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Abstract

In wireless sensor networks a large amount of data is collected for each
node. The challenge of transferring these data to a sink, because of energy
constraints, requires suitable techniques such as data compression. Transform–
based compression, e.g. Discrete Wavelet Transform (DWT), are very popu-
lar in this field. These methods behave well enough if there is a correlation in
data. However, especially for environmental measurements, data may not be
correlated. In this work, we propose two approaches based on F–transform,
a recent fuzzy approximation technique. We evaluate our approaches with
Discrete Wavelet Transform on publicly available real–world data sets. The
comparative study shows the capabilities of our approaches, which allow a
higher data compression rate with a lower distortion, even if data are not
correlated.

Keywords: Data compression, Wireless Sensor Networks, F–transform,
Least–squares

1. Introduction

Data compression can be regarded as one of the enabling technologies for
several aspects in fields such as multimedia (for audio and video processing)
and, thanks to the grown popularity of wireless sensor networks (WSNs),
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measurements. The latter case is the one requiring more attention due to
some constraints imposed by the structure of a WSN.

Each node of a WSN can perform three main tasks: collecting data with
its sensor suite, processing data with an onboard microprocessor, and sharing
data with neighboring nodes using its radio.

In all these tasks, nodes are required to be relatively inexpensive, in terms
of power supply, memory capacity, communication bandwidth, and processor
performance [1].

Generally, the most part of energy consumption is due to radio commu-
nication [2], so reducing the number of bits to be transmitted by means of
compression techniques can have a positive effect on communication energy
costs.

There are many compression techniques avilable in WSNs: a compre-
hensive survey can be found in [3]. Briefly, data compression techniques for
WSN can be classified into distributed, which exploit spatial correlation, and
local, which exploit temporal correlation. These approaches are usually used
for dense and sparse networks respectively [4], even if in dense networks,
spatio–temporal correlation allows the use of both the distributed and lo-
cal approaches (e.g. [5]). Distributed approaches are also well suited for
multivariate data [6]. As suggested by Wagner [7] one can refer to a spatio–
temporal processing, i.e. to a distributed approach, when the ratio between
the number of nodes and the length of the time-series stored at each node
is high. A popular scheme, implemented both as a distributed and a lo-
cal approach, is the transform-based compression [7],[3]. In transform–based
schemes, raw data are transformed into a set of coefficients of suitable basis
functions, for example wavelet functions, which are used to reconstruct the
signal at the sink. Transform–based compression techniques can be viewed as
either transform driven or routing driven. The last ones turn out to be more
efficient for dense networks, since the transforms are computed as data are
routed to the sink along efficient routing paths. In any case, the transforms
can be easily integrated within existing routing protocols, as for example the
SenZip compression tool [8]. Well–known transform–based algorithms such
as the discrete cosine transform (DCT) and the discrete wavelet transform
(DWT) perform well when adjacent data have similar values. This is a fre-
quent case for indoor environments, which usually present strongly spatially–
and temporally–correlated data, but this could not be true for outdoor envi-
ronments [3]. Besides, it should be pointed out that compression techniques
aim to reduce redundancy in order to increase energy efficiency, but redun-
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dant deployment is necessary in the case of node or link failure, i.e. to ensure
robustness, especially for in situ deployments in austere environments such
as mountains, where failures are common phenomena.

Here we propose a robust local transform–based scheme in order to ad-
dress all the issues above, by comparing two compression schemes based on
fuzzy transform (F–transform) with a wavelet based scheme. F–transform
was proposed by Perfilieva [9] as a fuzzy approximation technique. It sub-
stantially expresses a functional dependency as a linear combination of basic
functions and it can be used for the solution of direct and inverse prob-
lems or least–squares approximations [10]. The major applications of the
F–transform are in image processing, e.g. [11], [12], [13], [14], [15].

Herein, as a first approach, we followed the idea of compressed blocks
proposed in [12]. As an alternative approach, we extended to the two–
dimensional case the least–squares (LS) approximation discussed in [10].

We experimentally tested these approaches in the task of addressing data
compression in two WSN applications where in some cases data lack correla-
tion, i.e. two glacier monitoring deployments, namely, Patrouille des glacier
(PDG) and Plaine Morte glacier (PM) [16]. For these deployments a small
number of nodes was used and several kinds of data were collected by each
node. These deployments were also considered in [17], where the authors
compressed only four sensor data, by using a version of the LZW algorithm,
which is a dictionary–based compression algorithm building a dictionary of
repetitive patterns; by means of their approach they did not found good
results for the PDG surface temperature.

We compared our results with the ones obtained by means of the wavelet–
based approach, by considering accuracy (i.e. distortion), data compression
rate (CR), computational complexity. It should be pointed out that for a
fixed network, the energy consumption of communication when using com-
pression scales according to (CR − 1) [3], so it is desiderable having higher
values of CR, but for classical transform–based techniques such as DWT
the higher CR the higher distortion. By our F–transform based schemes we
found a high enough value of CR with a lower distortion, if compared with
DWT.

The paper is structured as follows: Section 2 provides theoretical back-
ground, explaining how the proposed approaches work, also by means of a
simple example; Section 3 is devoted to numerical experiments and finally
Section 4 gives some conclusions.
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2. Data compression in WSNs

Let Xi be an attribute (for the sake of illustration a scalar) observed by
a node in the sensor network, e.g. an environmental property being sensed
by the node, such as temperature. The observed values of all the attributes
X1, . . . , Xn can be arranged in a vector, the networked data vector, which
can be very large. The networked data are periodically collected at the base
station, at a certain frequency. This has a cost, i.e. the total energy involved
by the data collection process, to be minimized. Data compression in WSNs
aims to optimize this total cost, by converting an input data stream into
another one with fewer bits. It should be pointed out that the total energy
is usually approximated by the communication energy, which rapresent the
largest part of it. There are several decentralized compression strategies that
can be utilized. One possibility is that the correlations between data at
different nodes are known a priori.

Let X t
i be a random variable that denotes the value of Xi at time t and

let H(X t
i ) denote the information entropy of X t

i . In most part of the sensor
network deployments, the data generated by the sensor nodes are typically
highly correlated both in time and in space, i.e. H(X t+1

i |X t
i ) << H(X t+1

i )
and H(X t

1, . . . , X
t
n) << H(X t

1)+ . . .+H(X t
n). These correlations can be cap-

tured by means of some predictive models using either prior domain knowl-
edge or historical data traces. Unfortunately, in many applications, prior
knowledge of the precise correlations in the data is unavailable. Further-
more, in some cases there could not be any correlation between data, such
as for many deployments in outdoor environments.

Data correlation is one of the typical features of compression for WSNs.
The other features are:

- distortion, which occurs in the case of lossy compression, i.e. when exact
reconstruction of the original data after decompression cannot be achieved,
unlike lossless algorithms; Mean Square Error (MSE) is a natural distortion
metric;

- data aggregation, which is involved in some applications, where only
a summary of the sensor data is required, due for example to the use of
statistical queries, such as MIN, AVG, MAX; in this case, the original sample
values cannot be reconstructed from the summarized representation, but the
communication overhead can be greatly reduced;

- symmetry, i.e. in the case of symmetric algorithms, the computational
complexity of compression and decompression are similar, whereas they are
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different in the asymmetric case; traditional schemes have usually higher
computational complexity on the compression side, whereas in WSNs, it
is desirable that compression has a lower complexity than decompression
(usually performed at the sink);

- adaptivity, by modifying the compression operations and parameters in
order to improve the performance for nonstationary data.

A detailed survey on all the aspects related to compression in WSNs was
provided in [3].

In the next section, we introduce two data compression schemes, that
allow a low distortion, with a computational cost of compression not so high
with respect to decompression.

3. Data compression based on F–transform

The F–transform represents an efficient way to convert a functional prob-
lem into a respective problem of linear algebra. The approximate solution
to the initial problem can be obtained via the inverse F–transform. The
same ideas hold on for discrete problems by means of the concepts of dis-
crete F–transform and inverse discrete F–transform. Since F–transform was
introduced [9], several papers on the topic appeared [21]–[25]. In particular,
in [24] a neural approach to the fuzzy partition construction was proposed,
by using an unsupervised learning for determining the distribution of the
nodes for non-uniform partitions. In [25] new types of F–transforms were
presented, based on B–splines, Shepard kernels, Bernstein basis polynomials
and Favard-Szasz-Mirakjan type operators.

Applications of the F–transforms in image processing seem to be prevail-
ing, e.g. [11], [12], [13], [14], [15].

Another interesting application of F–transforms is in time series anal-
ysis [26]-[29], also by integrating the F–transform and the fuzzy tendency
modeling [27] or the F–transform and fuzzy natural logic [28].

F–transforms were also used in data analysis [30],[31].
In [32] F–transforms combined with finite differences were used to numer-

ically solve some classical partial differential equations (heat, wave, Poisson)
in simple domains.

In [10] the relations between the least–squares approximation techniques
and the F–transform were investigated, since least–squares approximations
allow to handle some additional information on data such as the geometric
information.
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3.1. Preliminaries

We briefly recall some definitions. Let I = [a, b] be a closed interval
and x1, x2, . . . , xn, with n ≥ 3, be points of I, called nodes, such that a =
x1 < x2 < . . . < xn = b. A fuzzy partition of I is defined as a sequence
A1, A2, . . . , An of fuzzy sets Ai : I → [0, 1], with i = 1, . . . , n such that

– Ai(x) $= 0 if xε(xi−1, xi+1) and Ai(xi) = 1;
– Ai is continuous and has its unique maximum at xi;
–
∑n

i=1 Ai(x) = 1, ∀xεI .
The fuzzy sets A1, A2, . . . , An are called basic functions and they form an

uniform fuzzy partition if the nodes are equidistant.
The fuzzy transform (F–transform) of a function f(x) continuous on I

with respect to A1, A2, . . . , An is the n–tuple [F1, F2, . . . , Fn] whose compo-
nents are

Fi =

∫ b

a f(x)Ai(x)dx∫ b

a Ai(x)dx
(1)

The function

fF,n =
n∑

i

FiAi(x), xεI (2)

is called inverse F–transform of f with respect to A1, A2, . . . , An and it
approximates a given continuous function f on I with arbitrary precision, as
stated by Theorem 2 in [9].

In many real cases, where the function f is known only at a given set of
points {p1, p2, . . . , pm}, the discrete F–transform can be used and Eq. (1) is
replaced by

Fi =

∑m
j=1 f(pj)Ai(pj)∑m

j=1 Ai(pj)
, i = 1, . . . , n (3)

Similarly, Eq. (2) is replaced by

fF,n(pj) =
n∑

i

FiAi(pj), j = 1, . . . ,m (4)

giving the discrete inverse F–transform.
The above concepts can be extended to functions in two variables, as one

will see in the next subsection.
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3.2. The blocks approach and the least–squares approximation

Here two approaches are examined: the first one follows the idea of
compressed blocks proposed in [12], the second one extends to the two–
dimensional case the least–squares (LS) approximation discussed in [10]. By
following [12], the N × M data matrix D is subdivided in submatrices DS

with dimension N(S) × M(S), each one compressed to a block FS of size
n(S)×m(S) by means of the discrete F–transform. Obviously, the case of a
single block is a particular case where no subdivision occurs.

The discrete F–transform of DS with respect to {A1, . . . , An(S)} and
{B1, . . . , Bm(S)} is given by the Hadamard product, i.e. in compact form

F S = P SoQS (5)

being

PS = ATDSB (6)

and QS the matrix whose elements are given by 1/RS
kj, with

RS = AT ISB (7)

where A and B are the matrices with elements Ak(i) and Bl(j) respec-
tively, IS is a N(S)×M(S) matrix with all unit elements.

The decompression of the block FS is obtained by the discrete inverse
F–transform, which is given by

DF = AFSB
T (8)

In the LS approximation [10], the components of the discrete F–transform
F S
kl are replaced by the unknowns λkl and the discrete inverse F–transform is

obtained by minimizing the error functional with respect to these unknowns.
By writing the matrix of the errors as

E = D−AΛBT (9)

and by minimizing it with respect to the unknown elements of the matrix
Λ, one has

Λ = K−1GH−1 (10)

where

7



G = ATDB (11)

K = ATA, H = BTB (12)

It should be pointed out that, since A and B are the Gram matrices
associated to given sets of basis functions, they have full rank and K and H
turn out to be positive definite matrices.

With regard to the blocks approach, the computational complexity for
computing the components of the discrete F–transform F S

kl can be estimated
to be O(n(S)M(S)(N(S) +m(S))). By considering one block and N >> M
(as usual for WSNs applications), one can write O(nMN).

Since the computational complexity of the (one level) DWT is bounded
by O(NM) [3], for a computational convenience one has to select n as small
as possible. In any case, current research is attempting to noticeably reduce
the computational cost by means of multi–thread schemes.

For the LS approach, considering N >> M , one has a computational
complexity of O(n3), which is reasonably higher than the one for the block
approach.

3.3. A simple example

In order to give a clear explaination on how the proposed F–transform
based techniques can be used for data compression, we present a simple
example. We generated an 11×5 data matrix D by the function cos(i)sin(j),
with i = 1, 1.5, . . . , 6 and j = 1, 1.5, . . . , 3. In this example, we considered
the F–transform compression rate ρ = (nm)/(NM).

The data matrix
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D =





0.454649 0.0595233 −0.350175 −0.674139 −0.83305
0.538949 0.07056 −0.415104 −0.799137 −0.987513
0.491295 0.0643212 −0.378401 −0.728478 −0.900198
0.323356 0.0423342 −0.249052 −0.479462 −0.592483
0.0762475 0.00998243 −0.0587266 −0.113057 −0.139708
−0.189529 −0.0248134 0.145977 0.281028 0.347273
−0.408902 −0.0535341 0.314941 0.606307 0.749229
−0.528162 −0.0691477 0.406796 0.783142 0.967747
−0.518109 −0.0678316 0.399053 0.768236 0.949328
−0.381205 −0.0499079 0.293608 0.565239 0.69848
−0.150969 −0.0197651 0.116278 0.223852 0.276619





(13)
is first compressed to a 6 × 4 block, with a rate ρ = 24/55 = 0.44, by

means of Eq. (5)

F =





0.429156 −0.0974936 −0.588737 −0.862984
0.410021 −0.0931465 −0.562486 −0.824505
0.0636339 −0.014456 −0.0872961 −0.12796
−0.341258 0.0775253 0.468154 0.68623
−0.432399 0.0982302 0.593185 0.869504
−0.202434 0.0459881 0.277709 0.407072




(14)

The block F is then decompressed to the 11× 5 block DF

DF =





0.429156 −0.0203675 −0.343115 −0.6289 −0.862984
0.419588 −0.0199135 −0.335466 −0.614879 −0.843744
0.410021 −0.0194594 −0.327816 −0.600858 −0.824505
0.236827 −0.0112397 −0.189346 −0.347055 −0.476233
0.0636339 −0.00302003 −0.0508761 −0.0932512 −0.12796
−0.138812 0.00658794 0.110982 0.20342 0.279135
−0.341258 0.0161959 0.27284 0.50009 0.68623
−0.386828 0.0183587 0.309274 0.566871 0.777867
−0.432399 0.0205214 0.345708 0.633651 0.869504
−0.317416 0.0150644 0.253778 0.465153 0.638288
−0.202434 0.00960743 0.161849 0.296654 0.407072





(15)
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By using the LS approach with the same values of n and m, i.e. ρ = 0.44,
we obtained the 6× 4 matrix Λ by Eq. (10)

Λ =





0.476013 −0.018365 −0.685305 −0.868823
0.523692 −0.0202045 −0.753949 −0.955849
0.0808756 −0.00312026 −0.116435 −0.147615
−0.434867 0.0167776 0.626069 0.793723
−0.550365 0.0212336 0.792349 1.00453
−0.163869 0.00632223 0.235919 0.299096




(16)

so, by substituting the matrix F with the matrix Λ in Eq. (8), one has

DF =





0.476013 0.0540349 −0.351835 −0.712181 −0.868823
0.499852 0.0567411 −0.369456 −0.747849 −0.912336
0.523692 0.0594473 −0.387077 −0.783517 −0.955849
0.302284 0.034314 −0.223427 −0.452259 −0.551732
0.0808756 0.00918066 −0.0597776 −0.121001 −0.147615
−0.176996 −0.0200918 0.130823 0.26481 0.323054
−0.434867 −0.0493642 0.321423 0.650621 0.793723
−0.492616 −0.0559196 0.364107 0.737022 0.899127
−0.550365 −0.0624751 0.406791 0.823423 1.00453
−0.357117 −0.0405384 0.263956 0.534297 0.651814
−0.163869 −0.0186017 0.121121 0.245171 0.299096





(17)
Figure 1 shows the behaviour of the mean square error (MSE), computed

over all the elements of the data matrix: by increasing the value of the rate
ρ, the MSE decreases for both approaches, but the MSE obtained by the LS
approach is lesser in any case.

4. Numerical results

As application examples, we considered two SensorScope deployments:
Patrouille des glacier (PDG) and Plaine Morte glacier (PM) [16]. The PDG
deployment had 10 locations whereas PM deployment had 13 locations. Both
data sets contain data from several sensors, namely, ambient temperature
(C), surface temperature (C), solar radiation (W/m2), relative humidity (%),
wind speed (m/s), wind direction (deg). For not available data we adopted
zero value.
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In these examples we used both the blocks approach, without subdivision
of the data matrix, and the LS approach, by uniform fuzzy partitions, with
sinusoidal [12] shaped basic functions.

In order to evaluate distortion, we computed the mean square errors
MSELS, MSEB, for the LS approach and the blocks approach, with two
values of the data compression rate (CR). The data compression ratio can be
defined as the ratio of the uncompressed data size, in bits, to the compressed
size, also in bits; in local approaches CR is a node–level parameter [3].

We compared our results with the ones obtained by means of a multisignal
DWT (MSEW ), by using two levels and the Haar wavelet. By using this
wavelet–based compression one has CR = 1.33.

In order to exploit differences between the two classes of approach, we
used the ratios rB = MSEW/MSEB and rL = MSEW/MSELS for the two
values of CR. The error values are referred to ambient temperature (AT),
surface temperature (ST), solar radiation (SR), relative humidity (RH), wind
speed (WS), wind direction (WD).

4.1. Example 1: PDG deployment

In this example, 10 stations collected weather–related data every 2 mins
between April 16-20, 2008 and each node collected on average 3, 000 samples
within the five–day period. In Table 1 the values of the ratios rB and rLS for
CR = 1.33 (i.e. the same CR allowed by the wavelet–based compression) and
CR = 1.83 are presented. As one can see, the MSEW is on average higher
than MSEB and MSELS for each type of measurement; besides, especially
for higher values of CR, there is no significant difference between the results
by the blocks approach and the LS approach, so we prefer the blocks approach
for its computational convenience. These results are detailed in Figures 2 and
3, where the behaviour of theMSE over theN nodes is presented for ambient
temperature e wind speed, respectively. Similar behaviour was observed for
the other kinds of measurements and the related figures are not reported for
the sake of brevity. Figures 4–9 show a sample of the reconstructed data by
the blocks approach with CR = 1.83 for the first node.

4.2. Example 2: PM deployment

This example is referred to a network, with 13 stations, which was de-
ployed on the Plaine Morte glacier for a 5 day campaign, i.e. between March
12–16, 2007; each node collected on average 6, 000 samples about within the
campaign. In Table 2 the values of rB and rLS for CR = 1.33 and CR = 1.83
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Table 1: Example 1: rate r

r CR AT ST SR RH WS WD

rB 1.33 6.52 4 3.02 3.93 2.96 2.52

rLS 1.33 10.92 5.86 3.97 5.55 4.05 3.26

rB 1.83 3.25 1.87 1.95 2.41 1.82 1.61

rLS 1.83 4.26 2.14 2.22 2.93 2.13 1.82

Table 2: Example 2: rate r

r CR AT ST SR RH WS WD

rB 1.33 6.51 4 3.02 3.93 2.96 2.52

rLS 1.33 10.92 5.86 3.97 5.55 4.04 3.26

rB 1.83 3.25 1.87 1.95 2.41 1.82 1.61

rLS 1.83 4.26 2.14 2.22 2.93 2.13 1.82

are tabled; these values are high in any case, in reason of the low distor-
tion of the F–transform based methods. Figures 10 and 11 show the MSE
behaviour for surface temperature and relative humidity respectively (other
figures are not reported for the sake of brevity). The good approximation by
the F–transform based approches is confirmed, even for CR = 1.83. Figures
12–17 show a sample of the reconstructed data by the blocks approach with
CR = 1.83 for the third node.

5. Conclusions

In this paper, for the first time, F–transform based compression methods
have been used for wireless sensor networks applications. The proposed ap-
proaches belong to the class of transform–based methods, but unlike other
schemes in this class, such as DWT, they allow a higher data compression
rate with a lower distortion, even if there is no data correlation. We argue
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that these are desiderable characteristics, due to the cost of the energy com-
munication. Our conclusions are supported by a comparative study, where
publicly available environmental data were used.
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