into products and services pages, simply by checking the
first part of the URL. In this case, it is necessary to define two patterns to identify the
same page type.

Listing 4.8 – URL generalization by URL’s parts count
Generalizing by products and services pages:
https :// www.website.com/ <- Home page

1: https ://www.website.com/products <- Products pages:
2: https ://www.website.com/products /* Products , Product A,

B and others

1: https ://www.website.com/services <- Services pages:
2: https ://www.website.com/services /* Services , Service C,

D and others

When the website presents more dynamic URLs, the generalization procedure
becomes more complicated. Listing 4.9 adds different URLs to the previous examples,
a login and register pages, and three pages that represent something about locations.
Now, the requirement is to separate pages into these page types: Home, Users (login
and register), Locations (location-1, location-2 and location-3), Listings (products and
services), Product page, Service Page and Unmapped pages. This is possible by using
keywords that define the permitted parts, such as USER-PART which accepts only login
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and register. By convention, URL parts surrounded by curly braces represent keywords
and must define its possible values. To match Unmapped pages, another convention is
defined by negating keywords with the exclamation mark, as shown in Listing 4.9. The
mechanism of matching pages patterns must compare those pages starting with the most
restrictive URL pattern, otherwise asterisk would match all pages and label them.

Listing 4.9 – URL generalization by URL’s parts count
https :// www.website.com/ <- Home page
https :// www.website.com/login <- Login page
https :// www.website.com/register <- Register page
https :// www.website.com/location -1 <- Location 1 page
https :// www.website.com/location -2 <- Location 2 page
https :// www.website.com/location -3 <- Location 3 page
https :// www.website.com/products <- Products page
https :// www.website.com/products/product -A <- Product A page
https :// www.website.com/products/product -B <- Product B page
https :// www.website.com/services <- Services page
https :// www.website.com/services/service -c <- Service C page
https :// www.website.com/services/service -D <- Service D page

Generalizing by requirements:
https :// www.website.com/ <- Home page
https :// www.website.com/{USER -PART} <- User pages:

login and register
https :// www.website.com/{LOCATION -PART} <- Location pages:

location -1, location -2
and location -3

https :// www.website.com/{LISTINGS -PART} <- Listings pages:
products and services

https :// www.website.com/products /* <- Product page:
product -A, product -B
and others

https :// www.website.com/services /* <- Services page:
service -C, service -D
and others

Unmapped pages
https :// www.website.com/! USER_PART |!LOCATION -PART|!LISTINGS -PART
https :// www.website.com/! USER_PART |!LOCATION -PART|!LISTINGS -PART/*

URL permitted parts:
- USER -PART: login and register
- LOCATION -PART: location -1, location -2, location -3
- LISTING -PART: products and services

4.5.1 Page Label Configuration

The Generalization Module stores and reads Page Label’s configurations in a
document-based database called MongoDB3. MongoDB stores data in a flexible way, using
JSON-like documents4 into collections. Footstep expects only two types of documents to
3 MongoDB [online] <https://www.mongodb.com/>
4 JavaScript Object Notation <https://www.json.org/>

https://www.mongodb.com/
https://www.json.org/
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perform generalization: page label and pattern documents, each one stored in a different
MongoDB collection, as Listing 4.10 illustrates.

Listing 4.10 – Basic signature of Footstep collections for pages generalization
Collection page_labels:
{

"id" : "NAME",
"urls" : [

"URL -1",
"URL -2"

]
}

Collection patterns:
{

"id" : "KEYWORD -NAME",
"patterns" : [

"PATTERN -1",
"PATTERN -2"

]
}

Using the configuration described in Listing 4.9 to operate in Footstep, documents
must be inserted into the MongoDB collections page_labels and patterns, as shown in
Listing 4.11. Therefore, patterns USER-PART, LOCATIONS-PART and LISTINGS-PART and
page labels HOME-PAGE, USER-PAGE, LOCATIONS-PAGE, LISTINGS-PAGE, PRODUCT-PAGE,
SERVICE-PAGE and UNMAPPED-PAGE must be declared and inserted into collections.

Listing 4.11 – Configuration of hypothetical scenario of generalization
Collection patterns:
{

"id" : "USER -PART",
"patterns" : [

"login",
"register"

]
}
{

"id" : "LOCATIONS -PART",
"patterns" : [

"location -1",
"location -2",
"location -3"

]
}
{

"id" : "LISTINGS -PART",
"patterns" : [

"products",
"services"

]
}

Collection page_labels:
{
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"id" : "HOME -PAGE",
"urls" : [

"www.website.com",
"www.website.com/"

]
}
{

"id" : "USER -PAGE",
"urls" : [

"www.website.com/{USER -PART}"
]

}
{

"id" : "LOCATIONS -PAGE",
"urls" : [

"www.website.com/{LOCATIONS -PART}"
]

}
{

"id" : "LISTINGS -PAGE",
"urls" : [

"www.website.com/{LISTINGS -PART}"
]

}
{

"id" : "PRODUCT -PAGE",
"urls" : [

"www.website.com/product /*"
]

}
{

"id" : "SERVICE -PAGE",
"urls" : [

"www.website.com/service /*"
]

}
{

"id" : "UNMAPPED -PAGE",
"urls" : [

"www.website.com/{! USER_PART }{! LOCATION -PART }{! LISTINGS -PART}",
"www.website.com/{! USER_PART }{! LOCATION -PART }{! LISTINGS -PART }/*"

]
}

4.5.2 Pattern Extraction

As pages are classified using Page Label configuration patterns, a second step
in Generalization Module comes into action: the element generalization. Section 3.5.1
demonstrated in Figure 8 how different elements in different pages can be generalized and
represented by a ElementLabel node. This generalization could be made regardless of
PageLabel generalization, but the computational overhead could be significant. In other
words, elements generalization without PageLabel would compare elements of different
types of pages, for example, comparing elements from register page with elements from
products listings page. The odds of an efficient element match among different types of
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pages are lower than element matching of similar pages. So, pages generalization aids
elements generalization by reducing the spectrum of elements’ comparisons that might
belong to the same type of page.

Element generalization does not require an outside configuration, since only elements’
type and attributes are used to make comparisons between them. This is also made by a
NiFi processor, which queries Neo4J for unmatched Element nodes, compares them and
create ElementLabel nodes in case of matching.

4.6 Analytics Module
The Analytics Module is a web application designed to support website administrators,

allowing them to visualize usage data in real time. Among its features, the Analytics
Module provides dashboards to analyze (i) the usage flow in pages, (ii) the audience on
page elements, (iii) the conversion in pages and elements. The data analytics provided by
this module separates the interaction according to the used device: desktop, smartphone
(mobile) and tablet. This module also offers facilities for the configuration of Page Labels
according to the URL policy used in the analyzed website.

Figure 25 depicts Footstep’s main dashboard presenting a histogram of events and
valuable statistics about number of events, users and pages, as well as the distribution of
events among the the supported device types.

Figure 25 – Analytics dashboard.

Footstep’s main dashboard also presents the page audience information, as Figure
26 shows. Each box presents data about a Page Label, showing the amount of active
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users, those whose last interaction occurred in this Page Label, and total users, which
represents the total of users that accessed this Page Label during the collection time.

Figure 26 – Page audience dashboard.

The Analytics Module also provides element audience, navigation flow and conversion
dashboards, where website administrators are able to keep track of users and their actions.
Element audience dashboard shows the total of events triggered in elements, in a specific
page and period of analysis, as Figure 27 shows.

Figure 27 – Element audience dashboard.

Navigation flow dashboard shows how pages are connected to other pages and the
flow of navigation between them, during a specific period of time, as depicted in Figure
28.

Figure 28 – Page flow dashboard.

Finally, the conversion dashboard shows how users convert to specific page or
element. In other words, this dashboard shows navigation paths made by users to reach
some point (page or element), the total of users that followed this navigation path, the
total of events spent to reach the conversion point as the rate of users per events. Figures
29 and 30 show, respectively, page and element conversion dashboards.
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Figure 29 – Page conversion dashboard.

Figure 30 – Element conversion dashboard.

4.7 Final Remarks
This chapter presented the Footstep System, an approach based on the UsaGraph

data model, designed to collect users’ interactions among websites in order to extract
useful and detailed information about navigation at DOM elements level.

Footstep System is divided in four specialized modules, decoupling event collection,
processing, persisting and analyzing phases. Each module in autonomous, bringing scalability
to the system.

Chapter 5 shows the experiments made do validate our approach by exploiting
different kinds of websites and expatiating the collected data and results.
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5 Experiments

5.1 Initial considerations
The main contribution of Footstep system is the analysis of web usage considering

the interaction with HTML elements and its ancestors, by exploiting its graph data model,
UsaGraph. Section 4.2 described the proposed architecture for automated event collection,
consumption and processing in websites, being an union of tiny, less intrusive JavaScript
library, and asynchronous, fast and reliable event processing system.

This chapter presents experiments with real web applications that demonstrate
Footstep’s main features, highlighting how these features are useful to support the administration
of e-commerce websites. Footstep provides, in real time, dashboards to monitor website’s
audience, showing flow diagrams considering pages and HTML elements inside pages. This
features allow website administrators to detect anomalies and understand the behavior of
users. Footstep also provides page heat maps and a customization feature to define and
measure conversion points on e-commerce applications.

To demonstrate Footstep’s features, experiments were performed in two different
types of e-business: e-commerce marketplace and transportation (load/freight) marketplace.
Three websites were selected to collect, extract and analyze web usage data:

• E-commerce marketplaces:

– Peixe Urbano (2010a) (Brazil)

– Groupon Brazil (2017) (Brazil)

• Transportation marketplace:

– TruckPad (2015)

Each business has different goals: an e-commerce marketplace aims at selling goods
to their users, while the transportation marketplace aims at supporting the supplier/customer
relationship, connecting truckers to truckloads. Even so, both business websites are
designed to lead their users from a given point inside the website to another, that is, both
have specific conversion targets. The experiments performed in Peixe Urbano, Groupon
and TruckPad were accompanied by some of its software engineers, who were in charge
of installing Footstep’s JavaScript library, as well as defining the different types of pages
to help the creation of PageLagel’s according to the specificities of each business.
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The three experiments presented in this chapter aims at exploring the following
features:

• Pages and elements audience: the frequency of access of pages and elements over a
specific period of time;

• Navigation flow: The flow between pages and elements;

• Conversion points: How users convert to pages and elements.

5.2 Peixe Urbano
Peixe Urbano is the largest local e-commerce company in Brazil, with more than

30 million users. It was founded in early 2010 and elected as “The Best International
Startup of the Year” by Crunchies Awards (PEIXE URBANO, 2010b). Peixe Urbano
contains thousands of local offers in gastronomy, entertainment, tourism, goods, etc.
Several thousands of users visit Peixe Urbano every day.

The installation of Footstep JavaScript library in Peixe Urbano did not require any
development by engineer team due to the fact that Peixe Urbano uses Google Tag Manager
(2012), a tag management system that allows updating tracking codes and related code
fragments collectively known as tags on a web application (GOOGLE TAG MANAGER,
2012). In other words, Google Tag Manager allows the injection of Footstep JavaScript
library on-the-fly, with no deploying needed.

Peixe Urbano was instrumented by Footstep JavaScript library in September 30,
2018, from 3:45 PM to 5:45 PM, Brasilia Time Zone. During this period, a total of
281,882 events were collected, containing 27,996 unique users, 13,896 visited pages and
390,359 interaction with HTML elements. The Consumer & Parser module presented no
significant increase of processing, consuming the event queue very fast.

According to the engineers of Peixe Urbano, among all 13,896 visited pages, only
28 page types were identified. The most important page types for the analysis of Peixe
Urbano are:

• HOME: home page containing listings of offers;

• LOGIN: login page;

• REGISTER: register page;

• RECOVER_PASSWORD: recover password page;

• DEALS: listing of offers per city;
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• FILTERED: listing of offers per city, filtered by one or more categories;

• SEARCH: listing of offers per city, filtered by query search;

• PARTNER: listing of offers per partner;

• DEAL: page of a specific offer;

• CHECKOUT: shopping cart and checkout page;

• PROCESSING: purchases processing page;

• AUTHORIZING: processing purchases that require extra information to be approved;

• NOT_AUTHORIZED: purchases not authorized by their payment system;

• RECEIPT: approved purchases;

• ACCOUNT: user’s account page.

Engineers of Peixe Urbano also pointed out the desired flow of conversion, i.
e., how their pages was designed to lead users to purchase. According to them, all
HOME, DEALS, FILTERED and SEARCH page types contains list of offers. Generally,
navigation starts in HOME page, but depending on the origin of access, navigation might
also starts in DEALS, FILTERED or SEARCH pages. If the access is organic, that is,
if the user types the address of Peixe Urbano manually on her browser, the navigation
often starts in HOME page. But if the user accesses Peixe Urbano through a search
result using a search engine website, navigation might starts in a DEALS page, or in
a FILTERED page, or even in a DEAL page. Nevertheless, engineers designed Peixe
Urbano’s navigation flow as the following sequence of steps:

1. Access a listing of offers: HOME or DEALS pages;

2. Perform some filtering, searching for the best or desired offer: FILTERED or
SEARCH pages;

3. Access the offer: DEAL page;

4. Add the offer to shopping cart: CHECKOUT page;

5. Submit the purchase: PROCESSING or RECEIPT pages.

These sequence of steps compose a well known term in e-commerce business: the
conversion funnel. It is called funnel because the number of users accessing these pages
decreases as users reach further steps. In other words, the number of users performing
step 1 is larger than the number of users doing step 2, which is more accessed than pages
in step 3, and so forth.
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5.2.1 Page audience

During user’s navigation in a specific website, there is always a page being accessed
and any user interaction might imply an event being triggered on a web element. Footstep
system is able to detect, in a specific period of time, pages and elements accessed by users.
Footstep also can identify the page last seen in this period, by each user, what is called
active state of user interaction. It is important to mention that active state might refer
to an event occurred in the past. It depends on the selected period of analysis, but it
represents the last accessed page in the selected period of time.

The Footstep visualization tool allows website administrators to choose the time
range of analysis. The events are displayed in a time based chart, divided into three types
of platforms: Desktop, Smartphone (Mobile) and Tablet. Figure 31 shows collected events
during all the period of event collection and displays the share between events performed
on Desktop, Mobile and Tablet, both page views and clicks (taps) are presented in pie
charts. It is possible to notice that a great part of audience comes from mobile devices.

Figure 31 – Events from Peixe Urbano in September 30, 2018, from 3:45 PM to 5:45 PM
BRT.

Taking into consideration the types of pages pointed by Peixe Urbano engineer
team, Footstep detected the most accessed page types as shown Figure 32. Each box
represents a specific page type, displays the number of unique visitors and the number of
active users. The number written in blue represents the total of unique users who visited
the page type in the period of analysis. The number written in green represent the active
users in that page type, i. e., how much of these users are visiting that page type at the
end of the period of analysis.

It is possible to notice that HOME page is the most accessed page type, with 5,271
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Figure 32 – Pages audience during event collection in Peixe Urbano.

unique users and 1,107 unique active users, although other page types have more active
users, such as CHECKOUT (3,930 unique visitors and 2,617 active users), SEARCH (3,860
total visitors and 1,691 active visitors) and DEALS (4,522 total visitors and 1,445 active
users).

All events hold when they were triggered, so it is possible to filter events in different
ranges of date. For example, Figure 33 displays the last 15 minutes of event collection in
Peixe Urbano, in September 30, 2018, from 5:30 PM to 5:45 PM BRT.

5.2.2 Element audience

The page type dashboard is a dashboard designed to extract information related
to a specific page type, displaying, in a specific period, the most accessed elements divided
by desktop, mobile and tablet platforms. For example, by accessing HOME page type



Chapter 5. Experiments 67

Figure 33 – Pages audience during the last 15 minutes of event collection in Peixe Urbano.

dashboard, for all period of event collection in Peixe Urbano, it is possible to extract
the most accessed elements, as Figure 34 displays. Analyzing the results for the Mobile
platform, it is possible to notice that the most accessed element is a tag input with
id term, with 5,990 events triggered on this element in this period. This dashboard
information provides an important insight about page’s design undesired collateral effect
by showing elements taking too much attention over other more important elements.

Figure 35 shows the 5 most accessed elements in DEAL page. This page is the
product page and it is very important to e-commerce websites, because it can directly
affect the company sales. Therefore, a wrong design decision related to this page may
affect the user experience, compromising sales conversion. Therefore, website administrators
need to track and monitor user interactions on this page in order to find issues that may
cause losses in conversions.
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Figure 34 – Elements audience in page type HOME during event collection in Peixe
Urbano.

Figure 35 – Elements audience in page type DEAL during event collection in Peixe
Urbano.

Another important point to notice is that a click event not always leads to another
page. Only link elements lead to other pages, but Footstep JavaScript library capture
clicks wherever they occur. In other words, if a user clicks on a text element, without a
link, nothing happens, but a click event is triggered and sent to Footstep events queue.
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So, several elements such as div, span or img may appear in elements dashboard as if
they lead to other pages, but, in fact, what happened was that the user has clicked a non
link event right before clicking on the browser’s back button, which actually has leaded
to another page.

5.2.3 Navigation flow

The page type dashboard also displays the navigation flow between two page types.
The navigation flow is extracted from UsaGraph event nodes by taking two consecutive
events belonging to same interaction and the page/element where these events were
triggered. Based on a specific period, this dashboard displays how users navigate through
pages, giving to website administrators trends and important insights about the design
of pages. When designers and engineers define pages, they imagine a desired flow of
navigation and want a way to validate and measure the actual navigation flow inside the
website.

Figure 36 shows the flow between DEAL page type and other page types for the
desktop platform. As engineers had foreseen, the most accessed page type after DEAL
is CHECKOUT page type, representing 39.8% of the outgoing flow from DEAL. Then,
DEALS page type is the second most accessed page type (18.37%) followed by HOME
(17.35%), SEARCH (15.31%) and FILTERED (5.1%) page types.

Figure 36 – Flow between DEAL and other page types (Desktop) during event collection
in Peixe Urbano.

When the same analysis is performed for the mobile platform, the result is quite
different. As previously stated by engineers, the expected page type after DEAL IS
CHECKOUT, however, as depicted in Figure 37, CHECKOUT page is only the fourth
most accessed page from users that visited a DEAL page. This information is an alert to
engineers showing that there is something wrong in the design of pages that is affecting
the navigation flow, as 27.11% of users go from DEAL to SEARCH page, 20.48% from
DEAL to HOME, 18.07% from DEAL to DEALS, and only 16.87% go from DEAL to
CHECKOUT page type, which is an undesired and unexpected user behavior. This result
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is aggravated by the fact that mobile devices generates 77.03% of all tracked events from
DEAL to another page.

Figure 37 – Flow between DEAL and other page types (Mobile) during event collection
in Peixe Urbano.

Another information that is rather important for engineers and website administrators
is related to the elements involved in the navigation flow. A success navigation flow
happens when an event occurring in a given page type leads to the a desired page type.
For example, a flow between DEAL and CHECKOUT pages is considered a success flow.
Thus, a failure flow occurs when an event leads the interaction far from the desired page
type. For instance, when an event occurs in DEAL page and leads the user to other page
than CHECKOUT page, which is the case verified in Figure 37, where SEARCH, HOME
and DEALS page types receive more events from a DEAL page than CHECKOUT page.

Therefore, it is important to analyze a failure flow in order to identify anomalies
in user interaction with the aim of putting users back in track of the desired flow. Figure
38 shows, for the mobile platform, the 12 most used way outs from the desired flow, which
is going from DEAL to CHECKOUT page. Most users perform click events over div tag
with classes box, deal-regulations, deal-highlights and end up in different pages
than CHECKOUT page: 1,844 users has gone to FILTERED page, 1,786 users to SEARCH page
and 1,120 users to DEALS page. The following way outs are by clicking in browser’s back
button: 1,011 users has returned to FILTERED page, 768 users to DEALS page and 756
users do SEARCH page.

5.2.4 Conversion points

Every commercial website has one or more specific goals and often administrators
want to measure if users are behaving as expected. Therefore, it is important to provide
tools to measure how users convert to specific pages and elements.

By exploiting UsaGraph capabilities, it is possible to measure how many users
triggered events to reach specific nodes of the graph. According to the UsaGraph model,
events triggered by the same user in the same interaction are translated to Event nodes
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Figure 38 – Failure flow between DEAL and CHECKOUT page type (Mobile) during
event collection in Peixe Urbano.

chained and connected to each other by its relationship NEXT. Event nodes are also
connected to PageLabel nodes and might be connected to ElementLabel nodes, depending
on the type of event. By exploring this concept and using the collected events from Peixe
Urbano, it is possible to measure, over a specific period of time, the number of users who
interacted with specific pages and elements and how many events on average were spent
to reach conversion points. This way, Footstep is able to calculate the conversion rate per
page and per element.

Engineers are free to define conversion points. In the following example, the DEAL
page type is defined as conversion point. Figure 39 shows users that interacted with DEAL
page type and how they did it. Each box displays the navigation pattern used by users to
reach a DEAL page, the number of users that performed this action, how many events in
average were necessary until reaching the conversion point and the conversion rate. The
first box shows 575 users, taking in average 4.9 events to navigate from DEALS page type
to DEAL page type. When this navigation flow is compared to the second most used
path, from HOME to DEAL page type, the conversion rate are very similar. But when
the third and fourth navigation flows are compared, it is possible to notice that SEARCH
performs much better than FILTERED page type. From SEARCH, 517 users took in
average 4.6 events to visit a DEAL page, in contrast, from FILTERED page type, 309
users took 4.7 events to reach a DEAL page. Thus, the conversion rate of SEARCH is
much better than the conversion rate of FILTERED.

Footstep also allows to take elements as conversion points. To illustrate this
feature, lets consider the third most accessed element in DEAL page type. As illustrated
in Figure 35, the element label with classes .pu-option-radio, .pu-radio-group-item,
.selo-baixou-preco and .oferta-turbinada is the target. Figure 40 shows that the
most used navigation flow to click on this label element is from SEARCH page type,
where 141 users took in average 6.18 events to click on the conversion point element,
resulting a rate of 22.83 users/event. The second most used navigation flow to convert to
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Figure 39 – Users’ navigation patterns to convert to DEAL page type.

this element is through HOME (88 users, 6.49 events) followed by DEALS (74 users, 6.41
events) and FILTERED (36 users, 5.72 events) page types.

Figure 40 – Users’ navigation patterns to convert to label element.

Footstep also allows setting more than one conversion point. For example, it is
possible to extract how users accessed a page or clicked on a specific element and then
accessed another page or clicked on another element. Using the same collected data of
Peixe Urbano and setting two conversion points as a page view on DEAL page type and
then a page view on CHECKOUT, it is possible to extract the most used navigation
flows to reach these conversion points. Figure 41 shows that most part of users access a
DEAL page and then a CHECKOUT page through DEALS page, with 177 users taking
in average 21.47 events to reach these conversion points.

This conversion analysis shows users that reach CHECKOUT page passing by a
DEAL page, but Footstep allows to set an element as conversion point. By setting the
purchase submit button as final conversion point, it is possible to measure users’ purchase
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Figure 41 – Users’ navigation patterns to convert to DEAL and then CHECKOUT pages.

intention and extract navigation flows with better conversion. Figure 42 shows that 53
users navigate from DEALS, then accessed a DEAL page and finally hit purchase submit
button in CHECKOUT page. They triggered in average 22.58 events to do this navigation
flow, giving a conversion rate of 2.35 users/event. The second most accessed navigation
flow includes again SEARCH page, with 18 users starting at SEARCH page, accessing
a DEAL page and pressing the submit button, taking in average 30.5 events to perform
this, a rate of 0.59 users/event. The third most accessed navigation flow also includes the
SEARCH page, being accessed by 14 users with a rate of 0.49 users/event.

Figure 42 – Users’ navigation patterns to convert to DEAL page and then click on submit
purchase button (CHECKOUT page).

These results shows the importance of SEARCH page in terms of sales conversion,
and give to engineers of Peixe Urbano a valuable feedback about the searching engine
feature. Thus, according to these results, improving the search feature is likely to increase
sales.
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5.3 TruckPad
TruckPad is an online mobile marketplace where truckers can find truckloads using

their mobile devices. It connects more than 10,000 shippers to carriers, helping to deliver
more than 50,000 truckloads per month in Brazil. Because TruckPad is not a traditional
e-commerce platform, it has been chosen to assess Footstep system in order to demonstrate
the flexibility and versatility of our approach. Footstep system can be used in any website,
because it deals with web pages and elements, therefore, the type of business is irrelevant.

As in Peixe Urbano, the installation of Footstep JavaScript library in TruckPad
also did not required much effort by its engineer team, because TruckPad also uses Google
Tag Manager. The collection of events on TruckPad occurred from October 1st to October
3rd, 2018. Figure 43 presents details of the collected events. A total of 86,241 events were
collected, with 5,493 unique users, 5,007 unique pages and 85,709 elements.

Figure 43 – Events from TruckPad from October 1 to October 3, 2018.

It was verified that TruckPad is divided in only three page types: home page,
truckloads list and truckload page containing a green Call Now button, whose purpose is
to display the phone number of the truckload shipper to the trucker. But truckloads list
have several filters and sorting options, designed to truckers select the truckload type, the
origin and the destiny of truckload, to sort the list by most recent or by weight or even
by the declared value of the truckload. Every time a user applies a new filter, a new URL
is accessed containing the old filters keywords added by the new filter keyword, each one
as URL parts.

Thus, we configured 27 different types, most of them associated to a specific filter.
This means that one page with more than one filter applied is connected to more than
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one page type. Section 3.5 mentioned that PageLabel nodes were designed to cluster
different pages by matching URL patterns and there is no restriction to the number of
clusters. Some of the registered page types are:

• HOME: www.truckpad.com.br;

• TRUCKLOADS: All URL’s starting with www.truckpad.com.br/fretes, except
those ending with truckload ID;

• TRUCKLOAD: URL ending with truckload ID (a sequence of 22 or 25 alphanumeric
characters);

• TRUCKLOADS_RECENT: URL ending with the sort path param
por-ordem-de-data-postagem;

• FROM_SP: URL containing de-sp or carga-de-sp in any position, listing truckloads
from the state of São Paulo, Brazil.

In this way, a page with URL www.truckpad.com.br/fretes/carga-de-sp
/por-ordem-de-data-postagem will be connected to page types FROM_SP and TRUCKLOADS_RECENT.
Listing 5.1 shows more examples extracted from TruckPad and how each URL is classified
by page types.

Listing 5.1 – TruckPad URL’s and truckloads filters

URL: www.truckpad.com.br/fretes/carga -por -ordem -de-data -postagem
Page types: TRUCKLOADS , TRUCKLOADS_RECENT

URL: www.truckpad.com.br/fretes/carga -de-sp/por -ordem -de-data -postagem
Page types: TRUCKLOADS , FROM_SP , TRUCKLOADS_RECENT

URL: www.truckpad.com.br/fretes/de -mg/para -sp/por -ordem -de -data -postagem
Page types: TRUCKLOADS , FROM_MG , TO_SP , TRUCKLOADS_RECENT

5.3.1 Page audience

By the nature of TruckPad’s URLs and the page types that we had defined, the
TruckPad page audience analysis can confuse their administrators. Figure 44 shows the
most accessed page types for TruckPad and it is possible to notice that TRUCKLOADS
is the most accessed page. During the TruckPad event collection, 3,959 users accessed
TRUCKLOADS page, being 2,833 active users, that is, users that is actually accessing
this page at the analysis time. However, it is important to notice that the same page
URL may be classified as more than one page type. This means that the same user can
appear in more than one page type. So, the page audience, in this specific case, is also
a TruckPad filter audience. In other words, it is possible to know how many users are
filtering truckloads for a specific vehicle type, from one specific state of Brazil.
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Figure 44 – Pages audience during event collection in TruckPad.

5.3.2 Element audience and conversion points

TruckPad’s final purpose is quite simple: connect truckers to truckloads. In
terms of Footstep navigation flow, the objective is lead users from TRUCKLOADS pages
through filters to TRUCKLOAD page and displays the shipper phone number, allowing
the user to interact by clicking on the green Call Now button, or in Portuguese Ligar
Agora. In fact, there are two Call Now buttons in the same page for desktop/tablet
platforms, as Figures 45 and 46 shows, and only one for the mobile platform, as Figure
47 displays.

Having two identical buttons for the same purpose in the same page is not necessarily
a design’s mistake, but it might affect usability by confusing the user.

Ideally, for a specific page, the audience of elements present in all platforms should
follow their page audience among platforms. For example, according to the TRUCKLOAD
page audience, as shown in Figure 44, 57% of events are performed using smartphones
(mobile), 42% are performed using the desktop and 4% are performed using tablets. Thus,
the percentage share of click events on Call Now button among platforms should match
the percentage of page access. In other words, the conversion should be the same, no
matter the platform.

By analyzing elements audience from TRUCKLOAD page, it is possible to discover
if Call Now buttons receive the expected attention and are the most accessed element.
Figure 48 shows element’s audience using the mobile platform. This dashboard confirms
that Call Now button is the most accessed element in TRUCKLOAD mobile page, with
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Figure 45 – First Call Now button in Truckload page from for desktop platform.

Figure 46 – Second Call Now button in Truckload page from for desktop platform.

1,240 events registered during the period of event collection.

Figure 49 displays the elements audience dashboard for the desktop platform,
which presents two Call Now buttons. The data presented in this dashboard shows that
the first Call Now button, at the top of the TRUCKLOAD page, is the most accessed
element, registering 822 events triggered by users, against 380 events triggered on the
second button, at the bottom of the page. As expected, the tablet platform presented a
very low number of events: 18 events triggered on the first button and 8 events triggered
on the second, as depicted in Figure 50.

The total number of events triggered on Call Now buttons, considering all three
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Figure 47 – Call Now button in Truckload page from for mobile platform.

Figure 48 – Elements audience in TRUCKLOAD page, mobile platform.

Figure 49 – Elements audience in TRUCKLOAD page, desktop platform.

platforms, was 2,468 – 50% of this amount correspond to events performed on smartphones,
48.7% correspond to events performed on the desktop, and 1.3% correspond to events
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Figure 50 – Elements audience in TRUCKLOAD page, tablet platform.

performed on tablets.

By cross-referencing this result with the TRUCKLOAD page audience, it is possible
to notice that mobile and tablet element audience lag behind page audience, and desktop
presents a better element audience. Despite mobile access represents 57% of total access,
desktop Call Now buttons have received more clicks than mobile Call Now button.

In order to leverage the analysis of Call Now buttons audience, the conversion
point dashboard can show how they are being accessed. Analyzing the first desktop
Call Now button as conversion point, 184 users took in average 10.71 steps to go from
TRUCKLOADS page to TRUCKLOAD page and hit the Call Now button at the top of
page, presenting a rate of 17.19 users/events, as Figure 51 shows.

Figure 51 – First Call Now button conversion in desktop platform.

In the second desktop Call Now button analysis as conversion point, 57 users took
in average 9.81 steps to go from TRUCKLOADS page to TRUCKLOAD page and hit the
Call Now button at the bottom of page, presenting a rate of 5.81 users/events, as Figure
52 shows.

Figure 52 – Second Call Now button conversion in desktop platform.

In the mobile platform, the conversion of the Call Now button shows 333 users
coming from TRUCKLOADS page, taking in average 9.67 events to trigger a click (tap)
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on this button, a rate of 34.43 users/events. In terms of the number of users converting to
Call Now button, mobile represents 58% and desktop corresponds to 42%, which is very
approximate from pages audience share between the mobile and the desktop platforms.
Also, smartphone users spent less events to convert than desktop users.

Figure 53 – Call Now button conversion in mobile platform.

Comparing and analyzing the results between mobile and desktop platforms, we
can extract some information and insights:

• Call Now button at the top of page presents a better audience/conversion;

• Having two Call Now buttons in the same page may improve the conversion, but
also might the usability of the page;

• Although element audience on the mobile platform presented less events than expected,
the conversion is better than desktop buttons conversion;

• Placing Call Now button fixed on top and always visible on the screen might improve
its audience and conversion.

5.4 Groupon Brazil
Groupon is the first daily deals e-commerce company in the world, founded in

2008 in United States of America and further widespread abroad, including Brazil and
some countries from South America, Europe and Asia. In 2017, Groupon Brazil and
Peixe Urbano had announced a fusion in operation and, since then, both websites share
the same infrastructure and are maintained and developed by the same engineer team.
However, Groupon Brazil and Peixe Urbano serve different offers, have different users and
their page design have some differences.

The event collection in Groupon Brazil occurred at the same time of event collection
in Peixe Urbano in order to assess the Footstep capability to collect and process several
events from highly accessed and different websites. The pages instrumentation with
Footstep JavaScript was also easy due to the fact that Groupon also uses Google Tag
Manager.
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In September 30, from 3:45 PM to 5:45 PM, BRT, a total of 92,701 events were
collected, with 5,942 unique users, 6,084 unique pages and 164,034 elements. The page
types of Groupon Brazil are very similar to the page types defined for Peixe Urbano.

5.4.1 Page audience

Section 5.2.3 identified a probable failure flow between DEAL and CHECKOUT
page in mobile platform, presenting only 16.87% of total flow. This is considered as failure
flow because is expected that users access a DEAL page and then access CHECKOUT
page. For desktop platform, the result was 39.8% of flow going from DEAL to CHECKOUT
page, being verified as best flow between DEAL and CHECKOUT pages.

The same analysis of flow between DEAL and CHECKOUT pages for Groupon
Brazil presented a worst result for both platforms. Mobile platform presented a flow
of 6.49% of users from DEAL to CHECKOUT page behind from FILTERED (30.8%),
SEARCH (28.59%), DEALS (19.75%) and HOME (8.84%) page flows. Desktop platform
presented a flow of 23.36% of users from DEAL to CHECKOUT page, behind from
FILTERED page with 24.06% of flow. These results reinforce the alert to engineers
about the design and user experience for DEAL page type in mobile platform, whose
platform audience is 71.93% of users against 26.09% of desktop audience.

5.5 Final Remarks
This chapter explored three websites using the Footstep System to analyze their

user behavior between pages and elements. The performance of event collection and
processing was good by the fact of two websites (Peixe Urbano and Groupon Brazil)
with a great audience being tracked at the same time, it was not detected any saturation
between NiFi processors.

Great insights were extracted from Footstep results for e-commerce websites, such
as a possible lack of user experience in mobile platform design of offers pages, presenting
a sub optimal flow to checkout page. Groupon Brazil also presented this sub optimal flow
between offer and checkout page for desktop platform.

Another valuable insight extracted from conversion point dashboard for e-commerce
websites is the fact of most of users placing orders, in other words, hitting submit purchase
button, come from textual search results page, showing the importance of this page type
for business.

This chapter also presented the versatility of Footstep System by the analysis of
other kind of business website: TruckPad, a transportation marketplace that connects
truckers to truckloads. It was possible to measure the element audience of button that
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shows the phone number of shipper to truckers. The results showed that mobile platform
maybe is affected by the place of Call Now button, by the difference of the platform
audience and element audience. Mobile platform audience is higher than desktop platform
audience, but desktop truckload contains two Call Now buttons, presenting the same
element audience than mobile platform.
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6 Conclusion

Understanding the user behavior in web applications is paramount to website
owners and administrators. Existing solutions fail to provide detailed and useful information
regarding the interaction of users with web page elements. The Footstep system was
developed to tackle this problem, providing an all-in-one approach designed to collect
events along with page elements in client side and processes these events in a fast and
reliable way. Moreover, thanks to its graph-based data model, Footstep is able to provide
relevant information about the behavior of users as they browse web applications.

In order to achieve the objectives set out on Section 1.2, Footstep was build upon
a modular architecture. The separation into modules provides asynchronous processing
of events, separating concerns and responsibilities. The Gathering Events Module is
responsible for collecting events efficiently and transparently to the end user. The Consumer
& Parser Module is responsible for processing and parsing events to the UsaGraph model.
The Generalization Module is responsible for identifying similar pages and elements,
providing flexibility to the analysis, allowing website administrators to label similar pages
in order to cluster different and dynamic URLs into the same page type. Finally, the
Analytics Module offers several dashboards that allows the visualization of the audience
on pages and elements, of navigation flows and of conversion rates.

Technologically speaking, important choices were made to implement the Footstep
System. RabbitMQ, an open source message broker, was used in conjunction with Apache
NiFi, a tool specialized in data transformation and interchange, to provide an efficient
solution for processing large volumes of events. Parsed events are finally transformed
into nodes and edges according to the UsaGraph model and stored in Neo4J, a native
graph-based database.

In order to evaluate the proposed system, experiments with different web applications
were conducted. The results show that the proposed system present versatility to deal
with different types of e-business applications, supports the collection of events in high
traffic websites containing thousands of different pages and offers both near real-time and
historical analysis.

The development of the Footstep System produced relevant contributions to user
behavior analysis, being distinguished among them:

• Automatic event collection with near zero code injection;

• Automatic page elements evaluation;
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• Fast and asynchronous events processing, decoupling event collection from event
processing and analysis;

• The development of the UsaGraph model (SIQUEIRA; BALDOCHI, 2018), which
brings the power of graph theory to web analytics;

• The Footstep page labeling, giving flexibility and customization to the analysis.

By the obtained results, Footstep System has potential to be adopted by companies
with conversion and user behavior analysis concerns.

6.1 Future Work
Aiming at encouraging research in user behavior analysis and to contribute for the

development of existing work, the following suggestions are presented for future work:

1. Footstep validation in high traffic website for long time, at least a week, in order to
stress test the Footstep architecture

2. Automatic identification of page labels based on element appearance in different
pages;

3. Evolution of Footstep to take pages’ screenshots to enrich analysis of element audience
and conversion;

4. Extend Footstep JavaScript library to collect more than click and tap events, in
order to enrich user behavior analysis;

5. Development of a prediction model based on artificial intelligence in order to infer
user behavior based on past events;

6. Development of a dashboard for comparing navigation and conversion over time.
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Appendix A – Publications

This work contributed to academia with an article publication: Leveraging analysis
of user behavior from web usage extraction over DOM-tree structure (SIQUEIRA; BALDOCHI,
2018) in the 18th International Conference on Web Engineering.

We are also working on a future journal publication focused in Footstep System
architecture.
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