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In line with the latest positions of Gottlob Frege, this article puts forward the hypoth-
esis that the cognitive bases of mathematics are geometric in nature. Starting from the
geometry axioms of the Elements of Euclid, we introduce a geometric theory of propor-
tions along the lines of the one introduced by Grassmann in Ausdehnungslehre in 1844.
Assuming as axioms, the cognitive contents of the theorems of Pappus and Desargues,
through their configurations, in an Euclidean plane a natural field structure can be iden-
tified that reveals the purely geometric nature of complex numbers. Reasoning based on
figures is becoming a growing interdisciplinary field in logic, philosophy and cognitive
sciences, and is also of considerable interest in the field of education, moreover, recently,
it has been emphasized that the mutual assistance that geometry and complex numbers Q1
give is poorly pointed out in teaching and that a unitary vision of geometrical aspects
and calculation can be clarifying.
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1. Introduction

We can say that with Grundlagen der Geometrie in 1899, [1], David Hilbert defined a
paradigm shift with respect to the Euclidean geometry of the Elements (necessitated by

the evolution of thought in the era in which he lived which left the core of mathematics 25
unchanged).

It is well-established tradition that the work of Hilbert marks the birth of the position
according to which geometric shapes are an aid to the understanding of a theory but
contribute nothing to its content. Instead, the proofs in Euclid’s Elements of geometric facts
rely heavily on diagrams. In fact, his first three postulates specify diagrammatic actions 30
that can be performed in the course of a proof.[2]

Hilbert’s axiomatisation of geometry was part of a large movement to try to put mathe-
matics on the firmest possible foundation by developing all of mathematics carefully within
a formal system consisted of small numbers of given axioms and rules of inference ...
However, it turned out that the goal of finding a finite set of axioms from which all of 35
mathematics could be derived was impossible to achieve. In 1930, Kurt G odel proved his
first Incompleteness Theorem which says approximately that no finite set of axioms is strong
enough to prove all of the true facts about the natural numbers . [2]
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Today, it is recognized to a greater extent that mathematical reasoning uses not only lin-
guistic explanations but also non-linguistic notional devices and models, and the cognitive
role of images and analogical reasoning, generally neglected by much of the philosophy of
the twentieth century, is re-evaluated. It is also believed that human thought is the result
of a complex interaction between heterogeneous systems of representation interacting with
each other, visual, spatial, linguistic and that logical inferences exist in nature other than
those identified by the traditional logic.

For this reason, recent theories tend to recover the contribution of diagrammatic rea-
soning and to not see the drawing just as another educational tool, and there are attempts
to incorporate diagrams within axiomatics.[2,3] According to a recent  very accredited
hypothesis in neuroscience, neuro-linguistic maps are the reconversion of neuro-sensory-
motor maps. It then becomes natural to assume that the cognitive bases of mathematics are
geometric in nature and sustain reasonably that Euclidean geometry is a product derived
from the cognitive characteristics of the human mind and of cultural evolution (cf. [4], for
example).

Reasoning based on figures is becoming a growing interdisciplinary field in logic,
philosophy and cognitive sciences, and is also of considerable interest in the field of
education (for a summary book, see [5]). The hypothesis according to which geometric
figures are constituent parts of the logical structure of geometric theory (cf. [2], [6], [7],
[8], for example) which offset the weakness of logical language ( see E. Agazzi in [9]
or [10], L. Kvaszin [7], for example) is increasingly being accepted. = The validity of
the geometry of the Elements of Euclid is being re-evaluated and its recovery that takes
into account developments in contemporary mathematics (cf. [2], [11], for example) is
considered reasonable.

In the last years of his life, even Gottlob Frege, considered one of the fathers of logic,
abandoning the idea of founding mathematics on arithmetics,  outlined a theory of the
geometric foundation of mathematics. Frege began to consider the idea that the nature of
the number should be of a geometric nature and that one had to start by defining the complex
numbers (cf. [12]). However, he died in 1925 before completing his attempt. The rethinking
of Frege represents his last position to which he could not contribute much and, probably
for this reason, is not given much emphasis by scholars and this part of his thought has not
had much resonance.

Anyway, the following are some fragments of  the posthumous writings of Frege

Q2 (cf. [12]) that testify to the above.

75

80

In Numbers and Arithmetics, 1924-25:

The more I have reflected on this point, the more, I am convinced that arithmetics and geometry
have grown from the same ground and, specifically, from the ground of geometry, so that all
arithmetics is, properly, geometry. Mathematics thus appears perfectly unitary in its essence.
Counting, which originated from the needs of practical life, has misled scholars.

In New attempt for the foundation of arithmetics, 1924-25:

First, I will explain my plan. Departing from custom, I will not extend the field of what I call
number by taking the cue from the positive integers; In fact, strictly speaking, it is a logical
error to not have a stable meaning for a term, and understand with it things that are always
different. It certainly cannot be adduced as a counterexample that in historical development
things went differently [...]. I head directly for the final goal, namely complex numbers.
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On the other hand, when starting in 1858 Dedekind turned his attention to the problem
of irrational numbers and wondered how continuous geometric magnitudes differed from 85
rational numbers, it was geometry that show him the way for arriving at  an adequate
definition of the concept of continuity, but in the end this was excluded from the formal
arithmetical definition of this concept. The section of Dedekind replaced so geometric
magnitude as the backbone of analysis.[13]

Recently, many publications have emphasized that the mutual assistance that geometry 90
and complex numbers give is poorly pointed out in teaching and that a unitary vision of
geometrical aspects and calculation can be clarifying (see, for example, [8,14]).

Starting from the axioms of geometry of Euclid’s Elements, this article introduces a
geometric theory of proportions along the lines of the one introduced by Grassmann in
Ausdehnungslehre, 1844, (cf. [15] and [16]) without the use of numbers and theory of 95
equivalence. This is an attempt to bring Frege’s project to completion.

2. Algebra intrinsic to Euclidean geometry

In 1890, Norbert Weiner and Hilbert arrived at the idea to operate between the points of

a straight line according to formal rules that preserve all the syntactic properties of real
numbers but with a geometric-type semantic value. This idea reached a remarkable point in100
1899 in Grundlagen der Geometrie by Hilbert. It was Hilbert who first established a clear
correlation between geometry and algebraic structure (cf. [17] and [16]):

(1) the configuration of Pappus with the commutative properties of the product and
distributive of the product with respect to the sum and

(2) the configuration of Desargues with the associative properties of the sum and the 105
product.

Let us observe the drawings in Figures 1 and 2. The semantic contents of the theorems of
Pappus and Desargues can be seen and they determine the statements of related theorems.
There is also an inherent algebra in the geometry of the Euclidean plane that extends
that of the straight line and leads to the identification of complex numbers. This discussion 110

Figura 1. Theorem of Pappus.
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AB||A'B', BC|B'C' = AC|A'C’

Figura 2. Theorem ofi Desargues.

can be extended to space. The numbers that result are the so-called quaternions, but these
do not retain all the properties of the algebra of numbers in that they satisfy all the field
axioms except the commutative property. Hilbert did not mention them, despite being
known since 1843, and in order to obtain a non-Pappian plane builds a system of rather
contrived coordinates.[17]

According to tradition, complex numbers were introduced in the sixteenth century for
reasons entirely internal to algebra: resolution of cubic equations of the type x> + px +
q = 0. Adhering to a current of thought that is increasingly gaining strength ([ 8], [14], for
example), we will consider the nature of complex geometric and non-arithmetic numbers,
and we will associate with the many supporters of the thesis that was only for historical and
cultural reasons that their algebraic particularity emerged first(cf. [ 17]).

In any case, recognizing the nature of complex numbers as geometric accounts for the
fact that they have become an essential tool for learning about the real world and are the
natural basis of the applications of mathematics to physics, engineering and other empirical
sciences.

3. Transport of segments and angles

In this section, we will assume the definition of equal segments and equal angles through the
construction of the transport of the segment and of the angle present in Euclid’s Elements.

In classical geometry, the need to transport segments and then apply distances is a frequent
practice. Euclid dedicates the first three propositions of the first book to resolving this
problem. Using ruler and compass, i.e. through the axioms of Euclidean geometry, it is
possible to define the transport of segments and angles (oriented) according to standard
constructions and present in Euclid’s Elements. Figures 3 and 4 show the configurations
that represent them.
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Figura 3. Transport of segment.

Figura 4. Transport of angle.

Constructions with ruler and compass define and implicitly accept the existence and 135
uniqueness of the constructed object.

The construction of the transport of a segment permits definition of when two segments
are equal (i.e. when two segments have the same length): two segments are equal if they
can be transported one in another by means of the construction of transport of segment.
Moreover, this construction makes it possible to compare and add lengths of segments, 140
according to the classical meaning of elementary Euclidean geometry.

Similarly, the transport of angle serves to define angles equal (i.e. angles with the same
magnitude): two angles are equal if they can be transported one into another by means of
the construction of transport of angle.

Transport of the angle (oriented) makes it  possible to carry over angles (oriented) 145
consecutively so as to define the angle sum of two angles and, similarly to what is done for
the segments, also permits comparison between angles.

Two triangles,$ (4BC) and $ (DEF), such that an angle of the first (for example that of
vertex A) is transported to an angle of the second (for example that of vertex D) and the sides
of said angle (in the example AB and AC) are transported to the sides of the transported 150
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angle of the second triangle (in the example DE and EF ) are said to be transported one

to the other. Two triangles which can be transported one to the other are said to be equal.
This assumption amounts to admitting the first criterion of equality of triangles as an axiom
(that is present in the axiomatization of Hilbert’s geometry).

Given the triangles $ (4BC) and $ (4B%C%, we shall say that these are similar if
A= A%B = B%C = C%Having considered triangles $ (4BC) and $ (4%*B%C% similar,
with A= A%B = B%C = C%insofar as explained above, angle ABC can be transported
in angle A’B%€%and if consequently triangles $ (4BC) and $ (4"B%C% are not equal, then
the straight lines 4C and 4’C%are parallel.

4. Geometric theory of proportions

Let us now give a geometric definition of proportion which is substantially the transposition
of segments to points, in relation to a fixed point O, of that introduced by Grassmann and
which will allow us to assume axiomatically the contents of the Theorem of Pappus and
Theorem of Desargues.

With reference to Figure 5, r and r *are two straight lines and P and P *two points,
respectively, on r and r * We will call correspondent on r *of a point K € r in the corre-
spondence of Thales identified by the pair (P, P%, point K *obtained as the intersection
of the straight line r ®and the parallel to PP *passing through K. We will also say that
the pair (P, P identifies a correspondence of Thales between points r and r *and that
K and K *are corresponding points in the correspondence of — Thales identified by the
pair (P, P%.

« Ifr and r”are parallel, PP’K’K is a parallelogram.
+ Ifr and r”are not parallel, with O their point of intersection, the correspondent of O
in the correspondence of Thales identified by (P, Pj is O itself.

Figura 5. Correspondence of Thales.
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Now, fixed O and given four points 4, B,%B” distinct from O and such that the straight175
lines 04 and OA®do not coincide, B € OA and B*e 0A% we shall write A: B= ,A%* B* or
more briefly 4: B= A% B%if and only if B and Bfare correspondent in the correspondence
of Thales between rays O4 and O4 *identified by (4, 4% or, equivalently, if 4 and 4 *are
correspondent in the correspondence of Thales identified by (B, B%. The formula 4: B =
A% B%takes the name of proportion. The definition also extends to the case in which rays 180
04 and OA%coincide. In the case of coincidence of points 4 and B, there is coincidence of
A%and B%and if A and B belong to the same circumference with centre O, the same applies
for A%and B”

Remaining with an axiomatic-deductive mathematical theory, the notion of geometric
proportion between points permits translation of the semantic contents of the drawings 185
of the configurations of Pappus and Desargues (see Figura 1 and Figura 2) into axioms
expressed in terms of proportions (geometric).

Axiom I (Pappus): If H, C belong to the ray OB and K, L belong to the ray O4,
then

(A:L=B :H,K:A=H :C)=>K :L=B :C

Axiom II (Desargues): If 4 *belongs to the ray O4, B”belongs to the ray OB and C % 190
belongs to the ray OC, then the following implication applies

(B:B*=C :C*A:A%*=C :C%=>A :A%B :B”

With the obvious changes in the formulation, all the classical properties of numerical
proportions remain valid.

The expressions A: B, A B%that intervene in proportion 4: B= A% B”are called ratios
and it is also said that ratios 4: B and 4% B"are equal. 195

If 4: B = A% B*then we shall say that the ratio between the distance of O from A and
the distance of O from B is the same as the distance of O from 4”and the distance O from
B”(or that the measurement of OA with respect to OB is the same as the measurement
OA’ with respect to OB .

As a consequence of what has been said so far, given two similar triangles $ (40B) e 200
$ (4%0%B% with A= A%B = B%nd O = O%transporting angle AOB in A%©B%and
OA%on the ray 04 ¢ OB %on the ray OB, gives the proportion

%

A:B=A"%B%

5. Geometric calculation and numbers

The introduction of Axioms I and IT allows us to define the operations between points of

the plane that will structure it in a field. Two points of the plane O and U can be taken as 205
reference in it for identifying all points on the plane. Point U identifies a distance from O

and a direction (outgoing from O). A point P, distinct from O, observed in the reference

(O, U), is identified by angle POU and by the ratio of magnitudes that exists between the
distances OP and OU .The elements which identify P in the reference (O, U) are called
coordinates of P in such reference. The reference introduced, identified by O and by U, is 210
called polar and denoted by (O, U). Point O is called pole and U unit.
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Figura 6. Sum of two points.

Between points of the plane referring to (O, U), let us now define operations of sum
and product, the meaning of which is related precisely to the reference introduced and with
respect to which the set of points of the plane is a field of unit U and zero O.

Sum of points. Adding point P to point Q means finding in a reference of pole P, in
which direction and reference distance remain unchanged , a point K that has the same
coordinates that O has in the reference (O, U). This reference is (P, U % with U”such that
ray PU%is parallel and concordant with ray OU and P U%= QU and K is the point such
that ray PK is parallel and concordant with ray OQ and segmenP K is equal to OQ. K can
be constructed through construction of the transport of the angle and of the segment and
is uniquely determined. Point K is called sum of P and Q and one puts K = P + ( (see
Figure 6).

If O, P and Q are aligned, P + Q is on the straight line passing through them and
the sum is reduced to the sum of lengths of segments of ordinary Euclidean geometry. If
points O, P and Q are not aligned, point P + ( that is obtained can be seen as the vertex
opposite to O in the parallelogram whose ordered vertices are P, O, Q and triang§e(UOQ)
is translated in the triangle of vertices U P and P + Q. The construction does not lose its
meaning if P= O, in fact in this case itis P + O= Pand O + P= P.

Product of points. Multiplying point O by point P, with Q and P distinct from O, means
finding in a reference unit P and pole O, a point K that has the same coordinates that O has
in the reference (O, U). If P belongs to ray OU, a point K, that has in the reference (O, P)
the same coordinate as Q in (O, U), satisfies the condition

U:P=Q :K

(thus lies on ray OQ). If P belongs to the ray opposite OU, a point K, that has in the reference
(O, P) the same coordinates as Q in (O, U), satisfies the condition

-U :P=-Q :K

(thus lies on the ray opposite OQ). If P does not belong to straight line OU, a point K
that has in the reference (O, P) the same coordinates as Q in (O, U) must be such that the
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Figura 7. Product of two points.

angle oriented P OK is equal to the angle oriented UOQ and triangle $ (POK) is similar
to triangle $ (UOQ). K is unique, thanks to Axioms I and II, and can be constructed using
ruler and compass. We shall say that K is the product of P and Q (with respect to U) and
one puts K = P - Q (see Figure 7). 240

The positions made do not define the product for O. If one wishes to extend the product
also to the case where one of the factors is O and wishes to maintain the highlighted
properties for the product, the only value that can be assigned to this product is O and
consequently no element can be taken as the reverse of O.

The geometrical calculation that is here established between the points of the plane 245
is a field (that we call complex plane (O, U) ): the sum is commutative, associative,
O is the zero, each element is provided with the opposite, the product is commutative,
associative, U is the unit, each element different from O is equipped with the reverse and the
distributive property of the product with respect to the sum counts. The validity of properties
is ensured by Axioms I and II as can be easily deduced from what Hilbert established for 250
points of a straight line in Grundlagen der Geometrie (cf. [16], for example). Restricted to
points on the straight line OU, the structure thus identified reinstates the aforementioned
straight line geometric calculation of Hilbert.

We observe that said Y the point of the circumference with centre O and passing through
U and such that the angle oriented UQY is a right angle, then it is ¥> = — U and for each 255
Pwehave P= P; + P, Y, with P|, P, € OU uniquely determined. Y is said imaginary
unit.

The subset of points of the complex plane (O, U) made up of the points on the straight
line OU, provided with the operations induced on it by those defined in the whole plane,
is still a field. Now, given two points 4 and B on the ray OU there exists C on the 260
ray OU, distinct from O, suchthat 4 + C = BorB + C = A. This circumstance
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allows the introduction of the relation of total order between the points of the straight line
OU: P< Q <= 3 R, belonging to rayOUand distinct fromO, such thatP+ R = Q.

If we call positive the points of ray OU, distinct from O, and negative the points of ray
O(- U), distinct from O, we observe that the following property applies (rule of signs): the
product of a positive by a positive is a positive, the product of a negative by a negative is a
positive and the product of a positive by a negative is a negative (in this way, a geometric
justification of the rule of signs is found). The above ensures that the structure identified on
the points on the straight line OU is an ordered field. In the complex plane of pole (O, U),
we shall call natural (with respect to U) a point P of the semi-axis of positives that meets
the following condition: P is U or P can be obtained as the sum of all points equal to U.

For properties implicitly and explicitly allowed in the plane, on ray OU one can
verify the so-called axiom of divisibility, namely, considered point 4 on ray OU and a
natural point N, there exists a (unique) point B on ray OU such that N - B coincides
with 4.

To ensure that the ordered field identified on OU is comprehensive, it is then sufficient to
add as axiom the property of Dedekind (cf. [18] and [19]): the set of points of OU calle@,
if Cand D are non-empty subsets of S such thatCUD =8 andC<D,VCeC,¥DeD
then there exists E € S such that

C<E=<D, VvVCeC(C,VDeD.

Distance. In the complex plane (O, U), considered a point P distinct from O, we use the
symbol . P. to denote the intersection point of ray OU with-a circumference with centre O
passing through P*. P. is called module of P. GivenAB and K =. 4 — B., K is such that
the distance of K from O is the same as that between the two points 4 and B (see Figure 8).
Then, all distances are reproducible on ray OU; summing up the distances between points
or multiplying them will consist in summing or multiplying the corresponding points on
ray OU.

Figura 8. Distance.
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Figura 9. Right-angled triangle.
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Figura 10. Carnot’s theorem in the complex plane (O,U).

Pythagorean theorem. Given a right-angled triangle $ (BAC), with the relative height
of the hypotenuse called AH, because triangles$ (BAC),$ (BHA) and $ (CHA) are similar,
as noted in the previous paragraph, the following ratios apply

290
A-B. 2= H-B.-.B-C. (D
A-C.?2=H-C.- B-C. )
A-H. 2=B-H.-.C-H. (3)

ratios that express the content of the first and second theorems of Euclid.
Finally, the Pythagorean theorem is obtained in the formulation that provides a ratio
between the distances between the vertices of a triangle with a right angle. 295
With 4, B and C vertices of a right-angled triangle in 4, we wish to demonstrate that
.A- B.2+. A- C.2=. B~- (.2 The desired ratio comes from (1) and (2), and with
the developed calculation:

A-C. 2+ B-C. 2

B-C.H-B.+B-C.H-C.
B-C. (H-B.+H-C. )=B-C. 2

6. Conclusion 300

The point of view of modern mathematics prefers the analytic method respect  to the
synthetic one. The euclidean plane is usually identified withR?, +, -), where the euclidean
inner product, |, Q (or scalar product ) has a crucial role. Here, we highlight that following
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the synthetic approach, we can define the inner product, and it turns out that it has a
305 ‘geometric meaning’ hidden in the Carnot’s Theorem (see next Figure) :
From the Pythagorean theorem, we have

B||?=B-B *?+B %** H.=.A+B »*=A+B *
and therefore, (Carnot’s theorem)
A+B. ?2=H.?+B-B *?2=A 2+B. 2+2A.B *

hence

1 # 5
5 A+B. 2-(A.?2+B. ) =xAB %

Therefore, if 4, B are points of the complex plane (O, U), we can set:

#
/A,BO= - A+B. - (A 2+ B. 2.

N =

310 In conclusion, both numbers and also analytic geometry are reachable by synthetic
geometry.
This new approach, that has been developed starting from the assumption of Frege,
highlights the importance of the intuitive and deductive aspects of synthetic geometry. We
think that it can be also a good tool in the teaching elementary mathematics.
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