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Abstract 

Solid oxide fuel cells (SOFCs) are electrochemical devices converting the chemical energy into 

electricity with high efficiency and low pollutant emissions. Tough very promising, this technology 

is still in a developing phase, and degradation at the cell/stack level with operating time is still an 

issue of major concern. Methods to directly observe degradation modes and to measure their evolution 

over time are difficult to implement, and indirect performance indicators are adopted, typically related 

to voltage measurements in long-term tests. In order to describe long-term degradation tests, three 

components of the voltage measurements should be modelled: the smooth decay of voltage over time 

for each single unit; the variability of voltage decay among units; and the high-frequency small 

fluctuations of voltage due to experimental noise and lack of fit. In this paper, we propose an empirical 

random-effects regression model of polynomial type enabling to evaluate separately these three types 

of variability. Point and interval estimates are also derived for some performance measures, such as 

the mean voltage, the prediction of cell voltage, the reliability function and the cell-to-cell variability 

in SOFC stacks. Finally, the proposed methodology is applied to two real case-studies of long-term 

degradation tests of SOFC stacks. 
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Acronyms  

ACF   Autocorrelation Function 

AR(q)   Autoregressive of order q 

CoV(x)   Coefficient of Variation at time x 

d.o.f.   degrees of freedom 

FGLS   Feasible Generalized Least Squares 

GLS   Generalized Least Squares 

i.i.d.    independent identically distributed 

OLS   Ordinary Least Squares 

SOFC   Solid Oxide Fuel Cell 

Notation  

n; i   number of units; subscript denoting the ith unit 

m; j number of measurements; subscript denoting response and covariates levels for 

the jth measurement 

p   number of parameters in the linear regression model 

  ( ) vector of covariate (independent variable) level for the jth 

measurement, common across units  

  ( ) matrix of covariate values at which the m observations are taken 

    ( ) vector of r.v.’s, i.e. the coefficients of the linear regression model 

;  ( ) vector of expected value of ; Least Squares estimator 

    ( ) covariance matrix of  
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;   ( ) vector of r.v.’s containing sampling realization of  for unit i, ~

; Least Squares estimator 

    random error on the true response for ith unit at  

   unexplained variance in the regression model, common across units 

  ( ) noise vector for the ith unit, ~  

  ( ) covariance matrix of , common across units,  

 ( ) autocorrelation matrix with Vjj = 1, Vjj being the (j, j) entry of the 

matrix V 

 response (dependent variable) level for ith unit at  

   Least Squares estimator of the expected response at  for ith unit 

  Least Squares estimator of the mean regression line over the population of 

items; 

    ( ) covariance matrix of , given   

 ( ) unconditional covariance matrix of  

1. Introduction 

A solid oxide fuel cell (SOFC) is an electrochemical device, which directly converts the 

chemical energy into electricity with high efficiency and low pollutant emissions. Thus, SOFCs are 

expected to play a significant role in helping to meet the demand of distributed and stationary power 

generation systems, provided that high reliability levels are demonstrated by this technology. Indeed, 

due to high operating temperatures, system components are subjected to significant thermo-

mechanical stresses which negatively impact performance and lifetimes. Thus, in the last years a big 

effort was devoted by industrial companies, universities, and research institutions to improve 
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understanding of degradation mechanisms, materials and processes in order to extend durability of 

SOFC systems (typically stacks of serially connected cells).  

In particular, degradation at the cell/stack level is an issue of major concern. A number of 

features affecting cell/stack degradation have been identified which include: electrode contact loss 

and increased contact resistance, changes in material composition and structure, interdiffusion, phase 

changes, and deactivation of catalysts [1]. However, methods to directly observe degradation modes 

and to measure their evolution over time are difficult or even unfeasible to be implemented, and only 

indirect cell/stack performance indicators are available. Usually, an overall metric of cell/stack 

degradation is assumed to be the cell/stack output voltage [2], so that typical degradation studies are 

based on long-term tests where the cell/stack is operated under steady state conditions and the 

evolution of its voltage over time is measured. These measurements usually contain information about 

product reliability. In fact, by defining unit failure in terms of the crossing of a specified level of 

degradation, a time to failure distribution can in principle be derived from the degradation 

measurements [3]. 

Available long-term tests on SOFC stacks revealed that different shapes of the cell/stack 

voltage as a function of time can be observed, as a consequence of technological state of the art and/or 

operating conditions. In particular, these shapes can be divided into four different types: two shapes 

with a significant initial drop (wear-in period), followed either by a long-term linear decay during the 

remainder of operation or by only a short period of linear decay before the degradation becomes 

progressive in time (wear-out period); and two other shapes where the long-term behaviour is the 

same as for the previous ones, but the initial drop is absent [4]. Furthermore, when each single cell in 

a stack is monitored, a variability of the voltage degradation path is often observed across units, as a 

consequence of lack of uniformity in the manufacturing process and of different operating conditions 

across units in the stack [5, 6]. This phenomenon appears to be a relevant aspect to be analysed 

because, in systems comprising groups of stacks, variance in stack characteristics may cause an 

uneven distribution of load among the stacks which, in turn, may have a negative impact on system 
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performances and durability [7]. Thus, an index able to measure the lack of uniformity and then this 

quality component of the manufacturing and the assembly process is identified. Moreover, voltage 

measures are affected by experimental noise, whose primary sources are measurement errors and 

temperature, pressure and reactant concentration fluctuations during the tests.  

1.1 Problem statement and related works 

The purpose of this paper is modelling the degradation phenomenon of SOFC cells in long 

runs by analysing voltage measurements, in order to estimate some SOFC performance measures, 

such as the mean voltage, the future degradation growth (measured by predicting cell voltage), the 

reliability function, and the cell-to-cell variability related to both the manufacturing process and 

inhomogeneous operating conditions across the stack. 

To this aim, three components of the voltage measurements have to be modelled: a) the 

smooth decay of voltage over time for each single unit; b) the variability of voltage decay among 

units; and c) the small fluctuations of voltage superimposed on the smooth decay due to experimental 

noise. It is worth noting that noise characterization can be useful per se. For instance, a change in the 

noise pattern during operating time may be a signature of a specific degradation phenomenon. 

Some attempts have been made to evaluate the long-term decay of cell voltage on a physical 

or electrochemical basis [8, 9], which however fail to satisfactorily reproduce the observed voltage 

decay over the entire cell life. Degradation phenomena are often analysed by using empirical random-

coefficients regression models [3, 10-15] or stochastic processes, e.g. Gamma or Extended Gamma 

processes [16], in absence of mechanistic models. Indeed, in the field of energy systems, a simple 

empirical model based on a (linear) polynomial regression approach was introduced in [13] to model 

battery degradation data to the aim of the online estimation of the state of health of the batteries. 

However, more sophisticated degradation models can be fruitfully selected on the basis of some 

physical or chemical models describing the dynamics of the system under analysis, when available. 

In [14], a (nonlinear) random-effects bi-exponential model was introduced to predict the degradation 
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rate of membrane electrode assemblies in direct methanol fuel cells, accounting for two 

heterogeneous degradation characteristics related to the typical chemical reactions and the kinetics of 

current density in the system. Estimation procedures are performed on some response time series 

affected by independent identically distributed (henceforth i.i.d.) random errors. A model combining 

polynomial and exponential functions has been also proposed in [15], focusing on the residual 

performance of lithium-ion batteries, whose parameters are adjusted online by a particle filter on 

measurements corrupted by an i.i.d. noise sequence. 

1.2 The case studies and the rationale behind the modelling approach 

The data sets under analysis are part of a larger data set provided by the Swiss company 

HEXIS AG to the Consortium of the GENIUS project, a European Community-funded research 

project, on the diagnosis of SOFC systems. Data refer to two different SOFC systems: an early 

generation system (henceforth case study A) and a subsequent evolution (henceforth case study B). 

Because of industrial reserve reasons, the original voltage and time values have been rescaled in the 

present paper. Rescaled voltage time series are reported in Fig. 1, together with the corresponding 

estimated empirical models. Case study A shows some initial drop, while in the case study B the 

wear-in period is practically absent; in both cases, a long-term almost linear decay is present in most 

operating time, followed by a wear-out period. A high variability of decay among units is observed, 

and some superimposed voltage fluctuations are also evident.  

In order to analyse voltage data collected in the long-term degradation tests in Fig. 1 and, 

above all, to compute the reliability function of the SOFC cells composing the stacks, we need a 

statistical model able to accurately describe not only the linear decay [17] or wear-in period but also 

the wear-out period, and to handle the variability among the degrading behaviour of the cells, in 

absence of a physical or electrochemical model of SOFC degradation. 

Thus, we propose an empirical random-effects regression model of polynomial type that is 

sufficiently flexible to describe different behaviours of voltage time series. For further reading on 
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random-effects regression models and their use in the applications, refer to [18, 19]. However, SOFC 

systems dynamics is governed by many parameters that are not included in the proposed model, such 

as temperature, current density, pressure, fuel flow and reactant concentration. These parameters 

should be kept constant, but typically show small variations during long-term tests, even in the 

presence of specific controllers. Consequently, we consider that the errors in each voltage path may 

presumably exhibit an autocorrelated structure. Evidently, the inclusion of the above parameters (if 

available) in the model could reduce the observed autocorrelation [20, pp. 133-134]. 

It should be emphasized that the presence of correlated noise in voltage paths makes quite 

difficult to use the stochastic processes-based degradation models available in the scientific literature, 

that relies on the assumption of independent increments. For further reading, see [16] and the 

references within. 

We remark that the proposed model proves to be quite “general” because it provides accurate 

polynomial fitting curves for all of the typical cell voltage degradation paths measured during all the 

long-term SOFC stacks tests analysed within the GENIUS project, among which we selected the two 

representative data sets described in this paper. It is worth highlighting that the proposed model 

enables a separate quantitative evaluation of the variability associated to the cell-to-cell heterogeneity, 

and the one due to correlated noise: at the best of authors’ knowledge, this approach is novel for 

SOFC system degradation characterization and reliability evaluation. 

The paper is organised as follows. Section 2 presents the proposed random-effects model. In 

Section 3, the main results are provided for point and interval estimation of the model parameters. 

The evaluation of the future degradation growth, by predicting cell voltage, and the inferential 

procedure on the reliability function are discussed in Section 4, where a manufacturing quality index 

is also defined and computed; for sake of clarity, some mathematical details of the aforementioned 

procedures are included in the Appendices. In Section 5, we check the model assumptions and its 

limitations. In Section 6, the application to two real case-studies of long-term degradation tests is 

illustrated and discussed. Finally, in Section 7, we provide some concluding remarks. 
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2. The model 

Let us consider the experimental situation where a n-cell stack undergoes a durability test 

under constant load. For each cell in the stack (which can be viewed as a sample unit randomly 

selected from a specified population of interest, e.g., a production lot), a sequence of voltage 

measurements over the operating time is provided. We assume that the observed degradation path of 

a cell can be viewed as the sum of two components: i) a unit-specific (deterministic) function of time, 

which cannot be observed directly, and ii) a random component, usually called “noise”. In particular, 

a polynomial form with unit-specific unknown coefficients is postulated in the present paper for the 

cell degradation function. Furthermore, it is assumed that the times at which measurements are carried 

out are pre-specified and noise determinations are possibly correlated across time. 

As such, the experimental results are modelled by the linear random-effects regression model 

    (1) 

where 

• is the  vector of the jth regressor, with  the time (common 

across units) of the jth measurement ; 

• is the  vector of the regression coefficients for the ith unit 

; and 

•  is the random noise on the true response for ith unit at .  

The following distributional assumptions are made for the random terms in the model: 

•  and  are independent of each other; 

•  are i.i.d. multivariate normal random vectors,  ~ ; 
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• , the  noise vector for unit i, is multivariate normal,  ~ , with a common 

covariance matrix  across units, with ,  being the  entry of the 

autocorrelation matrix . 

As a consequence of the above assumptions, it follows that  are normal random variables 

across each unit i, with  ~ , and  

. In particular, we assume an autoregressive (AR) model of order q, AR(q), for the 

noise   of the ith unit defined as 

,      (2) 

where  are the AR model parameters, and  is a white noise process with zero mean and 

variance . Within model (2), the full noise autocorrelation function is recursively defined by 

    (3) 

where  denotes the correlation coefficient between the r.v.’s  and  , with 

 and . Thus, equation (3) completely defines the autocorrelation matrix . 

3.  Estimation of model parameters 

The proposed regression model contains the unknown quantities ,  and  which need 

to be estimated in order to make inference and predictions. Furthermore, the noise autocorrelation 

matrix  is usually unknown, and has to be estimated as well. Obviously, the estimation accuracy 

of the model parameters for the individual paths is affected by the number of observations m along 

each path. In the applications considered in the present paper, m is usually very large, so that the 

sampling variability of the estimates of the model parameters for the individual paths is expected to 

be small. The estimation accuracy of the distribution of random-effects, instead, is affected by the 
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number of sample units n. The size n also influences the accuracy of confidence intervals of model 

parameters and of functions thereof, such as the reliability function. For the applications here 

considered n is usually small, thus large confidence intervals are to be expected. 

The proposed estimation procedure is described by the flow diagram in Fig. 2, and develops 

according to the following steps: 

• estimate, by using the Ordinary Least Squares (OLS) method, the parameters of the 

degradation model for each cell voltage time series, that is, regression coefficients  and the 

unexplained variance ; 

• estimate the noise covariance matrix  by selecting the most suitable AR(q) model for the 

noise, represented by the residuals of the OLS procedure; 

• estimate the mean vector  and the unconditional covariance matrix  of the OLS 

estimates of ; 

• estimate the covariance matrix  of the linear random-effects regression model, possibly 

using the non-negative definite estimator ; 

• compute, on the basis of the above estimates, all the quantities of interest. 

3.1 Regression coefficients and noise covariance matrix 

When noise determinations are i.i.d. r.v.’s, the unknown regression coefficients of each path 

i can be estimated by the OLS method as , where  is the  vector of m 

degradation measurements for the ith unit, and  is the  matrix of the m (known) regressor 

values. It is well known from OLS theory that  is an unbiased, multivariate normal, minimum 

variance linear estimator of , with covariance matrix . On the other hand, in case of 

correlated noise determinations, the Generalized Least Squares (GLS) approach [21] should be used, 

and parameter estimates should be obtained as  where  is still an 
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unbiased, multivariate asymptotically normal, minimum variance linear estimator, with covariance 

matrix  here assumed to be common across units. When the autocorrelation matrix 

 is unknown, the solution for this problem is a Feasible Generalized Least Squares (FGLS) 

estimation. Such an approach, however, is not easily amenable to the analysis of multiple paths with 

common noise characteristics. Thus, a different approach is here exploited, which is based on a two-

step procedure, where the first step is devoted to obtain model “residuals” by OLS, while the second 

step exploits these residuals to estimate , as illustrated below. 

It is known that, even in the presence of noise correlation, OLS approach provides point 

estimates of regression coefficients very close to those computed by GLS, but the sampling variability 

of these estimates might be seriously underestimated. This suggests using OLS for obtaining point 

estimates of regression coefficients by . Then, based on the OLS estimates , 

one can obtain an estimate of the mean regression line for the ith path by , so that residuals 

relative to the ith path  can be obtained as 

.     (4) 

Residuals (4) are then used to obtain a least square estimate of the noise correlation 

coefficients   in (2), by applying the OLS approach to the n computed noise sample 

paths, considered as independent realizations of a same noise process. The order q of the 

autoregressive model is derived by applying a stepwise procedure based on F-tests [22] to the linear 

regression model (2). Finally, the noise autocorrelation AR(q) function is obtained as 

    (5) 

by solving the first q linear equations from (5), taking into account that  and . 

Thus, the symmetric Toeplitz matrix  generated by the  in (5) provides an estimate of the 

autocorrelation matrix .  
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A minimum variance estimate of  relative to the ith path is obtained by 

,       (6) 

and a more precise estimate of  can be computed by pooling the individual estimates  

 by 

.      (7) 

 An estimate of the covariance matrix  can then be obtained as 

.      (8) 

Since m is large in the present application, in the following we will develop the estimation 

procedures as if the noise covariance matrix  were known and equal to . 
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which is a multivariate normal random vector with mean  and covariance matrix . A 

minimum variance point estimate of the mean regression line over the population of items is then 

given by , which is a normal r.v. with mean  and variance .  

In order to estimate the unknown covariance matrix , it can be observed that 

, where  can be estimated by 

,   (10) 

while  is estimated by , thus obtaining 

.    (11) 

Note that, due to sampling fluctuations, the matrix  may not always be non-negative 

definite, which would be incompatible with a covariance matrix. In such a case, one can resort to the 

procedure proposed in [23], also suggested in [3], which defines a modified non-negative definite 

estimator for . This estimator is obtained by decomposing  as the sum of a non-negative 

definite matrix  and a negative definite matrix . Therefore,  can be interpreted as the non-

negative definite matrix closest to , and used as an estimator for . 

 3.3 Confidence interval for mean cell voltage 
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where  is the -quantile of the Student distribution with  d.o.f. 

4.  Inference on performance and manufacturing quality measures 

In this Section, on the basis of the estimates of the model parameters, some measures of the 

SOFCs performances, namely the future degradation growth, the reliability function, and an index of 

the manufacturing process, say the cell-to-cell variability, are estimated.  

4.1 Prediction of cell voltage 

Prediction intervals for the degradation level at future time of a generic item of the 

population can be quite useful in discriminating anomalous situations from normal ones, because 

measured voltage levels lower than the predicted ones can denote a sudden acceleration of the 

degradation process. 

Let  be an estimate of the mean voltage level at time , based on n voltage degradation 

paths with m observations each, given by . Using this estimate, we can construct a prediction 

interval that contains with assigned probability  the voltage level  at time of an item 

randomly selected from the population of interest. To this aim, consider that the random variable 

 is normally distributed with zero mean and variance given by 

.   (13) 

Thus  is a standard normal variable and a prediction interval for  is 
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,   (14) 
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estimate. Obviously, this interval has a probability content exactly equal to  only when all of 

the parameters involved in the term  are known. When the unknown parameters are substituted 

by their estimates, the probability content is only approximately equal to , although the 

theoretical value is asymptotically attained. In such a case, a conservative interval may be computed 

by using the -quantile of the Student distribution with  degrees of freedom in place 

of . Note that, only the lower bound of the prediction interval is usually of interest in the present 

application, as the aim is to detect anomalous low levels of the voltage, due to a sudden acceleration 

of the degradation process. 

4.2 Reliability function  

Let  denote the voltage level at time  (in absence of noise) of a cell randomly 

selected in the population. Under the assumptions made on the random-effects regression model (1), 

 is a normally distributed r.v. with mean  and variance .  

Then, given the lowest acceptable level for the cell voltage , under the model assumptions, 

the reliability function at time  can be defined as 

,    (15) 

where  is the standard normal cumulative distribution function. A point estimate of  is given 

by 

.     (16) 

A procedure to compute an approximate confidence interval on the true reliability  is 

derived, and is presented and discussed in Appendix B.  
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4.3 Cell-to-cell variability  

Recalling that voltage  of a cell, in absence of noise, is normally distributed with mean 

 and variance , a convenient measure of cell-to-cell variability at time  appears to be 

the coefficient of variation . As already remarked, the variability of the 

voltage of the cells composing a stack are related to a lack of uniformity in the cell manufacturing 

process and to different operating conditions across units in the stack. The lower , the higher 

the quality of the SOFC system. Since  and  are not known, the estimator  

     (17) 

can be used in place of the true value. 

5. Checking model assumptions and limitations 

In principle, the best way to describe long-term degradation of cell voltage would be to use a 

physical-driven model based on the underlying physical and/or electrochemical mechanisms 

originating this phenomenon. As previously pointed out, however, this approach is presently 

unfeasible, so that in order to describe the long-term degradation behaviour of a cell one has to resort 

to empirical-based models. Due to their non-mechanistic nature, however, empirical models are 

possibly subjected to drawbacks, so that we will discuss below under what constraints the polynomial 

regression model (1) is consistent with the degradation phenomenon of cell voltage. 

The first problem to be addressed is how establishing the degree of the polynomial model (1) 

in practical applications. From a purely statistical point of view, this problem can be solved by using 

a stepwise procedure, where an F-test is sequentially carried out by entering additional terms of 

increasing order until the null hypothesis that the current coefficient is zero cannot be rejected. It is 

to be noted, however, that an uncritical use of this procedure may produce results with no physical 

meaning. In particular, a large preliminary analysis based on many data sets pertaining to different 

( )Y x

 TBμ x T
Bx Σ x x

( ) /T TCoV x = B Bx Σ x μ x
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cell prototypes, has shown that, in case of polynomials of order greater than 3, same-order coefficients 

relative to some cells in a same stack or to cells in different stacks are not statistically significant or 

even have different sign. 

This suggests that coefficients of order higher than 3 are not conveying information on 

common features of the underlying degradation phenomenon, but rather contribute to adjusting the 

polynomial model to some local variations along a specific path. Thus, polynomial models of order 

higher than 3 can have no physical meaning in such an application. On the other hand, the third-order 

polynomial model, although very simple and straightforward, has proved to be sufficiently flexible 

to accurately describe the cell voltage behaviour over time, in presence of all of the shapes usually 

observed for this technological item. At the same time, it has proved to be a model with a very stable 

behaviour of its coefficients. In particular, very high coefficients of determination  (usually greater 

than 0.99, and never smaller than 0.95) have been observed for all of the analysed data sets. Moreover, 

for all of the cells in a same stack, and for all of the different prototypes analysed, the same-order 

coefficients had the same sign (  and  being always positive, while  and  being always 

negative, for each cell i) and, when viewed as random variables over the cell population, these 

coefficients showed marginal probability distributions concentrated around their mean values. As 

such, in this paper we will assume that the voltage degradation of the cell i over time in absence of 

noise, say , is described by a third-order polynomial, i.e. . 

Another relevant aspect to be considered is that, while the observed instantaneous voltage is 

non-monotone over time (as a consequence of the small fluctuations due to random variations of 

temperature, pressure and reactant concentration), the actual voltage should reasonably be a 

monotone decreasing function over time. As previously discussed, the degradation process 

 is here modelled by a third-order polynomial function with  being a four-dimensional 

random vector distributed according to a MVN distribution. Since, however, a third-order polynomial 

is not constrained to be a monotone decreasing function for all values of , it is necessary to check 

2R

0iB 2iB 1iB 3iB

( ) T
i iY x = B x 4p =
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whether the estimated MVN distribution of  is compatible with the monotonicity assumption. From 

a practical point of view, this requires to check whether, under the estimated MVN distribution, the 

probability of observing a  vector not in keeping with the monotonicity assumption is negligible. 

To this aim, it can be readily shown that a third-order polynomial is monotone decreasing if and only 

if the model parameters ,  and  satisfy the constraint . Thus, once the 

parameters of the MVN distribution of  have been estimated, a Monte Carlo simulation method can 

be used to check whether the fraction of the  vectors not satisfying the monotonicity constraint is 

actually negligible.  

Finally, a further model assumption is that the noise vector for each cell is MVN, with an 

autoregressive structure as in (2). This assumption implies that the  in (2) are i.i.d. normal variables 

with zero mean. Thus, a check of normality of the  can be readily made by a graphical tool such as 

the normal probability plot, and/or applying a formal statistical test such as the Lilliefors test. Then, 

the independence assumption can be checked by calculating the autocorrelation function of the  

for each cell i. 

6.  Case studies data analysis 

To the aim of illustrating the proposed methodology, we analyse two different data sets 

corresponding to two different SOFC systems: an early generation system (case study A) and a 

subsequent evolution (case study B), as already remarked in Section 1.2.  

The routines for data analysis have been implemented using the R language [24] and the IMSL 

Fortran Libraries. For each data set, the overall execution time of the computer code that estimates 

model parameters and all quantities of interest is less than 1 second on a notebook based on an Intel® 

Core™ i7-2620M CPU @ 2.70 GHz, which shows that the proposed degradation model and 

estimation procedure are easy to apply. 

6.1 Case study A 
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The data set consists of independent measurements, taken at  constant time intervals, 

of the voltage of  cells forming a stack, during a long-term test operated under constant load 

conditions [6]. For each cell under study, Fig. 1(a) depicts the observed (rescaled) voltage as a 

function of (rescaled) time: after a very smooth initial drop of voltage, a short period of quasi-linear 

behaviour follows, and then the degradation becomes progressive in time. One of the five cells, 

namely the cell no. 5, however, started to drift substantially at about 2/3 of total test time, and then it 

will not be considered in the following analyses. 

By assuming a third-order polynomial empirical model as deterministic component of the 

degradation path, the regression lines for the cells no. 1-4 were obtained on the basis of the OLS 

method, and are shown in Fig. 1(a). The estimates of the regression coefficients, their sampling mean 

and standard deviation, and the coefficients of determination are given in Table 1. Based on the point 

estimates of the regression coefficients, the estimate of the (unconditional) covariance matrix , 

defined by (10), was computed and is shown below 

 3.17294E-06    

 
-2.47318E-06 3.56147E-05   
3.81697E-06 -1.06814E-04 3.70663E-04  

 4.94123E-06 7.97576E-05 -3.10248E-04 2.89543E-04 

 (18) 

A visual check from Fig. 1(a), and the values of  coefficients ranging between 0.993 and 

0.997, clearly shows that a third-order polynomial curve represents an accurate empirical model for 

the deterministic component of voltage degradation with time. 

Then, on the basis of the estimated regression line for each cell, residuals  (  

) are obtained by (4), and the noise autocorrelation function (ACF) [21] is calculated by 

(5). According to the approach described in Section 3.1, the order of the noise AR(q) correlation 

model was found to be . Figure 3(a) shows the averaged sample noise ACF, obtained by 

averaging the individual sample ACF’s over the four paths, and the noise AR(4) ACF. This model 

seems to fit well the observed noise autocorrelation, and observations appear to be practically 

288m =

5n =

B̂Σ
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uncorrelated from a time lag of about 30 time units. In Table 2 the estimates of the noise variance of 

the ith path are given, along with the pooled estimate . 

Then, the covariance matrix  was estimated by (8), which in turn allows to estimate the 

(conditional) covariance matrix  by , viz. 

 7.96622E-08    

 
-5.93644E-07 6.60323E-06   
1.20405E-06 -1.55011E-05 3.92351E-05  

 -7.11100E-07 9.92951E-05 -2.63248E-05 1.82178E-05 

(19) 

The comparison of the estimates  and  shows that the unconditional variability of the 

regression coefficients is about one order of magnitude larger than the conditional one, that is, the 

observed variability of these coefficients is much larger than their (estimated) theoretical sampling 

variability. This is a clear indication of the presence of random-effects, and then cells cannot be 

treated as exchangeable items. From (11), the estimate of the random-effects covariance matrix  

is obtained and is given below 

 3.09328E-06    

  
-1.87631E-06 2.90114E-05   
2.61292E-06 -9.13143E-05 3.31428E-04  

 5.65233E-06 6.98281E-05 -2.83923E-04 2.71325E-04 

(20) 

This matrix, however, is not positive definite, so that the positive definite matrix  closest 

to (20) was obtained. It results that the matrix  coincides in practice with matrix (18). Thus, in the 

following we will assume . 

In order to check the model assumptions, the Normal probability plot and the estimated ACF 

of the residuals  defined in (2), are computed. In particular, for cell no. 1, plots of these quantities 

are given in Figs. 4(a) and 5(a), respectively. From this figures, and from similar results (not reported 

here for sake of space) obtained for the other cells, it appears that the assumption of a white noise for 

 can be reasonably accepted. Moreover, by using Monte Carlo simulation, it was found that the 
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fraction of  vectors in the estimated MVN distribution that do not satisfy the monotonicity 

assumption is less than 0.14%. 

On the basis of the estimates  in Table 1 and  in (18), a confidence interval on the true 

mean voltage of cell population can be obtained by using (12). In particular, Fig. 6(a) shows the 90% 

confidence interval for the mean. 

An unconditional prediction interval with an approximate  probability content for the 

observed voltage of a cell can be obtained by (13) and (14). In particular, Fig. 6(a) also shows the 

prediction interval with an approximate 90% probability level computed by using the Student 

quantiles. As previously observed, only the lower bound of the prediction interval is actually of 

practical interest for monitoring anomalous cell behaviours.  

6.2 Case study B 

The second data set here analysed refers to a more advanced system and consists of 

independent measurements, taken at  constant time intervals, of the voltage of  cells 

forming a stack, during a long-term test operated under constant load conditions. For each cell under 

study, Fig. 1(b) depicts the observed (rescaled) voltage as a function of (rescaled) time, in the same 

time units as for the case study A. From the figure it appears that the voltage shape is qualitatively 

similar to the that of cells of case study A. 

In line with case study A analysis, we assume a third-order polynomial empirical model as 

deterministic component of the degradation path. Figure 1(b) shows the five observed voltage paths 

along with the estimated regression lines, computed by the OLS method. The point estimates of 

regression coefficients, their sampling means and standard deviations over the five cells sample, and 

the coefficients of determination  are given in Table 3. 

The estimate of the covariance matrix , defined by (10), is shown below 
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-5.61395E-07 5.50015E-05   
-1.24443E-06 -1.41958E-04 3.96480E-04  

 1.79380E-06 1.03135E-04 -2.92747E-04 2.18049E-04 

 (21) 

After checking Fig. 1(b) and the values of  coefficients, ranging between 0.954 and 0.979, it 

appears that a third-order polynomial function represents a satisfactory empirical model for voltage 

degradation with time, for the case study B too. 

On the basis of the estimated regression line for each cell, residuals  ( ; 

) are obtained by (4), and the noise ACF is calculated by (5). According to the approach described in 

Section 3.1, the order of the noise correlation AR(q) model is  for the data set of case study B. 

Figure 3(b) shows the averaged sample noise ACF, obtained by averaging the individual sample 

ACF’s over the five paths, and the noise AR(3) ACF. In this case the autocorrelation among noise 

observations appears to be sensibly lower than in case study A. Indeed, noise observations appears to 

be practically uncorrelated after a time interval which is three times smaller than that of case study 

A. Table 4 reports the pooled estimate of noise variance , resulting about two 

times the noise variance of case study A. 

Then, an estimate  of the covariance matrix  is obtained, which in turn allows to estimate 

the covariance matrix  by , reported below 

 9.38623E-08    

 
-8.93644E-07 1.17090E-05   
2.27214E-06 -3.38453E-05 1.04720E-04  

 -1.68593E-06 2.69272E-05 -8.69397E-05 7.43075E-05 

(22) 

The comparison of the estimates  and  shows again that the unconditional variability of 

regression coefficients is much larger than the conditional one, thus indicating that a random effect 

should be present and cells cannot be treated as exchangeable items in this case, too. From (11), the 

estimate of the covariance matrix of random-effects  is obtained and is given below 

 1.24453E-06    
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3.32249E-07 4.32925E-05   
-3.51657E-06 -1.08113E-04 2.91760E-04  

 3.47972E-06 7.62078E-05 -2.05807E-04 1.43741E-04 

(23) 

Again, this matrix is not positive definite, so that the positive definite matrix  closest to 

(23) is obtained and is reported below 

  1.33694E-06    

  
-5.21717E-07 5.39212E-05   
-1.40880E-06 -1.37482E-04 3.77940E-04  

 1.95584E-06 9.87232E-05 -2.74470E-04 2.00031E-04 

         (24) 

In order to check the model assumptions, the Normal probability plot and the estimated ACF 

of the residuals  defined in (2), are computed. In particular, for cell no. 2, plots of these quantities 

are given in Figs. 4(b) and 5(b), respectively. From these figures, and from similar results (not 

reported here for sake of space) obtained for the other cells, it appears that the assumption of a white 

noise for  can be reasonably accepted in this case, too. Moreover, by using Monte Carlo 

simulations, it was found that the fraction of vectors in the estimated MVN distribution that do not 

satisfy the monotonicity assumption is about 1.8%. 

On the basis of the estimates  in Table 3 and  in (21), a confidence interval for the true 

mean voltage of cell population can be obtained by using (12). In particular, Fig. 6(b) shows the 90% 

confidence interval for the mean. An unconditional prediction interval with an approximate  

probability level for the observed voltage of a cell can be obtained by (13) and (14). In particular, Fig. 

6(b) also shows the (approximated) 90% prediction interval computed by using the Student quantiles, 

pointing out that for case study B both these intervals are significantly narrower than the 

corresponding intervals for case study A. 

6.3 Comparison of reliability and cell-to-cell variability of A and B prototypes 

As pointed out at the beginning of Section 6, case studies A and B refer to two different SOFC 
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systems, case study B regarding a subsequent generation system whose degradation should be 

supposedly slower and whose reliability should be accordingly higher. In Fig. 7, we have then 

compared the reliability function of the two systems (both in terms of point estimate and of 90% 

lower confidence limit), by assuming as voltage threshold ,  being the mean 

voltage level of each system at time zero. As expected, the reliability of the next generation system 

is significantly higher. 

By using (17), the coefficient of variation of the random variable  with respect to 

random-effects is calculated and presented in Fig. 8. It results that this manufacturing quality index 

for the system A tends to increase with time, from an initial value of about 1% to more than 3% at 

the end of the test. On the contrary, the coefficient of variation of System B remains quite stable 

during the operating time, going from an initial value of about 0.6% to about 0.9% at the end of the 

test, thus clearly demonstrating a significantly better quality of the next generation stack. 

7.  Conclusions 

In the present paper a random-effects regression model of polynomial type has been proposed for 

describing the main components of variability observed in long-term SOFC degradation tests, 

operated under steady state conditions. Indeed, experimental experience has shown that these 

components are: voltage decay over time for each single cell, voltage variability among cells, and 

noise variability. Point and interval estimates of regression model parameters and reliability function 

have been derived, and a method based on the coefficient of variation for measuring the 

manufacturing quality of SOFC stacks have been presented. Then, the methodology has been applied 

to two real case studies of SOFC systems belonging to different prototype generations. The proposed 

approach turns out to be computational efficient and able to quantitatively assess performance 

variability of a SOFC system in terms of durability and cell-to-cell variability. It can be also useful 

for a comparison between different SOFC systems.  

lim 0.95 (0)y Y= ´ (0)Y

( )Y x
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Further improvements to the proposed model could be derived by including other variables 

influencing the SOFC stack dynamics, in particular temperature and current flowing in the system, 

whose fluctuations influence (almost) contemporarily all the cells of the stack. 
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Appendix A 

The result that  stems from the fact that 

  

Since, however , , and by recalling the assumption of a 

common covariance matrix across units, it follows that 

.      

Appendix B 

In order to compute an interval estimate of , we recast (16) as 

 (B.1) 

and observe that, in absence of noise,  and  coincide with the conventional unbiased 

estimates of the mean and variance of a normal variable, based on n independent realizations. Thus, 
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in repeated sampling,  and  are pivotal quantities, 

distributed as a chi-squared r.v. with  d.o.f., and a Standard Normal Z r.v., respectively. 

Hence, equation (B.1) can be re-written as 

,   (B.2) 

showing that the sampling distribution of the estimator  depends on the sample size n, and on 

the unknown model parameters only through the true reliability . 

This allows one to construct approximate confidence intervals on  through an iterative 

procedure that adopts the Monte Carlo method to obtain the sampling distribution of , for given 

 and n. The procedure is outlined below: 

Step 1 - On the basis of the estimates  and , compute the point estimate of the item 

reliability at time x, say , by (16); 

Step 2 - Set an initial guess of the true reliability at x, say R, and use Monte Carlo method and 

equation (B.2) to generate  pseudo-random realizations of the estimator (16); 

Step 3 - Order this sample, and compute the upper  (lower ) quantile, say  ( ), 

of the empirical distribution of  as described in [25]; 

Step 4 - Compare the quantile  ( ) to . If  ( ), iteratively change the 

value of R and repeat steps 2 and 3 until convergence is reached. The value of R at convergence 

represents the lower (upper) bound of the  confidence interval on the reliability at time x. 

Actually, in order to avoid numerical drawbacks occurring in correspondence of very high 

(very low) reliability values, the above procedure is used to obtain the confidence interval on the 

quantity  on the basis of the sampling distribution of the r.v. , and then 

transforming this interval into the confidence interval on . 

( ) ( )ˆ( 1) /T Tn - B Bx Σ x x Σ x ( )ˆ /T T Tn -B B Bμ x μ x x Σ x

1nn = -

[ ]{ }2 1
1

ˆ( ) ( 1) / ( ) /nR x n R x Z nc -
-
é ù=F - F +ë û

ˆ( )R x

( )R x

( )R x

ˆ( )R x

( )R x

ˆ Bμ ˆ
BΣ

R̂

SN

1 a- a 1R̂ a- R̂a

R̂

1R̂ a- R̂a R̂ 1
ˆR Ra- ¹ ˆR Ra ¹

1 2a-

1( ( ))R x-F 1 ˆ( )W R-=F

( )R x



 30 

It is to be noted, however, that in presence of noise, the distributional results in (B.2) do not 

hold exactly, for the estimates  and  are affected by an increased sampling variability due 

to the presence of noise. This effect, however, should tend to decrease asymptotically (as ), 

so that in the case studies analysed in this paper we can reasonably assume that equation (B.2) is 

approximately true, and hence we construct approximate confidence intervals for the reliability 

function as described above. 

ˆ  TBμ x ˆT
Bx Σ x

m®¥



 31 

Table 1. Case study A: OLS estimates of regression parameters for each cell, their mean and standard 

deviation over the cells, and the coefficient of determination 

       
Cell 1 0.188765 -0.027651 0.037759 -0.030708 0.995 
Cell 2 0.188663 -0.041010 0.073653 -0.057346 0.993 
Cell 3 0.187663 -0.037286 0.079173 -0.071681 0.995 
Cell 4 0.184942 -0.031351 0.051944 -0.050941 0.997 

Sample Mean 0.187508 -0.034324 0.060632 -0.052669  
Sample St. Dev.  0.001781   0.005968 0.019253   0.017016  

 

Table 2. Case study A: Estimates of noise variance for each cell, and its pooled estimate 

   
Cell 1 1.19429E-07 
Cell 2 1.72146E-07 
Cell 3 1.95555E-07 
Cell 4 1.42849E-07 

Pooled estimate  1.57495E-07 
 

Table 3. Case study B: OLS estimates of regression parameters for each cell, their mean and standard 

deviation, and the coefficient of determination 

       
Cell 1 0.192299 -0.018925 0.045986 -0.048372 0.958 
Cell 2 0.189773 -0.018090 0.041007 -0.046342 0.965 
Cell 3 0.191700 -0.009754 0.011825 -0.021579 0.954 
Cell 4 0.192600 -0.026780 0.053129 -0.052486 0.957 
Cell 5 0.192396 -0.008727 0.010622 -0.023290 0.979 

Sample Mean 0.191754 -0.016455 0.032514 -0.038414  
Sample St. Dev. 0.001157   0.007416 0.019912   0.014766  

 

Table 4. Case study B: Estimates of noise variance for each cell, and its pooled estimate 

   
Cell 1 2. 22710E-07 
Cell 2 2.65702E-07 
Cell 3 4.06065E-07 
Cell 4 3.98107E-07 
Cell 5 2.00316E-07 

Pooled estimate  3.10481E-07 
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Fig. 1. Observed cell voltage vs. time in arbitrary units (au), and the corresponding 

estimated empirical models (see Section 3.1) for cells of case studies A (a) and B (b). 
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Fig. 2. Flow diagram of the estimation procedure. 
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Fig. 3. Averaged sample noise ACF and noise AR(q) ACF for case studies A (a) and B (b). 
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Fig. 4. Normal probability plot of residuals g of cell no. 1 in case study A (b), and of cell no. 2 in 
case study B (b). 
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Fig. 5. Autocorrelation function of residuals g of cell no. 1 in case study A (b), and of cell no. 2 in 
case study B (b). 
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Fig. 6. 90% confidence interval for the mean voltage and 90% prediction interval for case studies A 

(a) and B (b). Both voltage and time are in arbitrary units (au). 
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Fig. 7. Point estimate (–––) and 90% lower confidence limit (- - -) of the reliability function for case 

studies A and B. 

 

 

 
 

Fig. 8. Estimates of cell-to-cell variability for case studies A and B in terms of the coefficient of 

variation of . 
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