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We elucidate the effects of defect disorder and e-e interaction on the spectral density of the defect states
emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y1−xCaxVO3. A soft gap of
kinetic origin develops in the defect band and survives defect disorder for e-e interaction strengths
comparable to the defect potential and hopping integral values above a doping dependent threshold;
otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of
gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter k
determines the exponent of the power-law dependence of the density of states at the chemical potential
(k − 1) and hence distinguishes between the soft gap (k ≥ 2) and the pseudogap (k < 2) regimes. Both k
and the effective gap scale with the hopping integral and the e-e interaction in a wide doping range. The
motion of doped holes is confined by the closest defect potential and the overall spin-orbital structure. Such
a generic behavior leads to complex nonhydrogenlike defect states that tend to preserve the underlying
C-type spin and G-type orbital order and can be detected and analyzed via scanning tunneling microscopy.
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Defects in semiconductors and insulators determine their
transport properties and are responsible for their usefulness
for electronics. The hopping between defect states depends
on their relative energy and is largely a function of disorder.
In the case of small hopping amplitudes, the long-range e-e
interaction becomes extremely relevant as it modifies
substantially the energy of defect states and their occupa-
tions. In a seminal work [1,2], it was shown that a soft gap
develops in the density of states (DOS), NðωÞ ∝ jωjκ with
exponent κ ¼ d − 1 for system dimension d ¼ 2; 3, in the
classical Coulomb glass model: it is known as the Coulomb
gap [3]. Further theoretical [4–6] and experimental [7]
studies confirmed the remarkable success of the strong
coupling approach for defects.
We consider defects in a quite different class of com-

pounds: Mott insulators exhibiting a Mott-Hubbard (MH)
gap due to short-range e-e interactions [8] that separates the
lower Hubbard band (LHB) from the upper Hubbard band
(UHB) [9]. Defects in Mott insulators feature many
fascinating behaviors [10–16] and are usually thought to
lead to only two alternatives: either the MH gap collapses
or the defect states inside the gap undergo an Anderson
transition, as proposed by Mott [17] for La1−xSrxVO3 and
for the high-Tc cuprates. However, why the insulator-to-
metal transition occurs in vanadates at much higher doping
than in cuprates, although in both systems the MH bands do
not disappear with metallization [18,19], is still not under-
stood. Then, instead of from the Anderson-Hubbard model

that features only short-range Hubbard-like interactions
and one orbital flavor [20–24], we start from an extended
Hubbard model with long-range e-e interactions, which
allows us to study the effect of the self-consistent screening
of defect potentials, and three orbital flavors. It provides a
platform for describing the spin-orbital correlations of the
perovskite vanadates, such as Y1−xCaxVO3, with active
fyz; zxg orbitals at V3þðxyÞ1ðyz=zxÞ1 ions, and coexisting
C-type antiferromagnetic (C-AF) spin and G-type alter-
nating orbital (G-AO) order [25], see Figs. 1(a) and 1(b).
The motion of a doped hole is bound to the charged Ca

defect [Fig. 1(b)] and is further controlled by the underlying
spin-orbital structure: it forms a localized spin-orbital
polaron [26,27]. Figure 1(c) displays the associated defect
states in the MH gap in the case of a periodic arrangement
of defects or, equivalently, of a short-range defect potential
[28], and it also reveals the multiplets in the UHB. Because
of theCG spin-orbital order, holes tend to form dimer states
on specific c bonds, the active bonds, which results in the
formation of a kinetic gap, see Fig. 1(d). Our main goal is to
understand whether this kinetic gap survives the potential
fluctuations of random defects with long-range Coulomb
potentials and which role the screening due to the t2g
electrons plays.
Crucial to our analysis are the electron-defect (VD

im)
and the e-e (Vij) interactions, both screened by the back-
ground dielectric constant ϵc due to core electrons (no t2g
electrons),
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VD
im ¼ vðRimÞ; Vij ¼ ηvðrijÞ; vðrÞ ¼ e2

ϵcr
; ð1Þ

where Rim and rij stand for the electronic distances
between the V ion at site i and the Ca defect at site m
and between two V ions at sites i and j, respectively. The
typical binding energy of a hole is VD ¼ VDðdÞ ≈ 1 eV
[19], where d is the distance between the defect and its
closest V ions and ϵc ≃ 5. A hole would propagate along
the c axis at VD ¼ 0 [29], similar to an eg hole in
Y2−xCaxBaNiO6 [30].
The Hamiltonian of the doped Y1−xCaxVO3 reads as

Ht2g ¼
X
im

VD
imni þ

X
i≠j

Vijninj þHCF þHJT

−
X
hijiσα

tαijðd†iσαdjσα þ H:c:Þ þHlocðU; JHÞ; ð2Þ

where ni ¼
P

σαniσα and niσα ¼ d†iσαdiσα, with orbital
flavor α ∈ fa; b; cg standing for a≡ yz, b≡ zx, c≡ xy.
The first two terms in Eq. (2) basically resemble the
Coulomb glass model [1,2] with site energies determined
by the (random) positions of defects. The e-e interaction
Vij plays a major role in determining the occupation of

these states as for η ¼ 1 the combined defect-hole potential
is dipolar [31], while for η ¼ 0 it is monopolar. Vij is also
responsible for the additional screening involving the
transitions between the Hubbard bands and the defect
states. Further terms in the first line, HCF ¼ −Δc

P
iσniσc

and HJT, denote the crystal-field and Jahn-Teller terms
for the t2g electrons [28]. A new dimension of the defect
problem arises from the second line that includes the
nearest-neighbor hopping (the symmetry of t2g orbitals
implies that tαij is equal to t and different from 0 only for a
bond hiji direction different from α [32–34]), and the local
Hubbard physics of the triply degenerate t2g electrons,
HlocðU; JHÞ [35]. The local Coulomb interactions include
intraorbital Hubbard U and Hund’s exchange JH expressed
in the SU(2) invariant form [36]. They are responsible for
the multiplets in the UHB for d-d charge excitations
[Fig. 1(c)].
We solve the Hamiltonian Eq. (2) self-consistently

employing the unrestricted Hartree-Fock (UHF) approxi-
mation [37]. There are two main advantages of the UHF
approach we would like to emphasize: (i) UHF approxi-
mation reproduces the Hubbard bands and the multiplet
splitting not only for undoped systems [37], but also in the
presence of defects [27] and orbital polarization, and SU(2)
rotation [28]; (ii) the spatial distribution and the occupation
of each defect state depends on all other occupied states in
the presence of disorder and long-range interactions
[Eq. (1)]. As a matter of fact, UHF approximation solves
this central and complex optimization problem in the most
efficient way. The derivation of the UHF equations is
standard; more details can be found, for instance, in
Refs. [27,28]. We present results obtained for a cluster
of Na ¼ 8 × 8 × 8 V ions with periodic boundary con-
ditions, after averaging overM ¼ 100 statistically different
Ca defect realizations. We use the standard parameters for
YVO3, i.e., U ¼ 4.0 eV, JH ¼ 0.6 eV, Δc ¼ 0.1 eV [28].
The 2spin × 3orbital × Na UHF eigenvalues ϵs;l obtained

for a given defect realization s yield the averaged DOS per
V ion,

NðωÞ ¼ 1

M

XM
s¼1

�
1

Na

X6Na

l¼1

δðωþ μs − ϵs;lÞ
�
: ð3Þ

The Fermi energy μs not only separates the occupied
from the unoccupied states in each defect realization s,
but as well reflects, via the energy optimization, a repulsion
between such states as in the Peierls effect [38]. Therefore,
the average over different defect realizations calls for an
overall alignment of the energy scales by means of the
different μs.
Figure 2 displays the variation of the MH multiplets for

different strengths of e-e interaction, encoded by the
parameter η, for doping x ¼ 2% of random Ca defects
(i.e., for 10 defects) [cf. Figs. 1(c) and 1(d) for a periodic
arrangement of defects]. The electronic states close to the

FIG. 1 (color online). (a) Y1−xCaxVO3 lattice with a random
distribution of Ca defects. (b) A Ca defect in the center of a cube
made of 8 V ions. The related hole (yellow circle) is confined to
move (hopping t) along a vertical bond: the active hA1;A2i bond.
The occupied a=b orbitals and spin states obey C-AF spin and
G-AO order [19] on spectator (S) sites. (c) The LHB and the
high-spin (HS) and low-spin (LS) states of the UHB for a periodic
arrangement of defects and x ¼ 2%. The defect states D (yellow
rectangle) are located within the MH gap for VD ¼ 1.0 eV and
t ¼ 0.2 eV. (d) The zoom of the defect states D uncovers the
contributions of the active bond and spectator sites (heavy and
thin lines) and the formation of the kinetic gap.
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defects are pushed by the potential VD away from the LHB
into the MH gap. However, the actual energy distribution of
defect states is strongly dependent on the screening of the
t2g electrons via the e-e interaction and a soft gap gradually
opens up in the DOS on increasing η. The Fig. 2(b) inset
clearly shows the nonmonotonic variation of the defect
states inside the MH gap on varying the screening. On the
large energy scale, two important changes occur when η is
varied. For η ¼ 0, the defect potential is unscreened and the
interaction with further randomly distributed defects broad-
ens the Hubbard bands. For η ¼ 1, the screening is instead
complete: each defect forms an exciton with a doped hole
and the resulting interaction between excitons is dipolar
with a tremendous suppression of the effects of disorder
and a dramatic narrowing of the Hubbard bands.
To analyze the behavior of the soft gap in NðωÞ without

suffering from the unavoidable smearing, we discuss next
the averaged integrated DOS, nðωÞ ¼ R

ω
−∞ dω0Nðω0Þ, in

the vicinity of the Fermi energy and the related plateau
[see Figs. 2(c) and 2(d)]. It is worth noting the following
key features in nðωÞ: (i) there is an evident gap/plateau for

t ¼ 0.2 eV (being a typical value for cubic vanadates [32])
and η ¼ 1, but not for small t ¼ 0.01 eV, and (ii) on
decreasing the screening η → 0, the gap/plateau disappears
even for t ¼ 0.2 eV.
In order to establish the statistical behavior of NðωÞ in

the limit M → ∞, we use that NðωÞ is proportional to the
probability distribution function P�ðωÞ that a state in a
generic defect realization has energy ω relative to its Fermi
energy μs. Then, we find that a generic defect realization
features a gap of size E with a probability governed by a
Weibull probability distribution function,

PðEÞ ¼ θðE − ζÞ k
λ

�
E − ζ

λ

�
k−1

e−(ðE−ζÞ=λ)k ; ð4Þ

with shape parameter k, scale parameter λ, and loca-
tion parameter ζ. Accordingly, if ζ¼0, we have
P�ðωÞ¼ðk=λkÞjωjk−1 and NðωÞ∝jωjk−1 both for jωj≪λ,
that is we have a soft gap for k ≥ 2, a pseudogap for
1 < k < 2 and no gap for k ¼ 1. Instead, if ζ > 0, we
have NðωÞ ¼ 0 for jωj ≤ ζ and NðωÞ ∝ ðjωj − ζÞk−1 for
ζ< jωj≪λ, that is we have a hard gap. Thus,PðEÞ results in
a robust scheme to determine the behavior ofNðωÞ close to
the Fermi energy, that is the presence and type of gap in the
system. The numerical data obtained for the gaps of M
defect realizations for t ¼ 0.2 ð0.01Þ eV and η ¼ 0 and 1
are compared in Figs. 3(a) and 3(b) to the corresponding

0.0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

0.0 0.1 0.2
0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

0.10 0.15 0.20

2

3

4

0.0 0.2 0.4
0

5

10

15

20

P
(E

)
(1

/e
V

)

E (eV)

(a)
(c)∫d

ω
P

* (ω
)

∝
n(

ω
)

ω (eV)

(e)

(d)

k

η

k

t (eV)

12% 20%
15% 25%
10%
15%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
η

0.0

0.2

0.4

0.6

λ
(eV)

(b)

0.0

0.2

0.4

0.6

λ
(eV)

FIG. 3 (color online). (a) PðEÞ for t ¼ 0.2 eV and different
values of η (colors as in Fig. 2). Lines are least-squares fits from
Eq. (4) and dots are numerical data for η ¼ 0 and 1 computed
from the M defect realizations; inset (b) same as (a) but for
t ¼ 0.01 eV; (c) averaged integrated DOS nðωÞ calculated from
(4); (d) η dependence of k and λ for t ¼ 0.2 eV (circles and
squares, respectively) and for t ¼ 0.01 eV (only kwith triangles);
(e) t dependence of k and λ for doping x ¼ 2%, 5%, 10%, 15%,
20%, and 25% at η ¼ 1. Lines in (d) and (e) are guides to the eye.
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statistical least-squares fits to PðEÞ. The fits are indeed
excellent in all cases and give systematically ζ ¼ 0.
In Fig. 3(c), we report the nðωÞ curves of Fig. 2(c)

successfully reconstructed with the help of PðEÞ. The
plateau/gap Δ present in Fig. 2(c) for η ≥ 0.5 is due to the
finiteness of M: its statistical value is Δ≐λ=

ffiffiffiffiffi
Mk

p
that

vanishes for M → ∞. Figures 3(d) and 3(e) summarize
the dependence of k and λ on the e-e interaction strength η ,
and t, respectively. Both k and λ increasewith increasing e-e
interaction η, see Fig. 3(d). At t ¼ 0.2 eV, for η > 0.5, we
have k > 2 and, therefore, a soft gap. On the contrary, for
t ¼ 0.01 eV, k < 2 is found for all values of η: the e-e
interaction alone is not sufficient to stabilize a gap and only a
pseudogap persists. It is worth noting the almost linear
increase of both k and λ with increasing t shown at η ¼ 1 in
Fig. 3(e), which justifies calling the soft gap a kinetic gap.
We also observe a rather slow, but monotonic, decrease of λ
on increasing the doping x. The most important feature is
the nonuniversality of the exponent k that scales with both
η and t, and is not simply given by the system dimension-
ality, in contrast to the Coulomb gap in disordered semi-
conductors [1,2].
The kinetic gap formation is triggered by the doped holes

that do not form symmetric, hydrogenlike, orbitals around
the defects. Instead, due to the interplay with the spin-
orbital order, they form composite spin-orbital polarons
that localize in a symmetry broken form on active bonds.
Which of the four closest c bonds of a defect is chosen
depends on the interactions with all other defects. To detect
and analyze these complex defects, we study in the
following the scanning tunneling microscopy (STM) pat-
terns [39–42] that correspond here to the spatially resolved
spin-orbital (σα) DOS integrated from the Fermi energy to
the applied voltage V for a particular defect realization
s, ϱσαðx; y; z;VÞ ¼ j R V

0 dωρσαðx; y; z;ωþ μsÞj.
The integrated unoccupied density pattern summed over

all spin-orbital degrees of freedom,
P

σαϱσαðx; y; z;VÞ, is
shown in Fig. 4(a) for V ¼ 1.0 eV. In the lower left corner,
we recognize an unoccupied defect state (A) at coordinates
ðx; y; zÞ ¼ ð2; 1; zÞ with a finite hole density at vanadium
sites z ¼ 1; 2 (on the active bond). The asymmetry relative
to its closest Ca defect at (1.5,1.5,1.5) is evident. The
degree of orbital polarization, i.e., increased weight at
z ¼ 2, is due to the other defects and the Jahn-Teller
potential. Figure 4(b) shows the occupied density for
V ¼ −0.7 eV. Close to the same defect at (1.5,1.5,1.5),
we see two occupied c bonds: one at (1,1,1) and (1,1,2) with
two electrons per site (spectator sites), and another one at
(2,1,1) and (2,1,2)—the active bond (A), with a single hole
fluctuating in an asymmetric way along the bond parallel
to the c axis. The defect (B) has its hole on a neighbor y
plane and we see only spectator sites. (C) and (D) mark a
pair of active bonds belonging to three V cubes hosting
three defects. More defect states appear at V ¼ −0.8 eV
[Fig. 4(c)] that are not well separated from the LHB. Here

the complexity of the defect landscape is apparent as well as
the interaction of the doped holes with the spin-orbital
background.
The landscapes in Figs. 4(d)–4(f) represent the partly

occupied spin-orbital densities ϱσαðx; y; z;VÞ of defect
states at V ¼ −0.8 eV. The red (blue) stripe structure
for up (down) spins reveals that both the underlying
C-AF spin order and the G-AO order survive the doping
by charge defects, in contrast to what happens in high-Tc
cuprates where the spin order of the parent compound is

FIG. 4 (color online). Integrated electron/hole density
ϱσαðx; y; z;VÞ in the ac plane with y ¼ 1 [V ions are at
ðx; 1; zÞ sites] for a typical defect realization at x ¼ 2%,
η ¼ 1, and t ¼ 0.2 eV. The defects closest to the shown plane
at y ¼ 1.5 (0.5) are marked by red dots (circles), at y ¼ 2.5 (7.5)
by magenta dots (circles), and more distant ones by black dots.
Faces of V cubes hosting a defect are indicated by thin gray
dotted lines, while active bonds by thick blue dashed lines. Panel
(a) shows the integrated unoccupied density at V ¼ 1.0 eV, with
defect features A, B, C, D discussed in the text; panels (b) and (c)
show the integrated occupied density at: (b) V ¼ −0.7 eV, (c)
V ¼ −0.8 eV. Right panels show the spin-orbital partial densities
at V ¼ −0.8 eV for: (d) a ¼ yz, (e) b ¼ xz, and (f) c ¼ xy
orbitals. Red (blue) color for up (down) spin projections clearly
shows C-AF order.
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destroyed [43,44]. This supports the findings of Tokura’s
group that C-AF=G-AO order is preserved in various doped
vanadate systems [19].
Summarizing, we have shown that charged defects in

vanadates generate an intrinsic kinetic gap within the Mott-
Hubbard gap that survives defect disorder for strong e-e
interactions implying a strong dielectric screening. The
kinetic gap transforms into a soft gap with power-law
dependence: NðωÞ ∝ jωjk−1. We have established that the
exponent k is nonuniversal and scales with both the kinetic
scale t and the e-e interaction strength η. We suggest that an
STM analysis can provide highly valuable microscopic
information on the complex nonhydrogenlike states of
doped holes, but this remains an experimental challenge.
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