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Abstract. We extend the Blonder-Tinkham-Klapwijk treatment including particle-hole mixing boundary
conditions in the Bogoliubov-de Gennes scattering problem to describe anomalous conductance features
often reported in normal-metal/superconductor junctions. We calculate the differential conductance spectra
and show that conductance dips, not expected in the standard formulation, can be explained in terms of a
phase π-shift between the bulk and the interface order parameter. A tight-binding model is also introduced
to give a quantitative description of the phase-shift in terms of the transparency and polarization of the
interface. We characterize the physics arising from particle-hole mixing boundary conditions at the interface
and its effects on the conductance anomalies in superconductor-normal heterostructures.

PACS. 74.45.+c Proximity effects; Andreev reflection; SN and SNS ... – 74.25.-q Properties of supercon-
ductors

1 Introduction

Since the introduction of the point contact spectroscopy
technique[1] in 70’s, in which a micro-constriction is cre-
ated pressing a metallic tip onto a superconducting sam-
ple, the study of normal-metal/superconductor (N/S) junc-
tions has represented an important means for the com-
prehension of several physical phenomena at the inter-
face. The BTK theory[2], formulated by Blonder-Tinkham
- Klapwijk few years after, furnished a powerful tool to
describe N/S contacts with transparency ranging from
metallic to tunneling regime, the interface barrier strength
being modeled using a Dirac delta potential of arbitrary
amplitude. The theory, formulated in terms of Bogoliubov-
de Gennes (BdG) equations[3], provides the transmission
and reflection coefficients and it succeeds in explaining
the conversion of a quasi-particle current into a supercur-
rent, due to the Andreev reflection[4], allowing accurate
prediction of the experimental results about differential
conductance spectra, energy gap and excess current. More
recently, some modified BTK models have been proposed
in order to take into account spin polarization[5–7], dif-
fusive contacts[8–10], anisotropic superconducting order
parameter [11–14], finite quasiparticle lifetime [15], su-
perconducting proximity effect[7], external magnetic field
[16] and thin ferromagnetic layers at the interface[17,18].
These formulations have been motivated by several experi-
mental evidences[5,7,14,17–22] reporting unusual conduc-
tance features, namely conductance dips and anomalous

values of the zero-bias conductance (ZBC), not expected
in the standard BTK model.

From a mathematical point of view, including a Dirac
delta potential within the BdG formalism, as done in the
BTK approach, is equivalent to impose matching con-
ditions for the scattering wavefunctions diagonal in the
particle-hole representation[3]. However, off-diagonal boun-
dary conditions in the Nambu space are also mathemati-
cally allowed and they could account for the appearance
of anomalous features in the conductance spectra for N/S
junctions.

In this paper we extend the BTK approach to in-
clude non-diagonal boundary conditions (in the particle-
hole space) in the BdG scattering problem, by introducing
an interface potential that mixes electron and hole com-
ponents. We show that this potential describes the prox-
imity effect at the interface and it is responsible for the
formation of sub-gap conductance dips in the differential
conductance spectra of N/S contacts. The comparison of
the differential conductance curves with the experimen-
tal data suggests also that a phase π-shift between the
bulk and the interface order parameter takes place, which
could be due to a localized polarization at the interface.
The latter hypothesis is carefully investigated by using a
discretized model of the N/S junction.

The paper is organized as follows: in Sec. II we formu-
late the continuous model of the N/S interface introduc-
ing a particle-hole mixing term in the scattering poten-
tial. Off-diagonal boundary conditions are introduced and
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the scattering coefficients are analytically determined. In
Sec. III we show the differential conductance curves for
N/S contacts obtained by using the generalized bound-
ary conditions. We compare temperature evolution of con-
ductance spectra with the existing theoretical models and
available experimental data. Possible phase shift effects at
the interface are discussed. In Sec. IV we use a discretized
model to analyze the phase π-shift formation and discuss
the necessary physical conditions to observe it. The phys-
ical meaning and the range of variability of the particle-
hole mixing parameter Z1 are discussed in Sec.V. Here we
also report a comparison between the NS′S model and the
generalized BTK model with particle-hole mixing poten-
tial. Conclusions are given in Sec. VI.

2 Model

We consider a one-dimensional N/S junction described by
the BdG equations

[H+ V (x)]ψ (x) = Eψ (x) , (1)

which completely define the quasi-particle state ψ (x) =
(u↑ (x) , u↓ (x) , v↑ (x) , v↓ (x))

t having excitation energy E
above the Fermi energy EF . The Hamiltonian H, which
describes the bulk properties of the junction is

H =

(
Ĥ0 ∆(x)iσ̂y

−∆∗(x)iσ̂y −Ĥ∗
0

)
, (2)

with

Ĥ0 =

[
−~2∂2x

2m
− EF

]
Î, (3)

where Î represents the identity operator in the spin space
and σ̂y is the Pauli matrix. We assume that the Fermi en-
ergy EF and the effective massm in the normal side of the
junction (x < 0) are equal to those in the superconduc-
tor (x > 0), while the superconducting order parameter is
taken of the form ∆(x) = ∆θ(x), where θ(x) is the Heav-
iside step function. Differently from the standard BTK
treatment, we model the potential barrier at the interface
(x = 0) by a particle-hole mixing operator

V (x) =

(
U0Î iU1σ̂ye

iφ

−iU1σ̂ye
−iφ −U0Î

)
δ (x) , (4)

where U0 indicates the usual BTK barrier strength, while
the term U1 describes the interfacial electron-hole coupling
strength. The off-diagonal components of V (x) describe
the presence of a weak superconducting interface[23] which
can be intuitively understood in terms of proximity effect.
The variable φ represents the phase difference between the
interface and the bulk superconducting order parameter.
Maintaining arbitrary values of φ, a Josephson current
IJ (φ) ∝ sin(φ)[24] is expected to flow through the inter-
face. The free energy of the system is expected to be min-
imized when Josephson current vanishes, i.e. for φ = 0
or π, the value φ = 0 being a free energy minimum of

the N/S junction. On the other hand, the value φ = π
can become an energy minimum if a local polarization is
formed at the interface (e.g., transition metals easily ox-
idize producing localized magnetic states[25,26]). Indeed,
in the presence of a sufficiently strong magnetic moment,
the interfacial phase can be modified from 0 to π and the
sign change of the interfacial order parameter follows a
mechanism similar to the one described in Ref.[27].

In the following, we calculate the differential conduc-
tance of the N/S junction by considering the generalized
boundary conditions of the scattering problem. The wave
function of an electron with spin σ = {↑, ↓} coming from
the N-side of the junction is given by:

ψσ
N (x) =

 δ↑σ
δ↓σ
0
0

 eikx + r↑e

1
0
0
0

 e−ikx

+ r↓e

0
1
0
0

 e−ikx + r↑h

0
0
1
0

 eiqx

+ r↓h

0
0
0
1

 eiqx. (5)

Here the coefficients r↑,↓e and r↑,↓h correspond, respectively,
to normal reflection and Andreev reflection, while ~k =√

2m (EF + E) and ~q =
√
2m (EF − E) indicate the

electron and hole wave vectors.
In the superconducting region, we have

ψS(x) = t↑e

u
0
0
v

 eik+x + t↓e

 0
u
−v
0

 eik+x

+ t↓h

 v
0
0
u

 e−ik−x + t↑h

 0
v
−u
0

 e−ik−x, (6)

where the coefficients t↑e, t
↓
e, t

↑
h, t

↓
h correspond to the trans-

mission as electron-like and hole-like quasiparticle with

wave vectors ~k± =
√
2m
(
EF ±

√
E2 −∆2

)
, the BCS[28]

coherence factors being

u2 = 1− v2 =
1

2

(
1 +

√
E2 −∆2

E

)
. (7)

The coefficients in Eqs. (5) and (6) can be determined by
using the generalized boundary conditions for the wave
functions at the interface:

ψσ
N (0) = ψS(0) (8)

∂xψS |x=0 − ∂xψ
σ
N |x=0 = AψS(0).

The matching matrix

A = kFZ0Î4×4 + kFZ1

(
0 iσ̂ye

iφ

iσ̂ye
−iφ 0

)
(9)
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contains a diagonal term in the particle-hole representa-
tion with the usual BTK parameter Z0 = 2mU0/(~2kF ),
and off-diagonal terms of strength Z1 = 2mU1/(~2kF ),
where the meaning and the variability range of the pa-
rameter Z1 are discussed in Sec. V. The Eqs. (8)-(9) pro-
vide the simplest particle-hole mixing boundary condi-
tions mathematically allowed by the BdG formulation.
Using the above boundary conditions on the wave func-
tions and the Andreev approximation (k+ = k− = k =
q = kF ), we find the following expression for the scatter-
ing coefficients assuming the injection of a spin-up elec-
tron from the normal side (the result doesn’t depend on
the spin of the incoming process)

r↓h =
4uv − 2ie−iφZ1(u

2 − v2)

4u2 + 4iuvZ1 cosφ+ (u2 − v2)(Z2
0 + Z2

1 )
(10)

r↑e = −4iuvZ1 cosφ+ (u2 − v2)[Z0(2i+ Z0) + Z2
1 )]

4u2 + 4iuvZ1 cosφ+ (u2 − v2)(Z2
0 + Z2

1 )

t↑e =
4u− 2i(uZ0 − vZ1e

−iφ)

4u2 + 4iuvZ1 cosφ+ (u2 − v2)(Z2
0 + Z2

1 )

t↓h =
2i(vZ0 − uZ1e

−iφ)

4u2 + 4iuvZ1 cosφ+ (u2 − v2)(Z2
0 + Z2

1 )
,

while the absence of spin-flip scattering implies r↓e = r↑h =

t↓e = t↑h = 0. Once the scattering coefficients are obtained,
we can calculate the differential conductance by the for-
mula [2]

G(V ) ∝
∑
σ

∫
dE [1 +Aσ̄ −Bσ]

[
−∂f(E − eV )

∂E

]
(11)

where Aσ = |rσh |2 and Bσ = |rσe |2 are the Andreev re-
flection and normal reflection probabilities, respectively,
f(E) is the Fermi-Dirac distribution, while the notation
σ̄ indicates the spin polarization opposite to σ.

3 Results

We first study the finite temperature conductance spec-
tra of the N/S junction emphasizing the effects of the
barrier strengths Z0, Z1 and of the phase φ. In Figure 1
we show the normalized conductance G/Gn vs ϵ/∆, with
Gn = G(eV ≫ ∆), for different values of Z0 and Z1 at
a fixed temperature T = 1.6K, computed by using Eq.
(11). Two cases are considered: (i) φ = 0, shown in the left
panels; (ii) φ = π, shown in the right panels. In each plot,
different curves correspond to different Z0 values (ranging
from 0 to 2), while Z1 is fixed as labelled.
For φ = 0 and Z1 = 0 (Figure 1(a)) the usual BTK
behavior is recovered. In this case, the zero-bias conduc-
tance is suppressed as Z0 is increased, while two peaks at
ϵ/∆ ≈ ±1 appear. Fixing Z1 = 0.5 (Fig. 1(c)), we observe
a reduction of the amplitude of the zero bias conductance
feature compared to the Z1 = 0 case. The difference be-
tween the conductance lowering induced by Z0 and the pe-
culiar amplitude reduction induced by Z1 is evident: while
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Fig. 1. (Color online) Normalized differential conductance
curves, G/Gn vs ϵ/∆, calculated at T = 1.6K from Equa-
tion (11). The different curves are obtained for distinct values
of Z0, Z1 and φ (values in the panels).

the increasing of Z0 induces a zero-bias conductance min-
imum, a tendency to increase the zero-bias conductance
is observed by rising Z1 to 1.0 (Fig. 1(e)), Z1 = 1.5 (Fig.
1(g)) and Z1 = 2 (Fig. 1(i)).
A different scenario is observed for φ = π: the effect of
moderate values of Z1, namely Z1 = 0.5 (Fig. 1(d)) and
Z1 = 1 (Fig. 1(f)), combines with Z0 to give a relevant
effective barrier strength leading to a strong suppression
of the sub-gap conductance up to fully gapped spectra.
For Z1 = 1.5 (Fig. 1(h)) and Z1 = 2 (Fig. 1(l)) an evident
zero-bias peak with two dips at ϵ/∆ ≈ ±1 appears. Such
ZBC peak exists for all Z0 values in the range [0, 2], the
junction transparency reduction having effect only on the
peak amplitude.
All the conductance structures presented above (coming
from the generalized boundary conditions) cannot be re-
covered within the standard BTK approach (except for
the case Z1=0). Moreover, the interface potential given in
Equation (4) can be further generalized to include, spin-
orbit interaction in the plane perpendicular to the trans-
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Fig. 2. Temperature evolution of the normalized conductance
curves obtained for (a) generalized BTK model with particle-
hole mixing boundary conditions and for (b) two-gap model[7]
for the parameters Z=0.14,∆1=0.99 meV (bulk gap),∆2=0.47
meV (proximized gap). The thick black line in the two plots
represent the best fit for Cu/Nb experimental data reported
in Ref.[7]. (c) Comparison of the temperature evolution of the
energy position of the conductance dips, Edip vs T, obtained
from (a) and (b). (d) Comparison of the temperature evolution
of the ZBC, obtained from (a) and (b).

port direction, local magnetic moments and triplet or non-
centrosymmetric superconducting correlations. The above
complications make the interface potential an off-diagonal
differential operator of the form B(x, ∂x,y,z)δ(x) acting
on the Nambu space which induces an extended class of
particle-hole mixing boundary conditions. Extending the
BTK theory along this direction produces analytic results
for the scattering coefficients which can be directly em-
ployed to explain anomalous conductance spectra.
In Figure 2 we compare the temperature evolution of
the conductance spectra obtained in the generalized BTK
model introduced above, with the one calculated by using
the transmission and reflection coefficients of the two-gap
model of Ref. [7] characterized by the barrier height Z and
two gap values at the interface ∆1 and ∆2. Both models
can be used to reproduce (black solid lines in Fig. 2(a) and
2(b)) the experimental data reported for Cu/Nb contacts
in Ref.[7]. In particular, in Fig. 2(a) we show theoretical
curves calculated in the temperature range between 0.1 K
and 5.1 K by assuming Z0=0.35, Z1=2, ∆Nb=1.5 meV,
φ = π, while in Fig. 2(b) the conductance curves are ob-
tained by considering the parameters Z=0.14, ∆1=0.99
meV, ∆2=0.47 meV, in the two-gap model. Let us note
that the value φ = π represents the best fitting parameter
to reproduce the experimental findings of subgap dips in
the N/S junction under discussion. For both the theoreti-
cal curves the temperature is fixed at the value 0.9K that
is lower than the bath temperature due to non-equilibrium
effects [7] or other physical effects [18]. The temperature
evolution of the conductance spectra within the two mod-
els shows a different behavior of the ZBC and Edip. By
rising the temperature, a non-monotonic evolution of Edip

Fig. 3. Discretized model of the N/S junction consisting of
N (odd) sites: (N+1)/2 normal sites (∆ = 0) and (N-1)/2
superconducting sites (∆ ̸= 0); magnetic (Γ ) e non-magnetic
(U) potentials are present at the interface site i = (N + 1)/2.
The hopping parameter t is homogeneous along the system.

(Fig. 2(c)) and a faster reduction of ZBC (Fig. 2(d)) is ob-
served for the case of Fig. 2(b). As a consequence, very low
temperature experiments are necessary to distinguish the
two models and for understanding the physical origin of
the anomalous conductance features observed in the point
contact experiments in N/S devices. It is worth noticing
that both models are physically plausible. Indeed, Nb and
Cu oxides are known to exhibit magnetic correlations that
could realize effective local polarization enabling a phase
shift of π at the interface; on the other hand, the forma-
tion of a (proximized) weak superconducting layer at the
N/S interface (two-gap model) is also possible.

4 Discretized model

As we have seen in Figs. 1 and 2 the conductance dips ap-
pear in the generalized BTK approach for φ = π and this
phase value can be associated to a localized polarization
at the interface. In fact, its presence can make a phase
gradient of π energetically favorable. In order to identify
the physical conditions (interface polarization and trans-
parency) to realize the π-shift, we consider a discretized
formulation that allows to describe spatial dependent po-
tentials without increasing the computational complexity.
We model a system with an odd number of sites N in
which (N − 1)/2 sites are used for both the normal and
the superconducting side, while one normal site with mag-
netic (Γ ) and non-magnetic potential (U) is considered at
the interface (see Fig. 4). The nearest-neighbor hopping
parameter t = ~2/(2ma2), expressed in terms of the sites
distance a, is assumed homogeneous and it is used as en-
ergy unit, t ≃ 10 ·∆Nb in order to have ξNb ≃ 10 ·a. Tem-
perature is measured in dimensionless units τ = kBT/t.
Hereafter, we set t = 16.2 meV as the energy cut-off of the
theory, the latter being of the same order of magnitude
of the Debye energy ~ΩD. This choice guarantees that
only states with phonon-mediated attraction (i.e. with
ϵ ∈ [0, ~ΩD]) are retained. Under these assumptions, the
relevant wave functions present a De Broglie wavelength
greater than the lattice constant a, while the associated
eigenvalues have a near-parabolic energy dispersion.

The discretized version of the BdG equations with a
Zeeman term Γ (x)σ̂z added to the single-particle Hamil-

tonian Ĥ0 to account for the effective polarization at the
interface corresponds to the following matrix equations



M. Catapano et al.: Generalized Blonder-Tinkham-Klapwijk theory 5

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

 N = 15
 N = 51
 N = 71
 BCS (

c
=0.0485)

 

 
bu

lk
 / 

0 10 20 30 40 50 60 70

0.00

0.02

0.04

0.06

0.08

0.10
N = 71

 
 
 
 
 
 
 

N = 51
 
 
 

 

 

i

bulk

(a) (b)

(c)

 

 

 U = 0
 U = 0.5
 U = 1.0

i = 25 (of 51)

(d)

20 30 40 50
-0.5

0.0

0.5

1.0

 

 

P

i

 
 
 
 
 
 

Fig. 4. Numerical results obtained in the discretized model. (a)
Temperature dependence of the bulk superconducting gap for
different systems, namely N = 15, N = 51, N = 71, assum-
ing transparent barrier, U = 0. Numerical data, normalized
to the low temperature value ∆0, are compared to theoret-
ical behaviour expected in the BCS model for τc = 0.0485.
(b) Spatial dependence of the superconducting gap for 71-sites
and 51-sites systems, by assuming U = 0, a constant BCS
coupling, λi = λ, and dimensionless temperature τ = 0.025.
Different curves correspond to different values of Γ . Lines re-
fer to data obtained for 71-sites system; scattered symbols re-
fer to 51-sites system, rescaled to compare the data sets. The
arrow indicates the region where the superconducting gap is
calculated self-consistently. (c) Spatial dependence of the po-
larization calculated for N = 71 for different Γ values, with
U = 0 and τ = 0.025. (d) Effect of the barrier strength U : the
superconducting gap vs Γ is evaluated at the site i = 25 (of
51), at τ = 0.025 for three different transparency conditions
(U = 0, U = 0.5, U = 1), the magnetic site being located at
i = 26.

(∀ i ∈ [1, N ]):

M(σ)
i Ψ

(σ)
i + T

(
Ψ

(σ)
i+1 + Ψ

(σ)
i−1

)
= 0, (12)

where (σ = ±, ± ≡↑ / ↓)

M(σ)
i =

(
εi − E + σΓi σ∆i

σ∆∗
i −εi − E + σΓi

)
, (13)

while T = −t σ̂z. Here εi/t = 2+Uδi,(N+1)/2 is the energy

of the i-th lattice site[29], while Ψ
(σ)
i = (uσ,i, vσ̄,i)

t
is the

discretized BdG state in the absence of spin-flip scattering.
Γi/t = Γδi,(N+1)/2 is the site dependent Zeeman energy
that we take different from zero only at the interface site.

Using Dirichlet boundary conditions Ψ
(σ)
1 = Ψ

(σ)
N = 0, we

get electron-like eigenstates

Φ(σ,n) =
N∑
i=1

Ai ⊗
(
u
(n)
σ,i , v

(n)
σ̄,i

)t
(14)

associated to positive energy eigenvalues (ϵn ≥ 0), with
Ai = (δ1,i, ..., δN,i)

t. The spatial dependence of the super-

conducting gap is computed as[30]

∆i =
λi
2

∑
n

[
u
(n)
↑,i v

(n)⋆
↓,i − u

(n)
↓,i v

(n)⋆
↑,i

]
tanh

(
ϵn

2kBT

)
, (15)

the sum being calculated for ϵn ∈ [0, ~ΩD]. The attrac-
tive phonon-mediated local potential λi is assumed con-
stant[31] (λi = λ) also in the normal side of the junction to
take into account proximity effects. We consider the bulk
superconducting gap ∆bulk at the center of the S-region,
in order to avoid finite size effects. ∆bulk is computed self-
consistently using Eq. (15) with an accuracy greater than
1% starting from ∆i = 0.15t in S, and by fixing λ = 2.4 t.
The polarizing effect of the magnetic site at the inter-
face can be quantified by the site-dependent polarization
Pi = (ni,↑ − ni,↓)/(ni,↑ + ni,↓), where

ni,↑ + ni,↓ =
∑
n

[
|u(n)↑,i |

2fn + |v(n)↓,i |
2(1− fn)

]
+ (16)

+
∑
n

[
|u(n)↓,i |

2fn + |v(n)↑,i |
2(1− fn)

]

and

ni,↑ − ni,↓ =
∑
n

[
|u(n)↑,i |

2fn − |v(n)↓,i |
2(1− fn)

]
+ (17)

+
∑
n

[
−|u(n)↓,i |

2fn + |v(n)↑,i |
2(1− fn)

]
,

with fn = f(ϵn) a shortened notation standing for the
Fermi-Dirac distribution. In order to capture the bulk-
like behaviour using a finite size system, the system size N
has been progressively increased from N = 15 to N = 71,
while monitoring the temperature dependence of ∆bulk.
The results of this analysis are shown in Figure 5(a) where
normalized values of ∆bulk are presented as a function
of the dimensionless temperature τ . For a system size of
N = 15 a size-induced suppression of the superconducting
gap is observed, this effect being more evident close to the
transition temperature τc. Increasing the system size up to
N = 51 produces a ∆bulk vs τ curve very close to the one
obtained for the N = 71 case, signaling that the bulk limit
of the interface model has been reached. The temperature
evolution of ∆bulk for N = 71 has been compared with
the BCS behaviour giving a dimensionless critical tem-
perature τc = 0.0485, corresponding to a niobium critical
temperature TNb

c ≃ 9.1K. In Figure 5(b) we present the
spatial dependence of the superconducting gap (for sys-
tem size N = 51 and N = 71) fixing the Zeeman energy
Γ of the magnetic potential in the range [−2.5, 0], while
taking U = 0 (transparent interface) and τ = 0.025 (i.e.
T ∼ TNb

c /2). In order to compare spectra obtained for
systems with different size, the data referring to N = 51
have been rescaled. For −1.0 < Γ < 0 we observe ordi-
nary proximity effect where finite superconducting order
parameter is induced in the N-side on a length of about
10a ≃ ξNb. For sufficiently strong magnetization Γ ≤ −1.0
negative order parameter is induced on the same length
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scale. Reduction of the order parameter on the right bor-
der is due to the S/vacuum interface. In Figure 5(c) we
show the spatial dependence of the polarization, calcu-
lated for Γ ∈ [−2.5, 0] and U = 0. The polarizing effect
of the localized magnetic moment asymmetrically extends
on a distance of about 20a. In the superconducting side
the induced polarization is inverted for large Γ values[32]
(Γ < −2.0). The general aspect of the polarization curves
evidences Friedel density oscillations. We have also verified
the effect of barrier strength on the inversion of the super-
conducting order parameter. In Figure 5(d), we show the
gap value calculated (at site i = 25) in proximity of the in-
terface, for a system size N = 51, as a function of Γ , with
enhanced resolution (step 0.1). For reduced transparency
(U > 0) a larger magnetic moment is necessary to induce
the inversion of the interface order parameter. The analy-
sis of the pairing potential ∆i shows that, in presence of a
local polarization at the interface, a phase gradient φ = π
can be stabilized. For relatively transparent junctions (i.e.
described by small values of U) the sign change of the in-
terface order parameter can be obtained with moderate
polarization strength, while strong polarization values are
needed for opaque interface with higher values of U . Thus
the probability to observe an hidden magnetic moment
at the interface accompanied by a phase gradient is en-
hanced in transparent systems. The physical origin of a
local magnetic moment at the Cu/Nb interface probably
resides in many-body effects which can be accounted for
in the framework of the Anderson impurity model[26].

5 Discussion

In this Section we discuss the range of variability of the
particle-hole mixing parameter Z1 that we have added to
the standard BTK theory and the validity of the general-
ized BTK model.
As we have seen in Eq.(4), the off-diagonal potential mim-
icking the superconducting proximity effect is given by:

V eh (x) =

(
0 iσ̂ye

iφ

−iσ̂ye
−iφ 0

)
U1δ (x) . (18)

Hereafter, we would like to connect the phenomenological
parameter U1 to the microscopic parameters of the junc-
tion. Requiring that the spatial average of V eh (x) over
the proximized normal region, i.e. x ∈ [−ξ, 0+], is related
to the average pairing |∆̄| experienced by the particles at
the interface, we get the equation:

ξ−1

∫ 0+

−ξ

V eh (x) dx = |∆̄|
(

0 iσ̂ye
iφ

−iσ̂ye
−iφ 0

)
. (19)

Solving Equation (19), we obtain U1 = ξ|∆̄|, with |∆̄| > 0.

From the above argument we can write Z1 = 2mξ|∆̄|
~2kF

=
|∆̄|kF ξ
EF

. Moreover, recalling the expression of the coher-

ence length ξ ≈ ~vF /(2∆bulk), the mixing strength Z1

can be represented in the form of ratio Z1 = |∆̄|/∆bulk.
Assuming that |∆̄| is just a fraction of the bulk pairing

Fig. 5. Zero temperature conductance curves obtained in the
NS′S model as a function of ϵ/∆. Different curves in both pan-
els are obtained fixing the ratio ∆′/∆bulk = 0.1 (lowest curve),
0.2, 0.3, 0.5, 0.6 (highest curve). The remaining parameters are
Z = 2.5, kF d = 380 and φ = 0 (left panel) or φ = π (right
panel).

potential ∆bulk, one expects small mixing strength. How-
ever its value is increased in the presence of band bending
effects due to charge transfers and orbital reconstruction
which can significantly modify the quasi-particle effective
mass m, the Fermi energy EF and the particles velocity
vF at the interface.
E.g. for a niobium-based interface characterized by kF ξ ≈
400 (ξNb ≈ 40 nm, k−1

F,Nb ∼ 0.1 nm) and |∆̄| ≈ 0.5

meV (0.3∆bulk), using Z1 = |∆̄|kF ξ
EF

, we get Z1 = 0.2/EF ,
the Fermi energy being measured in eV. Since in nanos-
tructured systems (thin films) EF can take values signif-
icantly lower than 1 eV, we can conclude that Z1 can
be of the order and greater than 1 (e.g. Z1 ≃ 1.3 for
EF = 0.15 eV). Values of Z1 ≃ 2 can be reached con-
sidering |∆̄| ≈ 0.5∆bulk and EF = 0.15 eV. This simple
argument justifies the values of Z1 greater than unity used
in Fig.2.

However a better insight on the role of Z1 can be
inferred by studying the conductance in a NS′S model,
where S is the bulk superconductor and S′ is the su-
perconducting proximity region of length d ∼ ξ with a
gap modulus ∆′ < ∆bulk. The N/S′ interface is assumed
to be transparent, while the opacity of S′/S interface is
controlled by the barrier strength Z. Calculating the An-
dreev and normal reflection coefficients by using the usual
BTK boundary condition of the scattering wavefunction
at the N/S′ interface and S′/S interface, we can evalu-
ate the zero temperature differential conductance for a
phase difference between S and S′, φ = 0 or π. The results
are reported in Fig.5 where the zero temperature conduc-
tance G/GN is plotted as a function of ϵ/∆. The different
curves are obtained at varying the ratio ∆′/∆bulk (0.1 to
0.6 from below), while fixing the remaining parameters as
Z = 2.5, kF d = 380 (of the order of the coherence length
kF ξ = 400) and φ = 0 (left panel) or φ = π (right panel).
Here it is shown that zero conductance dips within the gap
are obtained for φ = π and an high value of Z (right panel
of Fig.5). This indicates that the role of Z1 in the general-
ized BTK model is similar to that of the ratio ∆′/∆bulk in
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the NS′S model under the assumption of low-transparency
of the S′/S interface. This is confirmed observing that the
dip-peak structure in Fig.1 (right column) appears as Z1

is increased (Z1 > 1). The same effect is obtained in the
NS′S model by increasing ∆′/∆bulk in the presence of low-
transparency of the barrier (high value of Z). This sug-
gests that the parameter Z1 not only retains information
on the proximity effect but also contributes to renormalize
the interface transparency producing a more opaque local
potential. The comparison between the generalized BTK
model and the NS′S model shows that the dip-peak struc-
ture in the conductance is not an artifact of the delta-like
form of the particle-hole mixing potential but it is related
to a genuine proximity effect, which can also be studied
in the framework of an NS′S model setting high Z values
(tunnel limit) and moderate ∆′/∆bulk ratio. Let us finally
note that the NS′S model we have considered here, dif-
fers from the two-gap model of Ref.[7] where the results
for the conductance do not depend on the proximity re-
gion length d and on the relative superconducting phase φ.

6 Conclusions

We have generalized the BTK theory to include particle-
hole mixing boundary conditions in the scattering prob-
lem, reporting analytic results for the scattering coeffi-
cients. The extended theory allows a complete parametriza-
tion of the interface effects in terms of three parameters,
namely Z0, Z1 and φ. We calculated the finite-temperature
differential conductance spectra for N/S junctions showing
the formation of conductance dips in the case of a phase
π-shift at the interface. We demonstrated that the tem-
perature evolution of the conductance spectra can discrim-
inate the physical origin of the conductance dips, either
the formation of a localized magnetic moment or the pres-
ence of a weak proximized superconducting layer at the
interface. According to the analysis, a localized magnetic
moment could make a sign change of the superconducting
order parameter energetically favorable. Finally, we used
a discretized model to determine the necessary physical
conditions under which the π-shift is realized: transparent
interfaces can easily sustain a phase gradient as the effect
of a weak interface magnetization, while for reduced trans-
parencies a relative strong localized magnetization would
be necessary.
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