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Abstract
We present an analytic approach to solve a degenerate parabolic prob-

lem associated to the Heston model, which is widely used in mathematical
finance to derive the price of an European option on an risky asset with
stochastic volatility. We give a variational formulation, involving weighted
Sobolev spaces, of the second order degenerate elliptic operator of the par-
abolic PDE. We use this approach to prove, under appropriate assumptions
on some involved unknown parameters, the existence and uniqueness of weak
solutions to the parabolic problem on unbounded subdomains of the half-
plane.

1. Introduction

In 1973 F. Black and M. Scholes [3] and Merton [14] independently intro-
duced the well known Black-Scholes-Merton model that gave an answer to
the pricing of European options and became a benchmark in option pricing
until the stock market crash of October 1987 and its subsequent impact on
mathematical models to price options. Two of the most important assump-
tions of the Black-Scholes-Merton model are: 1) the underlying asset’s price
St, t > 0, has log-normal probability distribution (which implies log(St/S0)
having normal distribution), i.e. {St, t ≥ 0} is a continuous stochastic pro-
cess satisfying the following stochastic differential equation (SDE)

dSt = r St dt+ γ St dWt, t ≥ 0, S0 = x ≥ 0, (1.1)
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where x is given, and {Wt, t ≥ 0} is a standard one-dimensional Brownian
motion; 2) the volatility γ > 0 in the diffusion term of (1.1) is a constant
parameter. This last assumption means that if we plot volatility against the
option strike price we would obtain a straight line, parallel to the horizontal
axis. Equalizing the market observed option price with the Black-Scholes-
Merton pricing equation and solving it for volatility gives us the so-called
implied volatility. However, when plotting implied volatility against the
strike price using real market data one typically obtains a skewed curve,
known as the volatility smile with, in those cases where the volatily smile
is convex, minimum volatility “at the money”, i.e. where the strike price is
equal to the underlying spot. Due to the stock market crash of October 1987,
the smiles or skews in the implied volatility curve emphasized. This phe-
nomenon highlighted thus the inability of the Black-Scholes-Merton model
to provide adequate prices in this new regime because of the restrictive as-
sumptions underlying the model. Indeed, empirical studies, since the 1987
crash [5], have shown that the log-asset’s price distribution is far from being
Gaussian, rather characterized by heavy tails and sharp peaks. In order
to make the option prices more adapted to real markets, jump models and
stochastic volatility models have been introduced in financial mathemat-
ics literature. Jump models allow the spot asset’s process to jump, while
stochastic volatility models describe the volatility as a stochastic process
in which the return variation dynamics include an unobservable shock that
cannot be predicted using current available information.

One of the pioneering papers on stochastic volatility models is that of
Steven L. Heston [10]. He derived the pricing formula of a stock European
option when the price process {St, t ≥ 0} of the underlying asset satisfies
the following SDE

dSt = η St dt+
√
Yt St dWt, t ≥ 0, (1.2)

where the constant parameter η ∈ R denotes the instantaneous mean return
of the underlying asset, and the non-constant volatility

√
Yt is supposed to

be stochastic. The variance process Y = {Yt, t ≥ 0} is assumed to be a
diffusion process whose dynamics is described by the following SDE

dYt = κ(m− Yt) dt+ σ
√
Yt dZt, t ≥ 0, (1.3)

used in mathematical finance by Cox et al. [6] to model “short-term interest
rates” of zero-coupon bonds. The parameters κ,m and σ are supposed to
be positive constants. The process Y is known in literature as CIR process
or square-root process, and ensures that the stochastic variance Yt is non-
negative. The state space of the diffusion Y is the interval [0,∞). The
parameter m is the long-run mean value of Yt as t → ∞, κ is called the
“rate of mean reversion” that is, κ determines how fast the variance process
reverts to m. Once m < Yt at a time t > 0 then the drift term will decreases
the value of the variance until it goes under the m parameter. Then it goes
up again and so on. A high κ implies higher rate of reversion and viceversa.
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Note that the mean reverting phenomenon is observed in real markets (cf.
[15, Ch.1] and references therein). This is one reason that has allowed the
Heston model to become one of the most widely used stochastic volatility
models today. The parameter σ is the constant volatility of variance (often
called the volatility of volatility or, shorter, vol of vol ), and it affects the peak
(kurtosis) of the probability density distribution of the underlying asset’s
log-price. When σ = 0 the volatility in (1.2) stays constant over time,
and so we get again the Black-Scholes-Merton model, unlike what happens
in stock markets as described above. Otherwise, increasing σ will cause
the peak of distribution to increase, creating heavy tails on both sides [10,
Fig.3]. Note that higher σ means that the price process is more volatile,
which states that the market has a greater chance of extreme movements.

The processes {Wt, t ≥ 0} and {Zt, t ≥ 0} in (1.2) and (1.3) are standard
one-dimensional Brownian motions. They are supposed to be correlated

dWt dZt = ρ dt,

where ρ ∈ (−1, 1) denotes the instantaneous correlation coefficient. Note
that the stock price and the variance processes are usually correlated in real
markets. This is the second reason that has allowed the Heston model to
emerge as one of the most widely used stochastic volatility models today.
The ρ parameter affects the tails heaviness (skewness) in the probability
distribution of the asset’s log-price [10, Fig.1], and also the shape of the
implied volatility curve against the strike price [15, Figs.1.2-1.4].

Using the two-dimensional Ito’s formula (cf., for example, [17, Chap.
IV.32]), the price U of an European option with a risky underlying asset,
fixed maturity date T > 0 and strike price K > 0 satisfies the following
degenerate parabolic problem

∂U

∂t
+

1

2
yS2 ∂

2U

∂S2
+

1

2
yσ2 ∂

2U

∂y2
+ ρσyS

∂2U

∂S∂y
+ κ(m− y)

∂U

∂y
+r(S

∂U

∂S
− U) = 0,

in [0, T )× [0,∞)2

U(T, S, y) = h(S) in [0,∞)2,
(1.4)

with the final pay-off of the option as the terminal condition, namely

h(S) = (S −K)+ or h(S) = (K − S)+

corresponding to European call and put options, respectively. The price
U := U(t, S, y) depends on time t, on the stock price variable S and on the
variance variable y.

The degenerate parabolic problem (1.4) is obtained imposing some as-
sumptions about the financial market, as the no-arbitrage condition i.e.,
given the evolutions of St and of Yt, the European option is priced in such
a way that there are no opportunities to make money from nothing (in this
respect the reader can refer to [10, Section 1] for an exaustive description of
all conditions at the boundaries of the domain [0,∞)2).
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The PDE in (1.4) has degenerate coefficients in the S variable and possibly
also in the y variable. In order to remove the degeneracy with respect to
the variable S, we define the stochastic process {Xt, t ≥ 0} as follows

Xt = ln

(
St
S0

)
, t ≥ 0.

Further, consider the following function

ũ(t, S, y) := U(t, S, y)− e−r(T−t)h(Ser(T−t)),

which indicates the excess to discounted pay-off. The parameter r ≥ 0
denotes the constant risk-neutral interest rate. As observed by Hilber et al.
in [11], according to the boundary conditions on the PDE in (1.4) suggested
in [10], ũ decays to zero as S → 0 and S → ∞, which means that the
discounted expected payoff equals the intrinsic value when the option is very
deep “out of the money” (respectively very deep “in the money”). Then, by
changing the time t → T − t, setting x = lnS (assume S0 = 1), and using
the following transformation

u(t, x, y) := e−
ω
2
y2
[
U(T − t, ex, y)− e−r(T−t)h(ex+r(T−t))

]
, ω > 0,

(1.5)
we deduce from (1.4) that the function u satisfies the following initial value
forward parabolic problem

∂u

∂t
(t, x, y) = −(LHu)(t, x, y) + F (t, y), t ∈ (0, T ], (x, y) ∈ Ω

u(0, x, y) = 0, (x, y) ∈ Ω,

(1.6)

where Ω = R× (0,∞). The operator LH is given by

(LHϕ)(x, y) = −1

2
y
∂2ϕ

∂x2
− 1

2
σ2y

∂2ϕ

∂y2
− ρσy ∂

2ϕ

∂x∂y

− (ωρσy2 − 1

2
y + r)

∂ϕ

∂x
− [ωσ2y2 + κ(m− y)]

∂ϕ

∂y

−
[

1

2
ωσ2y(ωy2 + 1) + ωyκ(m− y)− r

]
ϕ (1.7)

and

F (t, y) =
K

2
ye−rte−

ω
2
y2δlnK−rt.

The motivation to consider the transformation (1.5) is explained in [11],
taking into account that the price U remains bounded for all y (cf. [10]).

It is worth to point out that Cauchy problems arising from financial math-
ematics are not easy to be analysed. Efficient simulation methods yield a
popular and flexible alternative for pricing and managing a book of deriva-
tives which cannot be valued using closed-form expressions (see for instance
[11]-[15]-[18]). The semigroup theory represent perhaps the most effective
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analytic approach [4]-[9] but modifications of the classical Black-Scholes-
Merton model requires techniques ad hoc (cf., for instance, [7]). To our
knowledge, the use of a variational approach to prove existence and unique-
ness of solutions to these pricing problems is very recent. Achdou et al. [1]-
[2] used variational analysis using appropriate weighted Sobolev spaces to
solve parabolic problems connected to option pricing when the variance pro-
cess Y is a function of a mean reverting Ornstein-Uhlenbech (OU) process.
Successively, proceedings as in the previous works, Hilber et al. [11] used
variational formulation to present numerical solutions by a sparse wavelet
finite element method to pricing problems in terms of parabolic PDEs when
the volatility is modeled by a OU process or a CIR process. Daskalopoulos
and Feehan [8] used variational analysis with the aid of weighted Sobolev
spaces to prove the existence, uniqueness and global regularity of solutions
to obstacle problems for the Heston model, which in mathematical finance
correspond to solve pricing problems for perpetual American options on
underlying risky assets.

Observe that by applying a space-time transformation, the diffusion Y
follows the dynamics of a squared Bessel process with dimension

α =
4κm

σ2
> 0

(cf. [12, Section 6.3]). It is known (cf. [17, Chap. V.48]) that for α >
2 a general α-dimensional squared Bessel process starting from a positive
initial point stays strictly positive and tends to infinity almost surely as
time approaches infinity while, for α = 2 the process is strictly positive but
gets arbitrarily close to zero and ∞, and for α < 2 the process may hit
zero 0 even in a few instances recurrently but will not stay at zero, i.e. the
0-boundary is strongly reflecting. This contrasts with reality where returns’
volatility never reachs zero. It is never seen in real markets that low levels
of volatility (e.g. say below 5-6%) are reached for risky assets. To translate
this property to the CIR process Y , without any loss of generality we assume
the condition

κm >
σ2

2
. (1.8)

Starting from Y0 > 0, the condition (1.8) garantees that the volatility process
is always positive. Thus, the above arguments let us to assume y ∈ [a,∞)
with an arbitrary small a > 0, in order to remove the degeneracy at zero
with respect to the variable y and take Ω = R× (a,∞) in (1.6).

By using the variational formulation of the parabolic PDE in (1.6) per-
formed in [11], the aim of the present paper is to use form methods to prove
the existence and uniqueness of a weak solution to the problem (1.6) and to
study the existence of a positive and analytic semigroup generated by −LH ,
with an appropriate domain, in a weighted L2-space with suitable weights
φ and ψ.
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The article is organized as follows. In Section 2 we define the Hilbert
and weighted Sobolev spaces we shall need throughout this article, describe
our assumptions on the Heston operator coefficients and prove the continu-
ity estimate for the sesquilinear form defined by the operator LH given in
(1.7), with Dirichlet boundary conditions. In Section 3 we derive Garding’s
inequality for the sesquilinear form, and deduce the existence of a unique
weak solution to the problem (1.6). We obtain also that the realization of
−LH in L2 with Dirichlet boundary conditions generates an analytic semi-

group (e−tL
H

). The positivity of (e−tL
H

) can be proved applying the first
Beurling-Deny criteria.

2. Heston model: the variational formulation

Throughout this article, the coefficients of the operator LH are required
to obey the Feller condition (1.8) and Ω = R × (a,∞) with some positive
constant a. We add to the problem (1.6) the boundary condition u(t, x, a) =
0.

We propose to use form methods to solve the parabolic PDE in (1.6). To
this purpose we consider the weight functions

φ(x) = eν|x|, ψ(y) = e
µ
2
y2 , (x, y) ∈ Ω, ν, µ > 0,

and define the Hilbert space

L2
φ,ψ(Ω) = {measurable functions v | (x, y) 7→ v(x, y)φ(x)ψ(y) ∈ L2(Ω)}

equipped with the weighted L2-norm

‖v‖φ,ψ =

(∫
Ω
|v(x, y)|2φ2(x)ψ2(y) dx dy

) 1
2

.

Furthermore we define the weighted Sobolev space

Vφ,ψ =
{
v
∣∣∣ (

v,
√
y
∂v

∂x
,
√
y
∂v

∂y

)
∈ (L2

φ,ψ(Ω))3
}
.

The space Vφ,ψ is equipped with the norm

‖u‖Vφ,ψ =
(
‖u‖2φ,ψ +

∥∥∥√y∂u
∂x

∥∥∥2

φ,ψ
+
∥∥∥√y ∂u

∂y

∥∥∥2

φ,ψ

) 1
2
.

The sesquilinear form associated to LH in L2
φ,ψ(Ω) is given by

aφ,ψH (u, v) =

∫
Ω

(LHu)(x, y)v(x, y)φ2(x)ψ2(y)dx dy, u, v ∈ C∞c (Ω).

(2.1)
We note first the following standard result.

Lemma 2.1. The following assertions hold:

(a) The space of test functions C∞c (Ω) is dense in L2
φ,ψ(Ω),

(b) the space Vφ,ψ equipped with the norm ‖ · ‖Vφ,ψ is a Hilbert space.
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Proof. Let u ∈ L2
φ,ψ(Ω). Then uφψ ∈ L2(Ω) and so, for any ε > 0 there

is ϕ ∈ C∞c (Ω) such that ‖ϕ − uφψ‖L2 = ‖φ−1ψ−1ϕ − u‖φ,ψ < ε. Since
φ−1ψ−1ϕ ∈ Cc(Ω), we deduce that Cc(Ω) is dense in L2

φ,ψ(Ω). Thus the

assertion (a) follows by standard mollifier argument.
To prove (b) we have only to show that Vφ,ψ equipped with the norm

‖ · ‖Vφ,ψ is complete. Consider a Cauchy sequence (un) in (Vφ,ψ, ‖ · ‖Vφ,ψ).
Since y ≥ a, it follows that Vφ,ψ is continuously embedded in the classical
weighted Sobolev space

H1
φ,ψ(Ω) :=

{
v
∣∣∣ (

v,
∂v

∂x
,
∂v

∂y

)
∈ (L2

φ,ψ(Ω))3
}
.

Hence, un converges to some u ∈ H1
φ,ψ(Ω). On the other hand, by the

convergence of
√
y ∂un∂x and

√
y ∂un∂y in L2

φ,ψ(Ω) (and hence a.e. by taking a

subsequence), it follows that u ∈ Vφ,ψ and un converges to u with respect to
the norm ‖ · ‖Vφ,ψ . �

The following lemma shows that aφ,ψH can be extended continuously to a
sesquilinear form on V 0

φ,ψ × V 0
φ,ψ, where V 0

φ,ψ denotes the closure of C∞c (Ω)
in Vφ,ψ

Lemma 2.2. There is a positive constant M such that

|aφ,ψH (u, v)| ≤M‖u‖Vφ,ψ‖v‖Vφ,ψ , ∀u, v ∈ V 0
φ,ψ.

Proof. Integrating by parts, it follows from (2.1) that

aφ,ψH (u, v) =
1

2

∫
Ω
y
∂u

∂x

∂v

∂x
φ2ψ2 +

∫
Ω
y
∂u

∂x
v

(
φ′

φ

)
φ2ψ2 +

σ2

2

∫
Ω
y
∂u

∂y

∂v

∂y
φ2ψ2

+
σ2

2

∫
Ω

∂u

∂y
vφ2ψ2 + µσ2

∫
Ω
y2∂u

∂y
vφ2ψ2 + 2ρσ

∫
Ω
y
∂u

∂y
v

(
φ′

φ

)
φ2ψ2

+ρσ

∫
Ω
y
∂u

∂y

∂v

∂x
φ2ψ2 −

∫
Ω

(ωρσy2 − 1

2
y + r)

∂u

∂x
vφ2ψ2

−
∫

Ω
[ωσ2y2 + κ(m− y)]

∂u

∂y
vφ2ψ2

−
∫

Ω

[
1

2
ωσ2y(ωy2 + 1) + ωyκ(m− y)− r

]
uvφ2ψ2

holds for u, v ∈ C∞c (Ω). By Hölder’s inequality, and since y
a ≥ 1 for y ∈

[a,∞), a > 0, we have∣∣∣∣∫
Ω
y
∂u

∂x

∂v

∂x
φ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖v‖Vφ,ψ , ∣∣∣∣∫
Ω
y
∂u

∂y

∂v

∂y
φ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖v‖Vφ,ψ ,∣∣∣∣∫
Ω
y
∂u

∂y

∂v

∂x
φ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖v‖Vφ,ψ , ∣∣∣∣∫
Ω

∂u

∂x
vφ2ψ2

∣∣∣∣ ≤ 1√
a
‖u‖Vφ,ψ‖v‖Vφ,ψ , and∣∣∣∣∫

Ω

∂u

∂y
vφ2ψ2

∣∣∣∣ ≤ 1√
a
‖u‖Vφ,ψ‖v‖Vφ,ψ .
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Since ψ′(y) = µyψ(y), it follows that∫
Ω
yuvφ2ψ2 = − 1

2µ

(∫
Ω

∂u

∂y
vφ2ψ2 +

∫
Ω
u
∂v

∂y
φ2ψ2

)
, (2.2)∫

Ω
y2uvφ2ψ2 = − 1

2µ

(∫
Ω
y
∂u

∂y
vφ2ψ2 +

∫
Ω
y
∂v

∂y
uφ2ψ2 +

∫
Ω
uvφ2ψ2

)
,(2.3)∫

Ω
y3uvφ2ψ2 = − 1

2µ

(
2

∫
Ω
yuvφ2ψ2 +

∫
Ω
y2∂u

∂y
vφ2ψ2 +

∫
Ω
y2∂v

∂y
uφ2ψ2

)
.(2.4)

Thus it suffices to estimate the integrals∫
Ω
y
∂u

∂y
vφ2ψ2,

∫
Ω
y2∂u

∂y
vφ2ψ2,

∫
Ω
y
∂u

∂x
vφ2ψ2, and

∫
Ω
y2∂u

∂x
vφ2ψ2.

Applying (2.2) and Hölder’s inequality we have∣∣∣∣∫
Ω
y
∂u

∂y
vφ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖
√
yv‖φ,ψ ≤

1

aµ
‖u‖Vφ,ψ‖v‖Vφ,ψ ,∣∣∣∣∫

Ω
y
∂u

∂x
vφ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖
√
yv‖φ,ψ ≤

1

aµ
‖u‖Vφ,ψ‖v‖Vφ,ψ .

On the other hand, applying again Hölder’s inequality we get∣∣∣∣∫
Ω
y2∂u

∂y
vφ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖y
3
2 v‖φ,ψ and∣∣∣∣∫

Ω
y2∂u

∂x
vφ2ψ2

∣∣∣∣ ≤ ‖u‖Vφ,ψ‖y
3
2 v‖φ,ψ.

It remains to estimate ‖y
3
2 v‖φ,ψ. It follows from (2.4) that

‖y
3
2 v‖2φ,ψ ≤ 1

µ

∣∣∣∣∫
Ω
y2∂v

∂y
vφ2ψ2

∣∣∣∣
≤ 1

2
‖y

3
2 v‖2φ,ψ +

1

2µ2
‖√y∂v

∂y
‖2φ,ψ.

Hence,

‖y
3
2 v‖φ,ψ ≤

1

µ
‖√y∂v

∂y
‖φ,ψ.

This ends the proof of the lemma. �

3. Existence and uniqueness of solutions to the variational
equation

The following proposition deals with the quasi-accretivity of the sesquilin-

ear form aφ,ψH .

Proposition 3.1. Assume that (1.8) is satisfied. Then, under appropriate
conditions on ρ, ν, µ and ω, there are constants c1 > 0 and c2 ∈ R such that

<aφ,ψH (v, v) ≥ c1‖v‖Vφ,ψ + c2‖v‖2φ,ψ, ∀v ∈ V 0
φ,ψ. (3.1)
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Proof. The real part of the quadratic form aφ,ψH (v, v) is given by

<aφ,ψH (v, v) =
1

2

∫
Ω
y
∣∣∣∂v
∂x

∣∣∣2φ2ψ2 +
σ2

2

∫
Ω
y
∣∣∣∂v
∂y

∣∣∣2φ2ψ2

+<
(∫

Ω
y
∂v

∂x
v

(
φ′

φ

)
φ2ψ2

)
+ <

(∫
Ω

(1

2
y − ωρσy2 − r

)∂v
∂x
vφ2ψ2

)
+<

(∫
Ω

(σ2

2
− κm)

)∂v
∂y
vφ2ψ2

)
+ κ<

(∫
Ω
y
∂v

∂y
v φ2ψ2

)
−ωσ2<

(∫
Ω
y2∂v

∂y
vφ2ψ2

)
+ σ2µ<

(∫
Ω
y2∂v

∂y
vφ2ψ2

)
+ρ σ<

(∫
Ω
y
∂v

∂x

∂v

∂y
φ2ψ2

)
+ 2ρσ<

(∫
Ω
y
∂v

∂y
v

(
φ′

φ

)
φ2ψ2

)
−1

2
ω2σ2

∫
Ω
y3|v|2 φ2ψ2 − (ωκm+

ωσ2

2
)

∫
Ω
y |v|2 φ2ψ2

+ωκ

∫
Ω
y2|v|2 φ2ψ2 + r

∫
Ω
|v|2 φ2ψ2

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10 + I11 + I12 + I13 + I14.

By the definition of the L2
φ,ψ - norm

I1 + I2 =
1

2

∥∥∥√y ∂v
∂x

∥∥∥2

φ,ψ
+
σ2

2

∥∥∥√y∂v
∂y

∥∥∥2

φ,ψ
. (3.2)

To estimate the next integrals we use Hölder’s and Young’s inequalities as

well as integration by parts taking in mind that <
(
∂v
∂xv
)

= 1
2
∂|v|2
∂x , <

(
∂v
∂yv
)

=

1
2
∂|v|2
∂y , φ′ = (sign x)νφ and ψ′ = µyψ.

• Estimate of I3 :

|I3| ≤
1

2
ε1

∥∥∥√y ∂v
∂x

∥∥∥2

φ,ψ
+
ν2

2ε1
‖√yv‖2φ,ψ, ε1 > 0. (3.3)

• Estimate of I4 :

|I4| ≤
ν

2
‖√yv‖2φ,ψ + ωρσν

∫
Ω
y2|v|2φ2ψ2 + rν‖v‖2φ,ψ. (3.4)

• Estimate of I5 :

I5 =
(
κm− σ2

2

)
µ‖√yv‖2φ,ψ. (3.5)

• Estimate of I6 and I10 :

I6 + I10 ≥ −
(κ

2
+ ρσν

)
‖v‖2φ,ψ − (κµ+ 2ρσνµ)

∫
Ω
y2|v|2φ2ψ2. (3.6)



10 A. CANALE, R.M. MININNI, AND A. RHANDI

• Estimate of I7 and I8 :

I7 + I8 = σ2(µ− ω)<
(∫

Ω
y2∂v

∂y
vφ2ψ2

)
. (3.7)

• Estimate of I9 :

|I9| ≤
1

2
ε2

∥∥∥√y ∂v
∂x

∥∥∥2

φ,ψ
+
ρ2σ2

2ε2

∥∥∥√y∂v
∂y

∥∥∥2

φ,ψ
, ε2 > 0. (3.8)

On the other hand, it follows from (2.4) that

‖√yv‖2φ,ψ = −<
(∫

Ω
y2∂v

∂y
vφ2ψ2

)
− µ‖y

3
2 v‖2φ,ψ. (3.9)

It follows from (3.2)-(3.9) that

<aφ,ψH (v, v) ≥ α1

∥∥∥√y ∂v
∂x

∥∥∥2

φ,ψ
+ α2

∥∥∥√y∂v
∂y

∥∥∥2

φ,ψ
+ α3‖v‖2φ,ψ

+ α4

∫
Ω
y2|v|2φ2ψ2 + α5<

(∫
Ω
y2 ∂v

∂y
vφ2ψ2

)
+ α6‖y

3
2 v‖2φ,ψ,

where

α1 = 1
2

(
1− ε1 − ε2

)
,

α2 = σ2

2

(
1− ρ2

ε2

)
=: σ

2

2 τ ,

α3 = (−rν − κ
2 − ρσν + r),

α4 = (ωκ− κµ− ωρσν − 2ρσνµ),

α5 = ω
(
κm− σ2

2

)
+ σ2µ+ β −

(
κm− σ2

2

)
µ,

α6 = ωµ
(
κm+ σ2

2

)
− ω2 σ2

2 + µ
(
β −

(
κm− σ2

2

)
µ
)

= µα5 + ωµσ2 − σ2µ2 − ω2 σ2

2

and

β =
( ν2

2ε1
+
ν

2

)
.

In order to ensure that the coefficients α1, α2 are positive we use the as-
sumption |ρ| < 1 and we take ε1 and ε2 such that

ρ2 < ε1 + ε2 < 1.

Furthermore we take ω > µ and

ν ≤ κ(ω − µ)

ρσ(ω + 2µ)
(3.10)

when 0 < ρ < 1 in order to obtain that α4 ≥ 0, while for −1 < ρ ≤ 0 we get
α4 > 0 for any ν.
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To prove the lemma, we need first to show that
∣∣∣ ∫Ω y

2 ∂v
∂yvφ

2ψ2
∣∣∣ can

be estimated by
∥∥∥√y ∂v∂y∥∥∥2

φ,ψ
. Indeed, by means of Hölder’s and Young’s

inequalities, ∣∣∣ ∫
Ω
y2 ∂v

∂y
vφ2ψ2

∣∣∣ =
∣∣∣ ∫

Ω

√
y
∂v

∂y
y

3
2 vφ2ψ2

∣∣∣
≤ ε3

2

∥∥∥√y∂v
∂y

∥∥∥2

φ,ψ
+

1

2ε3
‖y

3
2 v‖2φ,ψ

(3.11)

with any ε3 > 0.

On the other hand, using the assumption κm > σ2

2 and ω > µ, we deduce
α5 > 0 and hence

ω >

(
κm− 3

2σ
2
)
µ− β

κm− σ2

2

.

So, by (3.11), we obtain

<aφ,ψH (v, v) ≥ α1

∥∥∥√y ∂v
∂x

∥∥∥2

φ,ψ
+
(
α2 − α5

ε3
2

)∥∥∥√y∂v
∂y

∥∥∥2

φ,ψ

+α3‖v‖2φ,ψ +
(
α6 −

α5

2ε3

)
‖y

3
2 v‖2φ,ψ. (3.12)

Choosing

ε3 <
2α2

α5
, (3.13)

we deduce that α2 − α5
ε3
2 > 0.

The next step is to prove that

α6 −
α5

2ε3
≥ 0. (3.14)

This is equivalent to show that ω satisfies the inequality

σ2

2
ω2−

[(
κm− σ2

2

)(
µ− 1

2ε3

)
+ σ2µ

]
ω + σ2µ2 − β

(
µ− 1

2ε3

)
+

+
(
κm− σ2

2

)(
µ− 1

2ε3

)
µ− σ2µ

(
µ− 1

2ε3

)
≤ 0.

(3.15)

So we need to have

∆ω :=
(
κm− σ2

2

)2(
µ− 1

2ε3

)2
+ µσ4

(
µ− 1

ε3

)
+ 2βσ2

(
µ− 1

2ε3

)
≥ 0.

Let us observe that (3.14) can be rewritten in the following way(
µ− 1

2ε3

)
α5 + ωµσ2 − σ2µ2 − ω2σ

2

2
≥ 0,

from which we can deduce that

ε3 >
1

2µ
,
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since ω2 σ2

2 − ωµσ
2 + σ2µ2 = σ2

2

(
(ω − µ)2 + µ2

)
> 0. Thus,

∆ω ≥ 0⇐⇒
(
κm− σ2

2

)2
≥ 2ε3µ

2ε3µ− 1

[
2− 2ε3µ

2ε3µ− 1
− 2β

µσ2

]
σ4 =: g(2ε3µ)σ4,

(3.16)
where

g(t) =
(2 + c)t− (1 + c)t2

(t− 1)2

with c = 2β
µσ2 . On the other hand, by (1.8), there exists δ > 0 such that

κm > (1 + 2
√
δ)σ

2

2 . Thus, it follows that(
κm− σ2

2

)2

> δσ4. (3.17)

Hence, (3.16) holds if g(2ε3µ) ≤ δ. An easy computation shows that if

2ε3µ > t := 1 +
1√

1 + δ
(3.18)

then g(2ε3µ) < δ and therefore ∆ω > 0. On the other hand, it follows from

(3.13) and (3.18) that α5 <
4µα2

t
and therefore, using (3.10),

µ < ω <

(
κm− 3

2σ
2
)
µ+ 4

t
µα2 − β

κm− σ2

2

= µ+
γσ2µ− β
κm− σ2

2

, (3.19)

where γ = 2τ
t
− 1. This implies in particular that γ > 0 and

µ >
β

γσ2
. (3.20)

Thus, using conditions (3.10) and (3.19), we deduce that (3.15) holds if
ω ∈ (M,N), where

M = max


(
κm− σ2

2

)(
µ− 1

2ε3

)
+ σ2µ −

√
∆ω

σ2
, µ


and

N = min


(
κm− σ2

2

)(
µ− 1

2ε3

)
+ σ2µ +

√
∆ω

σ2
, µ+

γσ2µ− β
κm− σ2

2

 .

Let us observe that(
κm− σ2

2

)(
µ− 1

2ε3

)
+ σ2µ >

√
∆ω

if and only if

β < µ
(
κm− σ2

2

)
+

µσ2

2ε3µ− 1
. (3.21)
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Moreover, it is easy to see that µ ≤ N .
To get (

κm− σ2

2

)(
µ− 1

2ε3

)
+ σ2µ −

√
∆ω

σ2
< µ+

γσ2µ− β
κm− σ2

2

or, equivalently,(
κm− σ2

2

)(
µ− 1

2ε3

)
− σ2

κm− σ2

2

(
γσ2µ− β

)
<
√

∆ω, (3.22)

we firstly require that(
κm− σ2

2

)2
≥ 2ε3µ

2ε3µ− 1

(
γ − β

µσ2

)
σ4 =: f(2ε3µ)σ4 (3.23)

to have that the left side in (3.22) is nonnegative.
It follows from (3.18) and (3.20) that 0 < f(2ε3µ). Thus, from (3.17) we
obtain (3.23) if f(2ε3µ) ≤ δ. From the definition of t and since τ < 1 one
can see that δ > γ. Using again τ < 1, we obtain 2τ − 1 < 1 <

√
1 + δ =

δ√
1+δ

+ 1√
1+δ

and so,

γ − c

2
< γ =

2τ

t
− 1

<
δ

t
√

1 + δ

=
δ

1 +
√

1 + δ
.

Hence,
√

1 + δ <
δ

γ − (c/2)
− 1.

This implies that t > δ
δ−γ+(c/2) . This together with (3.18) imply that

f(2ε3µ) ≤ δ. Thus, (3.23) holds.
Using now the definition of ∆ω, one can see that proving (3.22) is equivalent
to show(

κm− σ2

2

)2
>

2ε3µ

2ε3µ(1 + 2γ)− (2 + 2γ)

(
γ − β

µσ2

)2

σ4 = f̃(2ε3µ)σ4.

(3.24)
Since t < 2 and

t < inf
γ∈(0, 2

t
−1)

(
1 +

1

1 + 2γ

)
=

4

4− t
,

one deduces that f̃(2ε3µ) < 0 and hence (3.24) holds, provided that

t < 2ε3µ < 1 +
1

1 + 2γ
.
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Therefore, if ω ∈ (M,N), ν satisfies (3.10) when ρ > 0, and

β < min

{
µγσ2, µ

(
κm− σ2

2

)
+

µσ2

2ε3µ− 1

}
from (3.20) and (3.21), with 0 < γ < δ. Then (3.12) can be written as

<aφ,ψH (v, v) ≥ c1‖v‖Vφ,ψ + α3‖v‖2φ,ψ, ∀v ∈ C∞c (Ω),

provided that

2ρ2

2− t
< ε2 < 1− ε1 and ε3 ∈

(
t

2µ
,min

{
2α2

α5
,

1

2µ

(
1 +

1

1 + 2γ

)})
,

where c1 := min{α1, α2 − α5
ε3
2 , a

3(α6 − α5
2ε3

)} > 0. We note that the above
first inequality satisfied by ε2 is a consequence of γ > 0. On the other

hand, by assuming |ρ| <
√

1
2 −

1
2
√

1+δ
, there exists a ε1 satisfying the above

condition, since
√

1
2 −

1
2
√

1+δ
=
√

2−t
2 . �

Remark 3.2. It follows from Lemma 2.2 and Proposition 3.1 that the form
norm defined by

‖u‖aH :=

√
<aφ,ψH (u, u) + (1− c2)‖u‖φ,ψ,

is equivalent to the norm ‖ · ‖Vφ,ψ . So, by Lemma 2.1, the sesquilinear form

aφ,ψH with domain V 0
φ,ψ is closed.

We define the operator associated to aφ,ψH by

D(A) = {u ∈ V 0
φ,ψ s.t. ∃v ∈ L2

φ,ψ(Ω) : aφ,ψH (u, ϕ) =

∫
Ω
vϕφ2ψ2, ∀ϕ ∈ C∞c (Ω)}

Au = v.

The estimate (3.1) is known as Garding’s inequality. Applying [13, Section
4.4, Theorem 4.1] we obtain the existence of a unique weak solution to the
problem (1.6).

Theorem 3.3. Assume the same conditions as in Proposition 3.1. Then,
there is a unique weak solution u ∈ L2([0, T ], V 0

φ,ψ) ∩ C([0, T ], L2
φ,ψ(Ω)) to

the parabolic problem (1.6).

Applying the Lumer-Phillips theorem we obtain the following generation
result.

Theorem 3.4. Assume the same conditions as in Proposition 3.1. Then,
the operator −A defined above generates a positivity preserving and quasi-
contractive analytic semigroup on L2

φ,ψ(Ω).

Proof. It follows form Lemma 2.1, Lemma 2.2, Proposition 3.1 and Remark

3.2 that the form aφ,ψH with domain V 0
φ,ψ is densely defined, closed, continuous

and quasi-accretive sesquilinear form on L2
φ,ψ(Ω). Thus, −A generates a
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quasi-contractive analytic semigroup (e−tA)t≥0 on L2
φ,ψ(Ω) (cf. [16, Theorem

1.52]).
For the positivity, we note first that the semigroup (e−tA)t≥0 is real and

one can see that for every u ∈ D(aφ,ψH ) ∩ L2
φ,ψ(Ω,R), u+ ∈ D(aφ,ψH ) and

aφ,ψH (u+, u−) = 0, since u− = (−u)+ and∇u+ = χ{u>0}∇u (cf. [16, Proposi-

tion 4.4]). Thus, by the first Beurling-Deny criteria, (e−tA)t≥0 is a positivity
preserving semigroup on L2

φ,ψ(Ω) (cf. [16, Theorem 2.6]).
�
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Don Melillo, 84084 FISCIANO (Sa), Italy.

Email address: acanale@unisa.it

Dipartimento di Matematica Università degli Studi di Bari A. Moro, Via E.
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