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ARTICLE INFO ABSTRACT
Am‘c{e history: In the present investigation, the temperature dependence (0—50°C) of the relaxation spectrum of
Received 13 September 2009 hydrated gluten was studied using novel numerical algorithms. Tikhonov regularization, in conjunction
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with the L-curve criterion for optimal calculation of the regularization parameter, was used to generate
the relaxation spectrum from stress relaxation measurements on shear. The methodology used revealed
six molecular events with baseline resolution that could be grouped into fast- and slow-relaxation
regimes. The fast-relaxation regime exhibited strong temperature dependence whereas the slow one is

K?y words: o temperature independent indicating on the whole two dominant mechanisms of interactions. The “loop
Tikhonov regularization - . . . .
L-curve and train” structural model for gluten interactions was found adequate to describe the relaxation events
Gluten in this system, with the fast regime being assigned to interactions due to hydrogen bonding whereas the
Relaxation spectrum slow one to permanent cross-linking of the entire network. Findings of the present investigation provide
Mechanical measurements fundamental understanding and give new insights into the complexity of interactions and relaxation
modes of hydrated gluten.
Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction An experimental methodology to obtain the relaxation spectrum
that is frequently used to characterize solid-like viscoelastic speci-
Characterization of biopolymers becomes increasingly impor- mens is the stress relaxation function on shear in the linear regime.
tant as emerging applications in microencapsulation, nanotech- Such a function after sudden application of strain is given by:
nology, biodegradable packaging and soft-solid “intelligent” gels
require detailed information on their structural behavior (Kasapis, s t
2008; Sozer and Kokini, 2009). In particular, mechanical  0(f) = e+ / o(T)exp (_E) dt (1)
measurements within the linear regime of biopolymer networks 0

provide information on the rotation of groups or atoms about
individual bonds (conformational rearrangements) and the degree
of interaction of these macromolecules with the solvent or
neighboring co-solutes (Ferry, 1980). Short- and long-range
interactions among polymeric species establish the character of
the mechanical response of that system (Rubinstein and Colby,
2003). Understanding the structural behavior of biomaterials
requires probing the relaxation patterns of molecular events, and
a fundamentally valid approach to achieve this is via the concept of
the mechanical relaxation spectrum (Malkin, 2006). From the
relaxation spectrum with interconversions we can also obtain N
other viscoelastic functions that further enhance our knowledge of o(t) = Zane*t/f" (2)
the structure-function relationships of materials (Emri et al., 2005; 0

Ferry, 1980).

where ¢(t) is the gradual relaxation of stress to the equilibrium
stress (ge, complete material relaxation means that g. = 0), with ¢
(1) being the distribution function of the elements with relaxation
time, 7; the relaxation function o(7), therefore, must be calculated
from measurements of o(t).

The stress relaxation “problem” is formulated through the use of
mechanical analogies (Maxwell model), hence the continuous
integral transformation can be represented with a discrete sum of
exponents (Malkin, 2006):

with 1, corresponding to the relaxation times with amplitude o,

and N being the number of the different relaxing elements. Thus

* Corresponding author. Tel.: +44 1484 472488; fax: +44 1484 472182. the int.egral (1) can be wr.itten in terms of the generic form of the
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b

g(s) = / K(s.Of(fdt,a <s < B (3)

where, K(s,t) is the kernel exp(—t/s) that describes the system, g(s)
is the measured signal, and f{t) is the unknown integral solution.
The objective in this type of analysis is to determine the spectral
function f{t) that represents the relaxation spectrum o(t) of the
material.

Numerical treatment of this procedure is not a straightforward
task since the Fredholm integral equation is a classical example of
an ill-posed problem that requires a special mathematical approach
(Groetsch, 1984). Ill-posed problems in mechanical spectroscopy
and numerical methods to solve them have been discussed in the
literature (Brabec et al., 1997; Elster et al,, 1991; Friedrich et al,,
1996; Honerkamp, 1989; Honerkamp and Weese, 1993). Previ-
ously, we described the protocol available for the calculation of
relaxation spectra in biopolymer gels (Kontogiorgos et al., 2009).
The objective of the present work is to utilize this type of analysis in
order to probe molecular events in the hydrated gluten network
using relaxation spectra and regularization tools.

2. Materials and methods
2.1. Sample preparation

Samples of hydrated gluten (40% w/w protein solids, 60% w/w
deionized water) from Sigma—Aldrich (St. Louis, MO) were
prepared as described previously (Kontogiorgos et al., 2007),
wrapped thoroughly with a plastic membrane and left to hydrate at
4 °C for 30 min.

2.2. Stress relaxation measurements

Stress relaxation measurements were performed with the
Advanced Rheometrics Expansion System (ARES, TA Instruments,
New Castle, DE), which is a controlled strain rheometer. ARES is
equipped with a mechanical chiller for temperature regulation
(Polycold Gas Chiller, Polycold Systems International, CA) and
controlled using the operational software accompanying the
instrument (TA Orchestrator).

Experimental protocol of the present investigation includes the
following steps.

(i) At the end of the hydration period, samples were loaded onto
the preheated platen of the rheometer (0, 10, 20, 30, 40 or
50 °C) employing parallel plate geometry of 40 mm diameter
and 2 mm gap. Preliminary time sweeps in dynamic oscilla-
tion on shear, which were carried out at 1 rad/s and 3% strain,
showed that the elastic (storage modulus; G’) and viscous (loss
modulus; G”) components of the network reached a “pseudo-
equilibrium” plateau within 10 min. Therefore, samples were
left to equilibrate for 10 min prior to measurement.

(ii) Strain sweeps in dynamic oscillation on shear were carried out
at 0,10, 20, 30, 40 and 50 °C to identify the linear viscoelastic
region (LVR) of the sample under test conditions and an
angular frequency of 1 rad/s.

(iii) Stress relaxation tests were carried out using the % instanta-
neous strain at each different temperature as calculated in the
previous step. Thirty minutes relaxation following application
of the instantaneous strain was found to be appropriate to
obtain reproducible and highly resolved relaxation spectra
with this particular system (Kontogiorgos et al., 2009). Data of
stress relaxation modulus (G'(t)) were collected in a loga-
rithmic mode with respect to the timescale of observation.

A thin layer of low viscosity silicone oil (dimethylpolysiloxane,
Sigma—Aldrich, St. Louis, MO) was also applied to minimize mois-
ture loss during the course of stress relaxation testing. Mechanical
measurements were performed in triplicate at each temperature
using different samples, and representative figures that depict
accurately the behavior of the material are illustrated.

2.3. Numerical computation

Numerical computation was performed in MATLAB (v7.0 R14
Service Pack 2, The Mathworks Inc., MA) in three steps
(Kontogiorgos et al., 2009). Discretization of kernel K(s,t) (Eq. (3)) to
create matrix A was performed with the discr.m script that is pub-
lished elsewhere (Kontogiorgos et al., 2009). Following creation of
matrix A, Hansen’s regularization tools package were used (Hansen,
1994, 2002). Specifically, scripts csvd.m (calculation of the singular
value decomposition of matrix A), I_curve.m (creation of the L-plot
and calculation of the optimum regularization parameter) and
tikhonov.m (calculation of the spectrum) were used to perform data
analysis.

3. Results and discussion
3.1. Stress relaxation measurements

The objective of the experimental work was to probe molecular
relaxations and explore their temperature dependence hence stress
relaxation tests were conducted in the linear viscoelastic region
(LVR) of gluten networks. LVR varies with temperature, and it must
be calculated for all temperatures used presently. Depending on
temperature, this spreads up to 20% deformation and the value of
3% used for stress relaxation measurements is well within the
acceptable limits (Lefebvre et al., 2000). Furthermore, ice formation
as monitored by the development of storage modulus begins at
about —5°C and concludes at -13°C (Jiang et al, 2008;
Kontogiorgos and Goff, 2006), therefore, signals obtained at 0 °C
represent molecular relaxations of the hydrated gluten network.

Stress relaxation measurements were obtained next and plotted
in semi-logarithmic scale (Fig. 1). Plotting data in semi-logarithmic
mode is necessary so as to determine whether the sample has
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Fig. 1. Stress relaxation measurements for hydrated gluten at various temperatures
(0—50 °C) showing the initial stress relaxation modulus that decays fast in the first few
minutes and reaches a pseudo-equilibrium plateau.
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reached a pseudo-equilibrium G'(t) value. Long baselines are
necessary for the numerical algorithms to calculate accurately the
relaxation spectrum. However, time dependant effects, slippage or
aging of the material will change eventually the three-dimensional
morphology, hence prolonged experimentation is not feasible. In
the present investigation, samples relaxed until the transient lost
more than 95% of its initial G’(t) value, and this can be considered as
a “fully” decayed process. As shown in Fig. 1, temperature increase
results in modulus decrease and in the fifty degrees range of
operation, modulus values fall about an order of magnitude.

Decrease in rigidity reflects changes in the relaxation modes of
the sample and these will be discussed in detail in the following
section. Furthermore, traces of stress relaxation modulus exhibit
a gradient as a function of temperature, an outcome that may
introduce errors in the analysis. This is an inevitable consequence
of temperature increase and can be alleviated only by extending the
duration of relaxation to several hours. We have previously shown
that relaxation spectra obtained with such subtle variations in the
baseline (fully or partially decayed) can also resolve the majority of
the peaks so as to identify the molecular processes that are
primarily responsible for relaxation in the sample (Kontogiorgos
et al, 2009). Taking into consideration that all samples were
investigated within LVR, these minor changes in the baseline are
unlikely to interfere with the resolution of spectra and interpreta-
tion of the data described next.

3.2. Calculation of relaxation spectra

After acquiring stress relaxation data, Hansen’s algorithms that
employ Tikhonov regularization were used to convert data to the
relaxation spectrum of gluten. To obtain the optimum spectral
resolution using this procedure it is necessary to calculate the
optimum regularization parameter, A. The regularization parameter
controls the filtering of the spectrum noise or in other words the
balance between the regularization error and the loss of resolution
(smoothness) of the solution (Hansen, 1992, 1994). The most
appropriate tool to analyze this type of problem is the so-called L-
curve method, which is a plot of the solution and residual norms for
all valid regularization parameters (Hansen, 1992). The vertical part
of the curve corresponds to solutions that are sensitive to pertur-
bation errors whereas the horizontal part to solutions where the
regularization (calculation) error dominates. The optimum regu-
larization parameter 2 is located at the corner of the curve and this
value is used to calculate the optimum least square solution of the
spectrum with the Tikhonov minimization.

Fig. 2 reproduces the result of calculations of the optimum
regularization parameter using the L-curve method for all different
temperatures (0—50°C). As it is evident, parameter A varies
significantly with changes in temperature and calculation of
a different regularization parameter for every dataset is imperative
so as to obtain meaningful and comparable relaxation spectra.
Another parameter that must be optimized is the range of the
relaxation space where the relaxation times of the material will lie.
A heuristic approach was adopted to calculate the optimum
relaxation space by varying the value of its width until a stable and
well resolved spectrum was obtained. The best resolved spectra
were obtained when the range of the relaxation space spanned
from 107> to 10%s. It has been previously suggested that artifacts
due to inertia may affect the spectra especially peaks at the short
relaxation times (Li et al., 2003). The instrument we used to obtain
stress relaxation data virtually eliminates the need to correct for
motor friction and inertia as the sensitivity and the torque resolu-
tion is in the nNm range, as opposed to that of instruments
with inferior technical specifications employed in previous
investigations.
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Fig. 2. L-curve plots for optimum calculation of the regularization parameter for the
different temperatures the hydrated gluten networks were exposed (0—50 °C), with
the optimum 2 being located at the corner of the L-curves.

Following optimization of the parameters, the relaxation spectra
of gluten were calculated (Figs. 3 and 4). Two relaxation regimes
can be identified for this material at all temperatures, one at short
(<15s) and another at long relaxation times (>1s), which are
qualitatively in agreement with previously reported relaxation
spectra for various gluten samples (Bellido and Hatcher, 2009;
Bohlin and Carlson, 1981; Li et al, 2003; Rao et al., 2000).
Elements with fast relaxation times return quickly to equilibrium
after the initial excitation whereas those with slow relaxation times
require longer times to reach the initial state. The methodology
adopted in the present investigation using state-of-the-art algo-
rithms returns highly resolved spectra with baseline resolution.
This could not be achieved with previously reported methodologies
where the spectra were mostly comprised of poorly resolved peaks.

In the short relaxation times regime, we can identify three
dominant relaxation processes. Fast relaxing species exhibit strong
temperature dependence and as the temperature increases their
intensity decreases (arbitrary units on y-axis). Reduction in the
peak magnitude corresponds to a decrease in the amount of species
that can be excited from the applied stress. This strong temperature
dependence (one log cycle from 0 to 50 °C) suggests that a smaller
number of protein chains respond to the application of stress as the
temperature increases or, in other words, more chains remain at
the equilibrium state. At long times, three additional relaxation
events that are mostly unaffected by temperature changes can be
observed. These peaks correspond to species with slow molecular
rearrangements and require long time to return to equilibrium. This
implies that a material with high polydispersity and network
structure like gluten exhibits long relaxation events (Ferry, 1980).
The fact that the long relaxation regime is not sensitive to changes
in temperature suggests that rheological behavior could be
controlled by the elements in the short relaxation regime with
respect to temperature changes. Furthermore, increase in temper-
ature could favor entropically the opening of relatively larger gluten
polymers and therefore interaction with other protein chains,
a process that could also contribute to the observed variations in
the spectra. In both cases, these events are important for the
optimum mixing behavior of flours if one considers that stress
relaxation phenomena directly correspond to their mixing char-
acteristics (Rao et al., 2000). Chemical identification of the peaks
and subsequent intelligent modification of gluten could help to
improve the rheological performance of flours.

Three schools of thought are available to describe the molecular
processes that occur in gluten network after application of stress so
as to interpret the relaxation processes, namely, the “loop and
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Fig. 3. Representative relaxation spectra of hydrated gluten at two different temper-
atures: (a) 0°C and (b) 50 °C, with six major relaxation events that can be resolved
between 0.01—1 s and 10—1000 s.

train” model (Belton, 1999, 2005; Li et al., 2003), the “particulate
network” model (Don et al., 2003; Lefebvre et al., 2003; Lefebvre
and van Vliet, 2003) and the “bond-breaking-slippage” model
(Singh and MacRitchie, 2001; Termonia and Smith, 1987). Our
research on thermophysical, mechanical and microstructural
properties of hydrated gluten systems has put forward a novel
model for gluten network microstructure suggesting that the
entangled protein network creates a nano-capillary sheet
arrangement (Fig. 5). This model was based on the behavior of ice
melting in the hydrated gluten matrix by applying first thermo-
dynamic principles from the Defay—Prigogine theory on the
behavior of liquids inside porous materials (Kontogiorgos and Goff,
2006). Furthermore, detailed SEM and TEM micrographs of
hydrated gluten and its protein fractions could not identify
a particulate network at micro- or nano-scale in which, as has been
suggested (Don et al., 2003; Lefebvre et al., 2003; Lefebvre and van
Vliet, 2003), protein particles are aggregated by hydrogen and
hydrophobic interactions (Jiang et al., 2008; Kontogiorgos and Goff,
2006; Kontogiorgos et al., 2007). On the other hand, the “bond-
breaking-slippage” model has been put forward to describe the
behavior of gluten at large deformations where stresses cause
breakage of covalent bonds and the chains can slip one past another

2500 -
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2000 i —20
2 1500
%}
=
£
E}
s 1000 -
-
500 4 Long relaxation times regime
0+

1 10 100 1000 10000
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Fig. 4. Temperature dependence of relaxation spectra of hydrated gluten networks
from 0 to 50 °C exhibiting short and a long-relaxation time regimes.

(Singh and MacRitchie, 2001). However, it is unlikely that small
deformations in the LVR of the material, like those employed in the
present study, will cause bond breakage so as to influence the
mechanical behavior of the material.

In “loop and train” model, “trains” represent areas in the struc-
ture where the HMW protein—protein interactions prevail, whereas
“loops” are areas with enhanced water—protein interactions (Belton,
1999). Upon deformation, loops will be deformed first followed by
trains and when the stress is removed these components will
eventually relax. If we further add other protein fractions that
interact with the HMW subunits via hydrogen bonding and disulfide
bridges then we reach a state of interactions that define the overall
relaxation behavior of the network. It must also be pointed out that
sample preparation in the present study involves significantly lower
mixing energy (with spatula), as compared to that required for
bread dough formation. Under these mild conditions and high water
content, the HMW fraction of gluten is not expected to adopt the
conformation found in bread dough where both high energy of
mixing and significantly lower amounts of water will unfold HMW
fractions. On balance, under the present environment (high water
content, mild mixing), we feel that the structural model of “loops
and trains” is more appropriate to interpret the relaxation behavior
of gluten. Following this line of thought, trains are more difficult to
deform than loops and therefore have rapid relaxation times. Thus
peaks at short relaxation times may be assigned to the behavior of
the train regions of the relatively larger gluten polymers. It has also
been suggested that the peaks in the fast relaxation regime, which is
also observed in soluble gliadins and glutenins, could be assigned to
proteins that do not participate in network formation (Belton, 1999,
2005; Li et al., 2003).

Hydrogen bonding plays a central role on the relaxation
behavior of gluten in the “loops and train” structural model.
Increase in temperature weakens the strength of hydrogen bonding
between the relatively larger gluten polymers as well as to the rest
of the structure. This leads to a decrease in the intensity of the short
relaxation regimes (Fig. 4). Similarly, in Fig. 1 the relaxation
modulus decreases as the temperature increases. On the other
hand, the long relaxation regime indicates the presence of a strong
network structure that should be due to disulfide bridges or other
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Fig. 5. Model showing the structural hierarchy in gluten microstructure. Adopted with
modifications from Kontogiorgos and Goff (2006). At the atomic level protein chains
interact with various forces and create a gluten sheet, the building block of the network.
The sheets are arranged in a manner that they form nano-capillaries and result in the
gluten macrostructure.

permanent cross-links showing a relative temperature indepen-
dence (Figs. 3 and 4). Peaks at long relaxation times are typical of
polydispersed polymers with a “permanent” network structure
within the experimental timescale of observation (Ferry, 1980; Li
et al, 2003) and correspond to the relaxation of the entire
network to the equilibrium state.

Taking everything into account, it appears that the “loop and
train” model on gluten interactions can be adequately used to
interpret the relaxation behavior of the system. It must be stressed,
however, that work on the chemical fingerprints of the peaks
would further elucidate the exact nature of the relaxation

behaviour. Identification of molecular processes provides funda-
mental understanding of the components that are responsible for
the relaxation behavior of gluten, which could assist improving the
industrial performance of flours.

4. Conclusions

The temperature dependence of the relaxation spectrum of
highly hydrated gluten networks was investigated by means of
stress relaxation measurements. Regularization algorithms were
employed to analyze the experimental data and generate the
relaxation spectrum. This type of numerical treatment results in
a multimodal spectrum that can be divided into fast and slow
relaxation regimes. For the first time, six major molecular events
were resolved for this material and the “loop and train” interaction
model was considered to interpret the relaxation peaks. The fast-
relaxation regime was attributed to the relatively larger gluten
proteins that are held together by hydrogen bonding. In contrast,
the long-relaxation regime was assigned to the relaxation of the
entire network that is held together primarily by covalent cross-
links. The present methodology treats in detail stress relaxation
data hence being able to unveil new insights into the mechanical
and structural properties of the gluten network.
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