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1 Introduction

For the numerical solution of Volterra integral equations (VIEs) of the second
kind

y(t) = g(t) +

∫ t

t0

k
(
t, s, y(s)

)
ds, t ∈ [t0, T ], (1.1)

where

g : [t0, T ]→ Rm, k : ∆× Rm → Rm, ∆ :=
{

(t, s) : t0 ≤ s ≤ t ≤ T
}
,

are sufficiently smooth, we consider a very general class of so-called Volterra
Runge-Kutta (VRK) methods defined by

Y
[n]
i = h

µ∑
j=1

αijk

(
tn + dijh, tn + eijh,

ν∑
l=1

βijlY
[n]
l

)
+ F̃n(tn + cih),

yn+1 =

ν∑
j=1

wjY
[n]
j ,

(1.2)

i = 1, 2, . . . , ν; n = 0, 1, . . . , N − 1. Here, µ is a fixed integer, tn = t0 + nh,
n = 0, 1, . . . , N , Nh = T−t0, is the uniform grid, and F̃n(tn+cih) is an approx-

imation to the tail Fn(tn + cih) defined by Fn(t) = g(t) +
∫ tn
t0
k
(
t, s, y(s)

)
ds.

With this notation the equation (1.1) can be rewritten as

y(t) = Fn(t) +

∫ t

tn

k
(
t, s, y(s)

)
ds, t ∈ [tn, tn+1], n = 0, 1, . . . , N − 1. (1.3)

The tail approximation F̃n(tn + cih) to Fn(tn + cih) should be chosen in such
a way that it preserves the order of convergence of the VRK method and that
it is as efficient as possible in terms of the number of evaluations of the kernel
function k appearing in (1.1), (1.2), and (1.3). Similarly as in [18] we can define
the tail approximation of the form

F̃n(t) = g(t) + h

n∑
κ=1

ν∑
j=1

γjk(t, tκ−1 + cjh, Y
[κ−1]
j ), (1.4)

with weight vector γ = [γ1, . . . , γν ]T . The resulting method (1.2) with the

tail approximations F̃ (tn + cih) defined by (1.4) was referred to in [8], as an
extended VRK method. A different approach to tail approximations based on
natural continuous extensions of the numerical solution of degree d ≤ p was
proposed by Bellen et al. in [4]. These natural continuous extensions u(tn+θh)
are defined by

u(tn + θh) =

ν∑
j=1

wj(θ)Y
[n]
j , (1.5)

n = 0, 1, . . . , N − 1; θ ∈ [0, 1], where wj(θ) are polynomials of degree d,

bp/2c ≤ d ≤ min{ν − 1, p}.
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Here, bp/2c stands for the integer part of p/2. These polynomials satisfy the
linear system of equations

ν∑
j=1

wj(θ)c
k
j = θk, k = 0, 1, . . . , d. (1.6)

See [4] for comparison. We then consider the following tail approximation

F̃n(t) = g(t) + h

n∑
κ=1

m∑
j=1

vjk
(
t, tκ−1 + ξjh, u(tκ−1 + ξjh)

)
, (1.7)

where the weight vj and abscissas ξj correspond to a quadrature rule of order
greater or equal to p. The resulting formulas with tail approximation defined
by (1.7) will be referred to as natural VRK methods.

Natural continuous extensions of Runge-Kutta (RK) methods for ODEs
were introduced by Zennaro in [26].

The coefficients αij , βijl, and wi, and the abscissas ci, dij , and eij will be
chosen so that the VRK method has order p and stage order q = p, and some
desirable stability properties with respect to the basic and the convolution test
equations.

Since, in general, k(t, s, y) is defined only for s ≤ t, we will always assume
the so-called kernel condition eij ≤ dij .

The VRK methods (1.2) were first introduced in [4] and further investigated
in [5]. They include as special cases Pouzet-type methods [23]

Y
[n]
i = h

m∑
j=1

aijk(tn + cih, tn + cjh, Y
[n]
j ) + F̃n(tn + cih),

yn+1 = h

m∑
j=1

bjk(tn + h, tn + cjh, Y
[n]
j ) + F̃n(tn + h),

(1.8)

i = 1, 2, . . . ,m; n = 0, 1, . . . , N − 1, and Bel’tyukov-type methods [6]

Y
[n]
i = h

m∑
j=1

aijk(tn + ejh, tn + cjh, Y
[n]
j ) + F̃n(tn + cih),

yn+1 = h

m∑
j=1

bjk(tn + ejh, tn + cjh, Y
[n]
j ) + F̃n(tn + h),

(1.9)

i = 1, 2, . . . ,m; n = 0, 1, . . . , N − 1. Pouzet-type methods (1.8) correspond to
µ = m, ν = m+ 1, c = [c1, c2, . . . , cm, 1]T , and

αij = aij , i, j = 1, 2, . . . ,m, αm+1,j = bj , j = 1, 2, . . . ,m,

dij = ci, i, j = 1, 2, . . . ,m, dm+1,j = 1, j = 1, 2, . . . ,m,

eij = cj , i = 1, 2, . . . ,m+ 1, j = 1, 2, . . . ,m,

βijl = δjl, i, l = 1, 2, . . . ,m+ 1, j = 1, 2, . . . ,m,
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wj = δm+1,j , j = 1, 2, . . . ,m+ 1.

Similarly, Bel’tyukov-type methods (1.9) correspond to µ = m, ν = m + 1,
c = [c1, c2, . . . , cm, 1]T , and

αij = aij , i, j = 1, 2, . . . ,m, αm+1,j = bj , j = 1, 2, . . . ,m,

dij = ej , i, j = 1, 2, . . . ,m+ 1, j = 1, 2, . . . ,m,

eij = cj , i = 1, 2, . . . ,m+ 1, j = 1, 2, . . . ,m,

βijl = δjl, i, l = 1, 2, . . . ,m+ 1, j = 1, 2, . . . ,m,

wj = δm+1,j , j = 1, 2, . . . ,m+ 1.

Choosing cν = 1, wj = 0, j = 1, 2, . . . , ν − 1, wν = 1, we obtain a class
of methods for which the external approximation yn+1 is equal to the last

internal stage, i.e., yn+1 = Y
[n]
ν .

The numerical solution of Volterra integral and integro-differential equa-
tions, including Volterra equations with weakly singular kernels, is discussed in
a monograph [8]. Two-step Runge-Kutta methods for Volterra integral equa-
tions have been introduced and analyzed in [10–12].

In the next section we derive conditions on the coefficients of (1.2) so that
the resulting VRK methods have order p and stage order q = p. In Sections 3
and 4 we investigate stability properties of VRK methods (1.2) with respect
to the basic and the convolution test equations. We are mainly interested in
the derivation of A-stable and V0-stable methods. These stability concepts are
defined in Sections 3 and 4, respectively. In Section 5 we derive examples of
A-stable and V0-stable natural VRK methods with p = q = µ = ν for ν = 1, 2,
3, and 4. Numerical experiments which confirm the expected order and stage
order are reported in Section 6. Finally, in Section 7 some concluding remarks
are given and plans for future work are briefly outlined.

2 Stage order and order conditions

To discuss order conditions for VRK methods (1.2), with no loss of generality
(cfr. [4], [7]), we will consider a simpler form of VIE (1.1), where the kernel
function k(t, s, y(s)) is independent of s. This can be accomplished if we define,
for example,

ỹ(t) =

[
t

y(t)

]
, g̃(t) =

[
t0

g(t)

]
, k̃

(
t, ỹ(s)

)
=

[
1

k
(
t, s, y(s)

)] .
Then the equation (1.1) can be reduced to the form

y(t) = g(t) +

∫ t

t0

k
(
t, y(s)

)
ds, t ∈ [t0, T ], (2.1)
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where for convenience we have written y, g and k instead of ỹ, g̃ and k̃. The
VRK method for (2.1) now takes the form

Y
[n]
i = h

µ∑
j=1

αijk

(
tn + dijh,

ν∑
l=1

βijlY
[n]
l

)
+ F̃n(tn + cih),

yn+1 =

ν∑
j=1

wjY
[n]
j ,

(2.2)

i = 1, 2, . . . , ν, n = 0, 1, . . . , N − 1, where F̃n(tn + cih) is an approximation to
the tail Fn(tn + cih) of sufficiently high order defined by

Fn(t) = g(t) +

∫ tn

t0

k
(
t, y(s)

)
ds, t ∈ [tn, tn+1], n = 0, 1, . . . , N − 1.

The tail approximation (1.4) now takes the form

F̃n(t) = g(t) + h

n∑
κ=1

ν∑
j=1

γjk(t, Y
[κ−1]
j ), (2.3)

and the tail approximation (1.7) based on natural continuous extensions (1.5)
takes the form

F̃n(t) = g(t) + h

n∑
κ=1

m∑
j=1

vjk
(
t, u(tκ−1 + ξjh)

)
. (2.4)

It follows from definition of k̃(t, ỹ(s)) that with abscissas eij defined by

eij =

ν∑
l=1

βijlcl, i = 1, 2, . . . , ν, j = 1, 2, . . . , µ. (2.5)

the order conditions for (2.2) applied to (2.1) are the same as the order con-
ditions for (1.2) applied to (1.1). As in [4] we also assume that

ν∑
l=1

βijl = 1, i = 1, 2, . . . , ν, j = 1, 2, . . . , µ. (2.6)

Order conditions for VRK methods (2.2) were derived in [4] using a gen-
eralization of the RK theory for VIEs of the second kind developed in [7].
This theory is based on formally transforming the VIE (2.1) into an infinite
system of partitioned ordinary differential equations (ODEs), and then using
the theory of P -series developed by Hairer [14], which for RK methods for
VIEs (2.1) reduces to the so-called V -series [7]. Alternatively, order conditions
for VRK methods can be also obtained using a generalization of the approach
proposed by Albrecht [1,2] for RK methods for ODEs, and extended in [21]
to the general class of two-step RK methods. This was illustrated recently by
Garrappa [13], who derived order conditions for some classes of RK methods
for Volterra integral equations with weakly singular kernels.
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In this section we derive the conditions which guarantee that VRK methods
(2.2) have order p and stage order q = p. This means that

hdi = O(hp+1), i = 1, 2, . . . , ν, h→ 0, (2.7)

and
hd̂ = O(hp+1), h→ 0, (2.8)

where hdi, i = 1, 2, . . . , ν, are local discretization errors of the stage values

Y
[n]
i , and hd̂ is the local discretization error of yn+1. These errors are defined as

residues obtained by replacing Y
[n]
i by y(tn+cih), F̃n(tn+cih) by Fn(tn+cih),

and yn+1 by y(tn+1) in (2.2), where y(t) is the solution to (2.1), i.e.,

hdi := y(tn+cih)−h
µ∑
j=1

αijk

(
tn+dij ,

ν∑
l=1

βijly(tn+clh)

)
−Fn(tn+cih), (2.9)

i = 1, 2, . . . , ν, and

hd̂ := y(tn+1)−
ν∑
j=1

wjy(tn + cjh). (2.10)

It follows from (2.7) and (2.8) that the stage order and order conditions

can be obtained by expanding hdi, i = 1, 2, . . . , ν, and hd̂ into Taylor series
around the point tn and equating to zero the coefficients of the resulting ele-
mentary differentials up to stage order q = p and order p. These elementary
differentials depend on the y, k, derivatives of y, partial derivatives of k, and
their combinations. In what follows we will illustrate this process to derive
stage order and order conditions up to the order p = 4 and stage order q = 4.

The expressions hdi and hd̂ have the following Taylor expansions up to the
order four

hdi = y(tn)− Fn(tn) + (y′(tn)− F ′n(tn))cih+ (y′′(tn)− F ′′n (tn))
c2ih

2

2

+ (y′′′(tn)− F ′′′n (tn))
c3ih

3

6
+ (y(4)(tn)− F (4)

n (tn))
c4ih

4

24

− h

µ∑
j=1

αijk

(
tn + dijh, y(tn) +

ν∑
l=1

βijlcly
′(tn)h

+

ν∑
l=1

βijl
c2l
2
y′′(tn)h2 +

ν∑
l=1

βijl
c3l
6
y′′′(tn)h3

)
+O(h5),

i = 1, 2, . . . , ν, where we have used (2.6), and

hd̂ =

(
1−

ν∑
j=1

wj

)
y(tn) +

(
1−

ν∑
j=1

wjcj

)
y′(tn)h+

(
1−

ν∑
j=1

wjc
2
j

)
y′′(tn)

h2

2

+

(
1−

ν∑
j=1

wjc
3
j

)
y′′′(tn)

h3

6
+

(
1−

ν∑
j=1

wjc
4
j

)
y(4)(tn)

h4

24
+O(h5).
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p = q differential conditions for order p and stage order q

p = 0 y
∑ν
j=1 wj = 1

p = 1 y′
∑ν
j=1 wjcj = 1

q = 1 k
∑µ
j=1 αij = ci

p = 2 y′′
∑µ
j=1 wjc

2
j = 1

q = 2 ∂k
∂t

∑µ
j=1 αijdij = c2i

q = 2 ∂k
∂y
y′

∑µ
j=1 αij

∑ν
l=1 βijlcl =

c2i
2

Table 1 Order and stage order conditions for p = 0, p = q = 1, and p = q = 2

We evaluate next y(t)−Fn(t), y′(t)−F ′n(t), y′′(t)−F ′′n (t), y′′′(t)−F ′′′n (t), and

y(4)(t)−F (4)
n (t) for t = tn. After some computations it follows from (1.3) that

y − Fn = 0, y′ − F ′n = k, y′′ − F ′′n = 2∂k∂t + ∂k
∂y y
′,

y′′′ − F ′′′n = 3∂
2k
∂t2 + 3 ∂2k

∂t∂yy
′ + ∂2k

∂y2 y
′ 2 + ∂k

∂y y
′′,

y(4) − F (4)
n = 4∂

3k
∂t3 + 6 ∂3k

∂t2∂yy
′ + 4 ∂3k

∂t∂y2 y
′ 2 + 4 ∂2k

∂t∂yy
′′

+ ∂3k
∂y3 y

′ 3 + 3∂
2k
∂y2 y

′y′′ + ∂k
∂y y
′′′.

where we have skipped the arguments in y, Fn, and their derivatives and
in k and its partial derivatives. Substituting the above expressions into hdi,
i = 1, 2, . . . , ν, and expanding the function k appearing in hdi into Taylor
series around the point (tn, y(tn)), and then equating to zero the coefficients
of the resulting elementary differentials we obtain stage order conditions up to
the stage order q = 4. Similarly, equating to zero the powers of h in hd̂ up to
the order four we obtain the order conditions of the form

∑ν
j=1 wjc

k
j = 1, k =

0, 1, 2, 3, 4. We will refer to these conditions as quadrature order conditions.
These order and stage order conditions are listed in Table 1 for p = 0, p = q = 1
and p = q = 2, in Table 2 for p = q = 3, and in Table 3 for p = q = 4.
Observe that multiplying the stage order conditions by wi and then summing
the resulting expressions from i = 1 to i = ν and taking into account the
quadrature order conditions we obtain stage order conditions derived in [4].
Observe also that for p = q = 3 the last two of the stage order conditions
listed in Table 1 in [4] are not necessary.

The class of methods we are interested in this paper are natural VRK
methods with p = q = µ = ν, i.e., methods with the tail approximation
defined by (2.4).

We conclude this section by listing in Table 4 the number of conditions
(which include order and stage order conditions and relations (2.6)) and the
number of free parameters cj , wj , αij , dij , and βijl for natural VRK methods
with p = q = µ = ν, for ν = 1, 2, 3, and 4. Constructing such methods we will
usually assume that the last component cν of the abscissa vector c is equal to
one.
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p = q differential conditions for order p and stage order q

p = 3 y′′′
∑ν
j=1 wjc

3
j = 1

q = 3 ∂2k
∂t2

∑µ
j=1 αijd

2
ij = c3i

q = 3 ∂2k
∂t∂y

y′
∑µ
j=1 αijdij

∑ν
l=1 βijlcl =

c3i
2

q = 3 ∂2k
∂y2

y′ 2
∑µ
j=1 αij

(∑ν
l=1 βijlcl

)2
=

c3i
3

q = 3 ∂k
∂y
y′′

∑µ
j=1 αij

∑ν
l=1 βijlc

2
l =

c3i
3

Table 2 Order and stage order conditions for p = q = 3

p = q differential conditions for order p and stage order q

p = 4 y(4)
∑ν
j=1 wjc

4
j = 1

q = 4 ∂3k
∂t3

∑µ
j=1 αijd

3
ij = c4i

q = 4 ∂3k
∂t∂y2

y′ 2
∑µ
j=1 αijdij

(∑ν
l=1 βijlcl

)2
=

c4i
3

q = 4 ∂3k
∂t2∂y

y′
∑µ
j=1 αijd

2
ij

∑ν
l=1 βijlcl =

c4i
2

q = 4 ∂2k
∂t∂y

y′′
∑µ
j=1 αijdij

∑ν
l=1 βijlc

2
l =

c4i
3

q = 4 ∂2k
∂y2

y′y′′
∑µ
j=1 αij

∑ν
l=1 βijlcl

∑ν
l=1 βijlc

2
l =

c4i
4

q = 4 ∂3k
∂y3

y′ 3
∑µ
j=1 αij

(∑ν
l=1 βijlcl

)3
=

c4i
4

q = 4 ∂k
∂y
y′′′

∑µ
j=1 αij

∑ν
l=1 βijlc

3
l =

c4i
4

Table 3 Order and stage order conditions for p = q = 4

p = q = µ = ν # of conditions: q = p # of parameters

1 4 5

2 13 20

3 34 51

4 77 104

Table 4 Number of conditions and number of free parameters for natural VRK methods
with p = q = µ = ν, for ν = 1, 2, 3, and 4

3 Stability analysis with respect to the basic test equation

In this section we investigate stability properties of VRK methods (2.2) with
the tail approximation defined by (2.4) with respect to the basic test equation

y(t) = 1 + λ

∫ t

0

y(s)ds, t ≥ 0, (3.1)
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where λ ∈ C. We will follow the approach of [4]. Applying VRK method (2.2)
to (3.1) we obtain

Y
[n]
i = hλ

ν∑
l=1

µ∑
j=1

αijβijlY
[n]
l + F̃n(tn + cih),

yn+1 =

ν∑
j=1

wjY
[n]
j ,

(3.2)

n = 0, 1, . . ., where the tail approximation (2.4) takes now the form

F̃n(t) = 1 + hλ

n∑
κ=1

m∑
l=1

vlu(tκ−1 + ξlh). (3.3)

It follows from (1.5) that u(tk−1 + ξlh) =
∑ν
j=1 wj(ξl)Y

[k−1]
j and the relation

(3.3) can be written as

F̃n(t) = 1 + hλ

n∑
κ=1

ν∑
j=1

bjY
[κ−1]
j (3.4)

if we define bj =
∑m
l=1 vlwj(ξl). Putting z = hλ, e = [1, . . . , 1]

T ∈ Rν ,

b = [b1, . . . , bν ]
T
, A = [ail]

ν
i,l=1 , ail =

µ∑
j=1

αijβijl, Y [κ] =
[
Y

[κ]
1 , . . . , Y [κ]

ν

]T
,

and assuming that I − zA is invertible the relation (3.2) with F̃n(t) given by
(3.4) can be written in the vector form

Y [n] =

(
1 + z

n∑
κ=1

bTY [κ−1]
)

(I − zA)−1e. (3.5)

Here, I is the identity matrix of dimension ν. Observe that for VRK methods
of stage order q ≥ 1 we have

ν∑
l=1

ail =

ν∑
l=1

µ∑
j=1

αijβijl =

µ∑
j=1

αij

ν∑
l=1

βijl =

µ∑
j=1

αij = ci,

i = 1, 2, . . . , ν, where we have used (2.6) and stage order condition correspond-
ing to q = 1. Let R(z) be the rational function defined by

R(z) := 1 + zbT (I − zA)−1e. (3.6)

Then it can be demonstrated that

Y [n] =
(
R(z)

)n
(I − zA)−1e, (3.7)
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n = 0, 1, . . ., compare [5]. It follows from the second formula in (3.2) and (3.7)
that yn+1 =

(
R(z)

)n
wT (I − zA)−1e, where w = [w1, . . . , wν ]T . Hence,

yn+1 = R(z)yn, (3.8)

n = 0, 1, . . . . As observed before in [5], and in [17] in the context of extended
Pouzet-type methods, it follows from relation (3.8) that stability properties of
VRK methods (2.2) with the tail approximation defined by (2.4) with respect
to the test equation (3.1) are the same as stability properties of the underlying
RK method for ODEs with respect to y′ = λy, t ≥ 0. This underlying RK
method for ODEs is given by the Butcher table

c A

bT
=

c1 a1,1 · · · a1,ν
...

...
. . .

...

cν aν,1 · · · aν,ν
b1 · · · bν

. (3.9)

In particular, the region of absolute stability of a VRK method is given by

A =
{
z ∈ C : |R(z)| < 1

}
,

where the stability function R(z) is defined by (3.6), and the VRK method
is A-stable, i.e., its region of absolute stability includes the left half of the
complex plane {z ∈ C : Re(z) < 0}, if the underlying RK method for ODEs is
A-stable.

The stability function R(z) can be written as R(z) = P (z)/Q(z), z ∈ C,
where P (z) and Q(z) are polynomials of degree less than or equal to ν. Then
it follows that the RK method (3.9) is A-stable if

|R(iy)| ≤ 1, y ∈ R, (3.10)

and R(z) is analytic for Re(z) < 0, i.e., the polynomial Q(z) does not have ze-
ros in the negative half plane (compare [15]). The condition (3.10) is equivalent
to the fact that the so-called Nørsett polynomial defined by

E(y) := |Q(iy)|2 − |P (iy)|2 = Q(iy)Q(−iy)− P (iy)P (−iy)

satisfies the condition

E(y) ≥ 0, y ∈ R. (3.11)

The above observations were used in [5] to characterize VRK methods of collo-
cation type. In Section 5 we will use these results to investigate if the natural
VRK methods of order p and stage order q = p, for p = 1, 2, 3, and 4, are
A-stable.
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4 Stability analysis with respect to the convolution test equation

In this section we investigate stability properties of VRK methods (2.2) with
tail approximation defined by (2.4) with respect to the convolution test equa-
tion

y(t) = 1 +

∫ t

0

(
λ+ ξ(t− s)

)
y(s)ds, t ≥ 0, (4.1)

where λ, ξ ∈ R. The solution y(t) to this equation tends to zero as t tends to
infinity if and only if λ < 0 and ξ ≤ 0 (compare [9]), and we will investigate
whether this property is inherited by the numerical solution {yn}∞n=0 obtained
by application of the VRK method (2.2) with tail approximation given by
(2.4) to the test equation (4.1). It can be verified that this numerical solution
depends on the parameters hλ and h2ξ, where h is the stepsize used. The
VRK method is said to be stable for given (hλ, h2ξ) if yn = yn(hλ, h2ξ) → 0
as n → ∞. The region of stability S of a VRK method with respect to (4.1)
is the set of all (hλ, h2ξ) for which the method is stable, i.e.,

S :=
{

(hλ, h2ξ) ∈ R2 : yn(hλ, h2ξ)→ 0 as n→∞
}
. (4.2)

The VRK method is said to be V0-stable if its region of stability includes the
set hλ < 0 and h2ξ < 0, i.e., {(hλ, h2ξ) ∈ R2 : hλ < 0, h2ξ < 0} ⊂ S.

The V0-stability proved to be a very demanding property of numerical
methods and only a few examples of such formulas were discovered so far in
the literature on the subject. Wolkenfelt [25] has proved that no such formulas
exist in the class of reducible quadrature methods for (1.1). Further negative
results about nonexistence of V0-stable methods of some types were obtained
in [3,16,17]. A first example of a V0-stable method was given in the report [9].
This is a first order RK method of Bel’tyukov type with tail approximation
given by the composite right rectangular quadrature formula. A first example
of a VRK method of second order was reported in [5]. V0-stable RK methods
of Bel’tyukov type of order p = 3 and p = 4 were discovered only very recently
by Izzo et al. [19]. In this paper we will present new examples of V0-stable
natural VRK methods of order p and stage order q = p up to the order four.

We will follow again the approach of [5]. Applying VRK method (2.2) to
(4.1) we obtain

Y
[n]
i = hλ

ν∑
l=1

µ∑
j=1

αijβijlY
[n]
l + h2ξ

ν∑
l=1

µ∑
j=1

αijdijβijlY
[n]
l

− h2ξ

ν∑
l=1

µ∑
j=1

αijeijβijlY
[n]
l + F̃n(tn + cih),

yn+1 =

ν∑
j=1

wjY
[n]
j ,

(4.3)
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i = 1, 2, . . . , ν, where the tail approximation (2.4) now takes the form

F̃n(tn + cih) = 1 + hλ

n∑
κ=1

m∑
l=1

vlu(tκ−1 + ξlh)

+ h2ξ

n∑
κ=1

m∑
l=1

vl(n− κ+ 1)u(tκ−1 + ξlh) + h2ξ

n∑
κ=1

m∑
l=1

vl(ci − ξl)u(tκ−1 + ξlh).

(4.4)
Putting

bj =

m∑
l=1

vlwj(ξl), rj =

m∑
l=1

vlξlwj(ξl), (4.5)

it follows from (1.5) that (4.4) can be rewritten in the form

F̃n(tn + cih) = 1 + hλ

n∑
κ=1

ν∑
j=1

bjY
[κ−1]
j

+ h2ξ

n∑
κ=1

ν∑
j=1

bj(n− κ+ 1)Y
[κ−1]
j + h2ξ

n∑
κ=1

ν∑
j=1

(bjci − rj)Y [κ−1]
j .

(4.6)

Putting x = hλ, y = h2ξ, r = [r1, . . . , rν ]
T

, e = [1, . . . , 1]
T ∈ Rν ,

A = [ail]
ν
i,l=1 , ail =

µ∑
j=1

αijβijl, B = [bil]
ν
i,l=1 , bil =

µ∑
j=1

αijdijβijl,

C = [cil]
ν
i,l=1 , cil =

µ∑
j=1

αijeijβijl, b = [b1, . . . , bν ]
T
, c = [c1, . . . , cν ]

T
,

Y [κ] =
[
Y

[κ]
1 , . . . , Y [κ]

ν

]T
, F [κ] =

[
F̃κ(tκ + c1h), . . . , F̃κ(tκ + cνh)

]T
,

the relation (4.3) can be written in the vector form

Y [n] =
(
xA+ y(B − C)

)
Y [n] + F [n], (4.7)

and the tail approximation (4.6) takes the form

F [n] = e+

n∑
κ=1

(
xebT + y(n− κ+ 1)ebT + y(cbT − erT )

)
Y [κ−1], (4.8)

where r = b.c := [b1c1, . . . , bνcν ]
T

. As in [5] we can reduce (4.7) and (4.8) to a
vector difference equation of order two. Putting

Q = Q(x, y) = I − xA− y(B − C) (4.9)

the relation (4.7) takes the form QY [n] = F [n]. It can be verified that (4.8)
yields

F [n+2] − 2F [n+1] + F [n] =
(
(x+ y)ebT + y(cbT − erT )

)
Y [n+1]

−
(
xebT + y(cbT − erT )

)
Y [n],
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and substituting this into the relation

Q
(
Y [n+2] − 2Y [n+1] + Y [n]

)
= F [n+2] − 2F [n+1] + F [n]

we obtain

QY [n+2] =
(
2Q+ (x+ y)ebT + y(cbT − erT )

)
Y [n+1]

−
(
Q+ xebT + y(cbT − erT )

)
Y [n],

(4.10)

n = 0, 1, . . . . This is the desired vector recurrence relation of order two. In
what follows we assume that the matrix Q defined by (4.9) is nonsingular and
we define the vectors ẽ = Q−1e, c̃ = Q−1c. We will look for solutions to (4.10)
in the form

Y [n] = αnẽ+ βnc̃, (4.11)

where αn and βn are some scalars which have to be determined. Substituting
(4.11) into (4.10) and comparing the coefficients of e and c in the resulting
expressions, and taking into account that the vectors e and c are linearly
independent we obtain

αn+2 =
(
2 + (x+ y)bT ẽ− yrT ẽ

)
αn+1 +

(
(x+ y)bT c̃− yrT c̃

)
βn+1

− (1 + xbT ẽ− yrT ẽ)αn − (xbT c̃− yrT c̃)βn,

βn+2 = ybT ẽαn+1 + (2 + ybT c̃)βn+1 − ybT ẽαn − (1 + ybT c̃)βn,

n = 0, 1, . . . . Next, we will reduce the above recurrence relations for αn and
βn to a vector difference equation of the first order. Let

M = M(x, y) =

[
2 + (x+ y)bT ẽ− yrT ẽ (x+ y)bT c̃− yrT c̃

ybT ẽ 2 + ybT c̃

]
,

N = N(x, y) =

[
−1− xbT ẽ+ yrT ẽ −xbT c̃+ yrT c̃

−ybT ẽ −1− ybT c̃

]
,

Then the system for αn+2 and βn+2 can be written in a compact form

vn+1 = S vn, (4.12)

n = 0, 1, . . ., where

S = S(x, y) =

[
M N

I 0

]
∈ R4×4, vn =

[
αn+1 βn+1 αn βn

]T
∈ R4.

It follows from (4.7) and (4.8) that Y [0] = Q−1F [0] = ẽ,

Y [1] = Q−1F [1] =
(
1 + (x+ y)bT ẽ− yrT ẽ

)
ẽ+ ybT ẽ c̃,
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which implies that α0 = 1, β0 = 0, α1 = 1 + (x + y)bT ẽ − yrT ẽ, β1 = ybT ẽ.
Hence, the initial vector v0 of the recurrence equation (4.12) takes the form

v0 =
[
α1 β1 α0 β0

]T
=
[

1 + (x+ y)bT ẽ− yrT ẽ ybT ẽ 1 0
]T
.

The stability properties of VRK method (2.2) with the tail approximation
(2.4) with respect to the convolution test equation (4.1) are determined by
the characteristic polynomial φ(θ) of the amplification matrix S = S(x, y)
appearing in (4.12). This polynomial takes the form

φ(θ) = det(θI − S) = det(θ2I − θM −N).

It can be verified that φ(θ) = (θ − 1)2ψ(θ) with

ψ(θ) = θ2 −
(
2 + (x+ y)bT ẽ+ y(bT c̃− rT ẽ)

)
θ

+ 1 + xbT ẽ+ y(bT c̃− rT ẽ) + y2(bT ẽ rT c̃− bT c̃ rT ẽ),
(4.13)

where θ = 1 is an eigenvalue of S of algebraic multiplicity two and geometric
multiplicity one. It was demonstrated in [5] that this double eigenvalue θ = 1
does not affect the stability properties of VRK methods (2.2) with respect to
(4.1). As a result, the stability region of VRK method (2.2) with respect to
the test equation (4.1) can be characterized as

S =
{

(x, y) ∈ R2 : |θ1(x, y)| < 1 and |θ2(x, y)| < 1
}
,

where θ1 = θ1(x, y) and θ2 = θ2(x, y) are the roots of the polynomial ψ(θ)
defined by (4.13). Putting y = 0 in (4.13) this polynomial ψ(θ) reduces to

ψ(θ) = θ2 − (2 + xbT ẽ)θ + 1 + xbT ẽ,

with the roots θ = 1 and θ = 1 + xbT ẽ = 1 + xbT (I − xA)−1e. The latter root
corresponds to the stability function R(z) defined by (3.6) with z = x, which
was encountered in the stability analysis of VRK methods (2.2) with respect
to the basic test equation (3.1).

We will use the Schur criterion [24,22,20] to find conditions under which
the roots θ1 = θ1(x, y) and θ2 = θ2(x, y) of ψ(θ) are inside of the unit circle.
This criterion implies that this is the case if and only if∣∣1 + xbT ẽ+ y(bT c̃− rT ẽ) + y2(bT ẽ rT c̃− bT c̃ rT ẽ)

∣∣ < 1, (4.14)∣∣2 + (x+ y)bT ẽ+ y(bT c̃− rT ẽ)
∣∣

<
∣∣2 + xbT ẽ+ y(bT c̃− rT ẽ) + y2(bT ẽ rT c̃− bT c̃ rT ẽ)

∣∣. (4.15)

To search for V0-stable methods it is more convenient to reformulate (4.14)
and (4.15) in the form

ϕ(x, y) > 0, x, y ≤ 0, (4.16)

ψ(x, y) > 0, x, y ≤ 0, (4.17)
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where the rational functions ϕ(x, y) and ψ(x, y) are defined by

ϕ(x, y) := 1−
(
1 + xbT ẽ+ y(bT c̃− rT ẽ) + y2(bT ẽ rT c̃− bT c̃ rT ẽ)

)2
,

ψ(x, y) :=
(
2 + xbT ẽ+ y(bT c̃− rT ẽ) + y2(bT ẽ rT c̃− bT c̃ rT ẽ)

)2
−
(
2 + (x+ y)bT ẽ+ y(bT c̃− rT ẽ)

)2
.

For VRK methods with µ = ν these functions take the form

ϕ(x, y) =

∑
0≤i+j≤2ν

(−1)i+jξ
(1)
ij x

iyj

( ∑
0≤i+j≤ν

η
(1)
ij x

iyj
)2 , ψ(x, y) =

∑
0≤i+j≤2ν

(−1)i+jξ
(2)
ij x

iyj

( ∑
0≤i+j≤ν

η
(2)
ij x

iyj
)2 ,

ξ
(1)
00 = ξ

(2)
00 = 0, η

(1)
00 = η

(2)
00 = 1, where the coefficients ξ

(1)
ij , η

(1)
ij , ξ

(2)
ij , and η

(2)
ij

depend on the remaining free parameters of the methods. Then the sufficient
conditions for V0-stability take the form

ξ
(k)
ij > 0, i, j = 0, 1, . . . , ν, 1 ≤ i+ j ≤ 2ν, k = 1, 2. (4.18)

To enforce the conditions (4.16) and (4.17) we can also consider the polyno-
mials

γ(x, t) =

2ν∑
k=0

( k∑
l=0

η
(1)
l tl

)
(−x)k, δ(x, t) =

2ν∑
k=0

( k∑
l=0

η
(2)
l tl

)
(−x)k,

obtained by substituting y = t x in the numerators of ϕ(x, y) and ψ(x, y).
Then the sufficient conditions for V0-stability of VRK methods, which are less
restrictive than the conditions (4.18), take the form

η
(1)
k > 0, η

(2)
k > 0, k = 0, 1, . . . , 2ν, (4.19)

and

t
(1)
i ≤ 0, t

(2)
i ≤ 0, (4.20)

where t
(1)
i and t

(2)
i are real roots of the polynomials

∑k
l=0 η

(1)
l tl and

∑k
l=0 η

(2)
l tl,

k = 1, 2, . . . , 2ν, appearing in γ(x, t) and δ(x, t).
It is easy to see that the conditions (4.18) imply the conditions (4.19) and

(4.20) and that the converse is not true. For example, the V0-stable Bel’tyukov
VRK methods of order p = 3 and p = 4 constructed in [19] satisfy (4.19) and
(4.20), but do not satisfy (4.18).

In the next section we present examples of natural VRK methods up to
order four and stage order four which satisfy the conditions (4.18) or (4.19) and
(4.20) as well as the condition (3.11) in Section 3. This will lead to methods
which are both A- and V0-stable.
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5 Examples of A- and V0-stable natural VRK methods

5.1 Natural VRK methods with p = q = µ = ν = 1

It follows from order and stage order conditions and relations (2.5) and (2.6)
that w1 = 1, c1 = 1, α11 = 1, β111 = 1, and e11 = 1. Moreover, d11 must
satisfy the kernel condition e11 ≤ d11. Put d = d11. It follows from (1.6) that
w1(θ) = 1, θ ∈ (0, 1], and the resulting method is

Y
[n]
1 = hk(tn + dh, Y

[n]
1 ) + F̃n(tn+1),

yn+1 = Y
[n]
1 , u(tn + θh) = Y

[n]
1 , θ ∈ (0, 1],

(5.1)

n = 0, 1, . . . , N−1. Observe that u is discontinuous at the grid points. Choosing
m = 1, v1 = 1, ξ1 = 1, the tail approximation (2.4) takes the form

F̃n(t) = g(t) + h

n∑
κ=1

k
(
t, u(tκ)

)
= g(t) + h

n∑
κ=1

k
(
t, Y

[κ−1]
1

)
. (5.2)

We have b1 = v1w1 = 1, a11 = α11β111 = 1, and the underlying RK method is
the backward Euler method which is A- and L-stable.

We next investigate V0-stability. It can be verified that for the method
(5.1), with the tail approximation defined by (5.2), the stability polynomial
ψ(θ) equivalent to (4.13) takes the form

ψ(θ) =
(
1− x+ (1− d)y

)
θ2 −

(
2− x+ (3− 2d)y

)
θ + 1 + (1− d)y.

It now follows from the Schur criterion that the region of V0-stability is the
set of all points (x, y) ∈ R2 such that

x
(
− 2 + x− 2(1− d)y

)
≥ 0 and y

(
− 2(2− x)− (5− 4d)y

)
≥ 0.

Hence, the method (5.1)-(5.2) is V0-stable if and only if d ≥ 5/4. This is
consistent with the results of [5].

5.2 Natural VRK methods with p = q = µ = ν = 2

Natural VRK methods with µ = ν = 2 take the form

Y
[n]
1 = hα11k

(
tn + d11h, β111Y

[n]
1 + β112Y

[n]
2

)
+ hα12k

(
tn + d12h, β121Y

[n]
1 + β122Y

[n]
2

)
+ F̃n(tn + c1h),

Y
[n]
2 = hα21k

(
tn + d21h, β211Y

[n]
1 + β212Y

[n]
2

)
+ hα22k

(
tn + d22h, β221Y

[n]
1 + β222Y

[n]
2

)
+ F̃n(tn + c2h),

yn+1 = w1Y
[n]
1 + w2Y

[n]
2 ,

(5.3)

where

F̃n(t) = h

n∑
κ=1

(
v1k
(
t, u(tκ−1 + ξ1h)

)
+ v2k

(
t, u(tκ−1 + ξ2h)

))
, (5.4)
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and u is the natural continuous extension defined by

u(tκ−1 + θh) = w1(θ)Y
[κ−1]
1 + w2(θ)Y

[κ−1]
2 , (5.5)

k = 1, 2, . . . , n, θ ∈ [0, 1].
To satisfy the kernel conditions, eij ≤ dij , we assume that dij = eij + pij ,

where pij ≥ 0, i, j = 1, 2. The order conditions are

w1 + w2 = 1, w1c1 + w2c2 = 1, w1c
2
1 + w2c

2
2 = 1, (5.6)

and the stage order conditions expressed in terms of pij and eij take the form

α11 + α12 = c1,

α21 + α22 = c2,

α11p11 + α12p12 =
c21
2
,

α21p21 + α22p22 =
c22
2
,

α11e11 + α12e12 =
c21
2
,

α21e21 + α22e22 =
c22
2
.

(5.7)

Moreover, the conditions on the weights vi and abscissas ξi of the quadrature
rule (5.4) are

v1 + v2 = 1, v1ξ1 + v2ξ2 =
1

2
, v1ξ

2
1 + v2ξ

2
2 =

1

3
, (5.8)

and the conditions on continuous weights wi(θ) of natural continuous extension
(5.5) are

w1(θ) + w2(θ) = 1, w1(θ)c1 + w2(θ)c2 = θ, θ ∈ [0, 1]. (5.9)

Moreover, the coefficients βijl satisfy the conditions

2∑
l=1

βijl = 1,

2∑
l=1

βijlcl = eij , i, j = 1, 2,

which can be used to express βijl in terms of eij by solving the above system
of linear equations with respect to βijl.

To satisfy order conditions (5.6) we choose w1 = 0, w2 = 1, and c2 = 1.
We also fix c1 = 1

6 . Then we solve stage order conditions (5.7) with respect to
α11, α12, α21, α22, e11 and e21, the system (5.8) with respect to v1, v2, and ξ1,
assuming that ξ2 = 1, and the system (5.9) with respect to w1(θ) and w2(θ).
This leads to a six parameter family of methods (5.3) depending on p11, p12,
p21, p22, e12, and e22, with

v1 =
3

4
, v2 =

1

4
, ξ1 =

1

3
, w1(θ) =

6

5
(1− θ), w2(θ) =

1

5
(6θ − 1).

It can be verified that the underlying RK formula of order 2 for ODEs of this
family of VRK methods is

c A

bT
=

1
6

11
60 −

1
60

1 3
5

2
5

3
5

2
5

.
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The Nørsett polynomial of this method is E(y) = y4/36 and it follows that the
above family of VRK methods is A-stable for all choices of the free parameters
pij and eij , i, j = 1, 2.

We will describe next the search for V0-stable methods. The polynomial
equivalent to (4.13), denoted by the same symbol ψ(θ), takes now the form

ψ(θ) = p2(x, y)θ2 − p1(x, y)θ + p0(x, y),

where p2(x, y), p1(x, y), and p0(x, y) also depend on the free parameters of
the method. It can be verified using the Schur criterion or the conditions
(4.14) and (4.15) that ψ(θ) is a Schur polynomial if these parameters satisfy
a complicated system of eight inequalities which are not listed here. Choosing

e12 =
8 + p11

12p11 − 1
, e22 =

3p21 − 1

3(2p21 − 1)
,

so some of these inequalities become equalities, we obtain a four-parameter
family of V0-stable VRK methods depending on p11, p12, p21 and p22. The
coefficients of the resulting methods are

c =
[

1
6 1
]T
, w =

[
0 1
]T
, v =

[
3
4

1
4

]T
, ξ =

[
1
3 1
]T
,

α =

 1−12p12
72(p11−p12)

12p11−1
72(p11−p12)

1−2p22
2(p21−p22)

2p21−1
2(p21−p22)

 , E =

 8+p12
12p12−1

8+p11
12p11−1

1−3p22
3(1−2p22)

1−3p21
3(1−2p21)

 ,

D =

 8−p11+p12+12p11p12
12p12−1

8+p11−p12+12p11p12
12p11−1

1+3p21−3p22−6p21p22
3(1−2p22)

1−3p21+3p22−6p21p22
3(1−2p21)

 ,

β1 =

[
β111 β121

β211 β221

]
=


6(9−11p12)
5(1−12p12)

6(9−11p11)
5(1−12p11)

2(2−3p22)
5(1−2p22)

2(2−3p21)
5(1−2p21)

 ,

β2 =

[
β112 β122

β212 β222

]
=

 49−6p12
5(12p12−1)

49−6p11
5(12p11−1)

4p22−1
5(2p22−1)

4p21−1
5(2p21−1)

 .

5.3 Natural VRK methods with p = q = µ = ν = 3

Similarly as in the previous subsection we assume that dij = eij + pij , where
pij ≥ 0, i, j = 1, 2, 3. The order conditions are

3∑
i=1

wic
k
i = 1, k = 0, 1, 2, 3, (5.10)
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and the stage order conditions corresponding to q = 1, q = 2, and q = 3 are

3∑
j=1

αij = ci, i = 1, 2, 3, (5.11)

3∑
j=1

αijpij =
c2i
2
,

3∑
j=1

αijeij =
c2i
2
, i = 1, 2, 3, (5.12)

3∑
j=1

αijp
2
ij =

c3i
3
,

3∑
j=1

αijeijpij =
c3i
6
,

3∑
j=1

αije
2
ij =

c3i
3
,

3∑
j=1

αijfij =
c3i
3
, (5.13)

i = 1, 2, 3, where eij =
∑3
l=1 βijlcl, fij =

∑3
l=1 βijlc

2
l , i, j = 1, 2, 3. The

conditions on the weights vi and abscissa ξi of the quadrature rule (2.4) corre-

sponding to m = 3 are
∑3
i=1 viξ

k
i = 1/(k + 1), k = 0, 1, 2, and the continuous

weights of the natural continuous extension (1.5) corresponding to ν = 3 are
polynomials of degree d, 1 = bp/2c ≤ d ≤ min{ν−1, p} = 2. We assume d = 2.

The system of equations for wj(θ) is
∑3
j=1 wj(θ)c

k
j = θk, k = 0, 1, 2. To satisfy

the order conditions (5.10) we will always assume that w1 = w2 = 0, w3 = 1,
and c3 = 1. We can also express the coefficients βijk in terms of eij and fij by
solving the system of linear equations

3∑
l=1

βijl = 1,

3∑
l=1

βijlcl = eij ,

3∑
l=1

βijlc
2
l = fij , i, j = 1, 2, 3.

We next compute the coefficients αij from stage order conditions (5.11) and
(5.12) corresponding to q = 1 and q = 2, and eij , f11, f21, and f31 from stage
order conditions (5.13) corresponding to q = 3. This leads to a seventeen
parameter family of natural VRK methods of order p = 3 and stage order
q = 3 depending on c1, c2, f12, f13, f22, f23, f32, f33, and pij , i, j = 1, 2, 3. It
can be verified that the Nørsett polynomial E(y) for this family of methods
depends only on c1 and c2 and takes the form

E(y) =
−1 + 2(c1 + c2)− 6c1c2

36
y4 +

c21c
2
2

36
y6.

Hence, it follows that the methods are A-stable if 1− 2(c1 + c2) + 6c1c2 ≤ 0,
and to guarantee A-stability we compute c2 from 1 − 2(c1 + c2) + 6c1c2 = 0,
i.e., c2 = (2c1 − 1)/(2(3c1 − 1)).

We next investigate V0-stability. Performing an extensive computer search
in this space of free parameters c1, f12, f13, f22, f23, f32, f33, and pij , i, j =
1, 2, 3, where we started with many random guesses, we were able to find
methods of order p = 3 and stage order q = 3 which are A- and V0-stable. An
example of such a method is given in the Appendix.

To our knowledge this is the first example of a VRK method of order p = 3
and stage order q = 3 which is A- and V0-stable. The Bel’tyukov VRK method
of order p = 3 with four stages constructed in [19] is also A- and V0-stable,
but its stage order is only q = 1.
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5.4 Natural VRK methods with p = q = µ = ν = 4

We assume again that dij = eij + pij , where pij ≥ 0, i, j = 1, 2, 3, 4. The order
conditions take the form

4∑
i=1

wic
k
i = 1, k = 0, 1, 2, 3, 4, (5.14)

and the stage order conditions up to the stage order q = 4 expressed in terms
of pij , eij , fij , and gij are

4∑
j=1

αij = ci, i = 1, 2, 3, 4, (5.15)

4∑
j=1

αijpij =
c2i
2
,

4∑
j=1

αijeij =
c2i
2
, i = 1, 2, 3, 4, (5.16)

4∑
j=1

αijp
2
ij =

c3i
3
,

4∑
j=1

αijeijpij =
c3i
6
,

4∑
j=1

αije
2
ij =

c3i
3
,

4∑
j=1

αijfij =
c3i
3
, (5.17)

4∑
j=1

αijp
3
ij =

c4i
4
,

4∑
j=1

αije
2
ijpij =

c4i
12
,

4∑
j=1

αijeijp
2
ij =

c4i
12
,

4∑
j=1

αijpijfij =
c4i
12
,

4∑
j=1

αijeijfij =
c4i
4
,

4∑
j=1

αije
3
ij =

c4i
4
,

4∑
j=1

αijgij =
c4i
4
,

(5.18)

i = 1, 2, 3, 4, where

eij =

4∑
l=1

βijlcl, fij =

4∑
l=1

βijlc
2
l , gij =

4∑
l=1

βijlc
3
l , i, j = 1, 2, 3, 4.

The conditions on the weights vi and abscissa ξi of the quadrature rule (2.4)

corresponding to m = 4 are
∑4
i=1 viξ

k
i = 1/(k + 1), k = 0, 1, 2, 3, and the

continuous weights of the natural continuous extension (1.5) corresponding
to ν = 4 are polynomials of degree d, 2 = bp/2c ≤ d ≤ min{ν − 1, p} = 3.

We assume d = 3. The system of equations for wj(θ) is
∑4
j=1 wj(θ)c

k
j = θk,

k = 0, 1, 2, 3. To satisfy the order conditions (5.14) we will always assume that
the weights wi are given by w1 = w2 = w3 = 0, w4 = 1, and that c4 = 1. We
can also express the coefficients βijk in terms of eij , fij , and gij by solving the
system of linear equations

4∑
l=1

βijl = 1,

4∑
l=1

βijlcl = eij ,

4∑
l=1

βijlc
2
l = fij ,

4∑
l=1

βijlc
3
l = gij ,

i, j = 1, 2, 3, 4. We next compute the coefficients αij from the first equations
of the stage order conditions corresponding to q = 1, q = 2, q = 3, and q = 4,
i.e., from the system of linear equations

4∑
j=1

αijp
k
ij =

ck+1
i

k + 1
, i = 1, 2, 3, 4, k = 0, 1, 2, 3.
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We also compute fij , i = 1, 2, 3, 4, j = 1, 2, from the fourth equations of
the stage order conditions corresponding to q = 3 and q = 4, and gi,1, i =
1, 2, 3, 4, from the last stage condition corresponding to q = 4. Then we try
to compute the parameters eij , i, j = 1, 2, 3, 4, from the remaining stage order
conditions, which is the system of nonlinear equations of dimension 24. We
have used for this purpose the function FindMinimum from Mathematica, with
high precision options, where the objective function was defined as the sum of
squares of equations corresponding to the stage order conditions, and where
we were looking for solutions for which this minimum was equal to zero (or
was very small). This program turned out to be successful for many choices of
free parameters and leads to a thirty-nine parameter family of natural VRK
methods of order p = 4 and stage order q = 4, depending on c1, c2, c3, fij ,
i = 1, 2, 3, 4, j = 3, 4, gij , i = 1, 2, 3, 4, j = 2, 3, 4, and pij , i, j = 1, 2, 3, 4.

The next main challenge is then to identify the VRK methods which are
A- and V0-stable. It can be verified that the Nørsett polynomial E(y) for this
family of methods depends only on c1, c2, and c3 and takes the form

E(y) = a6(c1, c2, c3) y6 + a8(c1, c2, c3) y8,

where a6(c1, c2, c3) is not listed here and a8(c1, c2, c3) = c21c
2
2c

2
3/576. Hence,

the method is A-stable if and only if a6(c1, c2, c3) ≥ 0. To identify natural
VRK methods which are V0-stable we have performed an extensive computer
search based on (4.19) and (4.20) in the space of all free parameters. We have
found methods of order p = 4 and stage order q = 4 which are both A- and
V0-stable. An example of such a method is given in the Appendix.

It can be verified that this method, listed in the Appendix, satisfies also
the stability conditions (4.18). To our knowledge this is the first example of a
VRK method of order p = 4 and stage order q = 4 which is A- and V0-stable.
The Bel’tyukov VRK method of order p = 4 with eight stages constructed in
[19] is also A- and V0-stable, but its stage order is only q = 1.

6 Numerical experiments

We implemented the methods reported in Section 5 and Appendixes 1 and 2
in a fixed stepsize code and performed numerical tests on several linear and
nonlinear problems from literature ([8]). We report here the results obtained
on the following nonlinear tests problems:

y(t) = 1 + sin2(t)−
∫ t

0

3 sin(t− s)y2(s)ds, t ∈ [0, 5], (6.1)

with exact solution y(t) = cos(t), and

y(t) = e−t +

∫ t

0

es−t(y(s) + e−y(s))ds, t ∈ [0, 20], (6.2)

with exact solution y(t) = log(t+ e).
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For each test and for each numerical method we have chosen the step-
size h = (T − t0)/N , with N = 2i, i = 6, 7, . . . , 10 and have computed the
corresponding numerical solution yN and the stages Y [N−1]. Then we have
computed the correct digits as

cdyN = −log10(|y(T )− yN |), cdYN = −log10(||Y − Y [N−1]||)

and the estimated orders as

p̃ = (cdyN − cdyN/2)/log10(2), q̃ = (cdYN − cdYN/2)/log10(2),

where Y = [y(tN−1 + c1h), . . . , y(tN−1 + cνh)]T .

The results reported in Tables 1, 2 and 3 show as the methods converge
and attain the expected order and stage order. Observe that for the method
with p = q = 3 the estimated order and stage order are close to four. This
can be partially explained by the fact the this method satisfies the first four
of stage order conditions corresponding to q = 4. However, this method does
not satisfy the last three stage order conditions corresponding to q = 4.

Problem (6.1) Problem (6.2)

N cdYN q̃ cdyN p̃ cdYN q̃ cdyN p̃

64 0.62 − 0.67 − 1.91 − 1.88 −
128 1.39 2.54 1.41 2.47 2.80 2.95 2.76 2.95

256 2.09 2.33 2.10 2.30 3.70 2.98 3.66 2.98

512 2.75 2.19 2.75 2.17 4.61 3.02 4.57 3.02

1024 3.38 2.10 3.38 2.09 5.53 3.08 5.50 3.08

Table 1 Numerical results for VRK method of Section 5.2 with p11 = 1, p12 = 0, p21 = 1,
p22 = 0, p = q = 2.

Problem (6.1) Problem (6.2)

N cdYN q̃ cdyN p̃ cdYN q̃ cdyN p̃

64 1.11 − 1.10 − 2.05 − 2.05 −
128 2.24 3.74 2.23 3.77 3.16 3.67 3.16 3.69

256 3.41 3.90 3.41 3.91 4.31 3.83 4.32 3.84

512 4.60 3.95 4.60 3.96 5.49 3.91 5.50 3.92

1024 5.80 3.98 5.80 3.98 6.68 3.96 6.69 3.96

Table 2 Numerical results for VRK method of Appendix 1 with p = q = 3.
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Problem (6.1) Problem (6.2)

N cdYN q̃ cdyN p̃ cdYN q̃ cdyN p̃

64 2.05 − 1.99 − 2.89 − 2.87 −
128 3.27 4.07 3.24 4.17 4.09 3.98 4.05 3.93

256 4.49 4.05 4.48 4.10 5.33 4.12 5.30 4.14

512 5.70 4.03 5.69 4.05 6.57 4.10 6.55 4.14

1024 6.91 4.01 6.91 4.02 7.79 4.06 7.78 4.09

Table 3 Numerical results for VRK method of Appendix 2 with p = q = 4.

7 Concluding remarks

We described a systematic search for highly stable natural VRK methods (1.2)
of order p and stage order q = p for Volterra integral equations (1.1). Examples
of methods which are both A- and V0-stable are presented with p = q = µ = ν
for ν = 1, 2, 3, and 4. To our knowledge the methods of order p = 3 and stage
order q = 3 and of order p = 4 and stage order q = 4 are the first examples
of VRK methods which are both A- and V0-stable. The previous examples of
the Bel’tyukov VRK methods of order p = 3 and p = 4 which are A- and
V0-stable, had stage order of q = 1 only.

The future work will address the construction of highly stable VRK meth-
ods with more “balanced” coefficients and with the components of the abscissa
vector c in the unit interval [0, 1], and various implementation aspects related
to these methods.
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Appendix
1. Coeffcients of A- and V0-stable VRK method with p = q = µ = ν = 3:

c = ξ =
[

0.2986793639978812 1.936484620788317 1
]T

, w =
[

0 0 1
]T

,

α =

 32.56961736991217 −41.99309472466154 9.722156718747259

−4.161355012670768 4.879541694296535 1.218297939162551

0.6776823435367453 −0.3281654092330291 0.6504830656962838

 ,

D =

 0.2986793639978812 0.2986793639978812 0.2986793639978812

1.936484620788317 1.936484620788317 1.936484620788317

1 1 1

 ,

E =

−1.346553231360564 −1.430077578837826 −1.661365425814824

1.323898168980016 1.033127308380405 1.923182148594542

0.7375804560553820 −0.4657284124449499 −0.2347197261846119

 ,

β1 =

 4.921882655709681 5.348697045172605 6.655082395586630

−1.414299318231974 −0.4574205056380096 −2.523779005744676

0.7556717097159309 2.976938883652643 1.787408095661566

 ,

β2 =

 1.180227222673612 1.410673496755580 2.142033246435904

−0.7132836071749915 −0.3071819068549123 −0.9042285693173371

0.2856946224028209 0.6642503731178405 0.02010332667742674

 ,

β3 =

 −5.102109878383293 −5.759370541928185 −7.797115642022534

3.127582925406965 1.764602412492922 4.428007575062013

−0.04136633211875173 −2.641189256770483 −0.8075114223389929

 ,
v =

[
0.6978557058854169 −0.01129692071379275 0.3134412148283758

]T
,

w1(θ) = 1.685913054558716 − 2.556517982922362 θ + 0.8706049283636465 θ2,

w2(θ) = 0.1947342344115391 − 0.8467184619289128 θ + 0.6519842275173737 θ2,

w3(θ) = −0.8806472889702551 + 3.403236444851275 θ − 1.522589155881020 θ2.

2. Coeffcients of A- and V0-stable VRK method with p = q = µ = ν = 4:

c = ξ =
[

2.762397779083248 1.913469432180418 0.1536783627086710 1
]T

, w =
[

0 0 0 1
]T

,

α =


47.23599624170400 9.533061854029514 −0.06153867452370376 −53.94512164212656

−45.31266297570112 20.42562237707649 −2.636574632525243 29.43708466333030

19.47734452896614 −99.80597747586084 −1.972074947692187 82.45438625729556

651.9198600162418 −840.3237901698746 −0.06675199086140641 189.4706821444943

 ,

D =


2.762397779083248 2.762397779083248 2.762397779083248 2.762397779083248

1.913469432180418 1.913469432180418 1.913469432180418 1.913469432180418

0.1536783627086710 0.1536783627086710 0.1536783627086710 0.1536783627086710

1 1 1 1

 ,

E =


1.508806675989335 1.008138078375737 −0.4893268821398639 1.429143517912420

−0.1188587575071992 −0.6049753222140734 −1.426290901096432 0.1712584972842957

−1.431301040995621 −1.209945614977351 −1.857257552290057 −1.170740675514594

−0.03229009987419818 −0.04685707497725945 −1.731189146518958 −0.09468545513375631

 ,
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β1 =


0.4279842620145835 0.5508875619460129 −1.066855714840414 0.4676116389578849

−0.7274604094091049 −1.179408759403227 −1.785109812837321 −0.4617559306556133

−1.227019361090619 −0.4733522004909464 −0.5790851512353563 −0.2970327009823673

0.3531777482403369 0.4257605737627339 −0.7913769844447518 0.6729778609723476

 ,

β2 =


−1.647056352800810 −2.363199068791738 3.877918109504065 −1.883078753607592

2.698766475031944 4.307714056830686 6.819446353268455 1.788220855616697

4.291843816285965 2.043708990116466 2.601799888135156 1.522464387138038

−1.341082547123978 −1.548577463191051 3.392665514727985 −2.253336506354883

 ,

β3 =


−1.487689477636443 −1.413133165310170 3.723717147679234 −1.565788496191245

2.720035416436076 4.089878959703036 6.510022758334166 1.947757085496399

4.949977400312023 3.831376034801120 4.978419136014973 3.589622961720761

0.5077169804395160 0.4521193500783359 5.240991311800451 0.2627678578843441

 ,

β4 =


3.706761568422670 4.225444672155895 −5.534779542342885 3.981255610840952

−3.691341482058915 −6.218184257130496 −10.54435929876530 −2.274222010457483

−7.014801855507369 −4.401732824426639 −6.001133872914773 −3.815054647876432

1.480187818444125 1.670697539349981 −6.842279842083684 2.317590787498192

 ,

v =
[

0.02924952029775191 −0.1395352885214494 0.5010956238747390 0.6091901443489585
]T

,

w1(θ) = −0.07534109200536251+0.6049669560288470 θ−0.7858367964652556 θ2+0.2562109324417711 θ3,

w2(θ) = 0.3110804920142088−2.447923892057980 θ+2.869623785788667 θ2−0.7327803857448962 θ3,

w3(θ) = 1.360453870544642−2.563932117959241 θ+1.460859005472815 θ2−0.2573807580582160 θ3,

w4(θ) = −0.5961932705534880+4.406889053988373 θ−3.544645994796227 θ2+0.7339502113613411 θ3.


