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1 Introduction

For the numerical solution of Volterra integral equations (VIEs) of the second
kind .
vty =90+ [ K(ts(s)ds, telto,T], (1.1)
to
where

g:[to,T) = R™, k:AxXR™ 5 R™, A:={(t,s): to<s<t<T},

are sufficiently smooth, we consider a very general class of so-called Volterra
Runge-Kutta (VRK) methods defined by

" v
Y = hz Oéijk‘<tn +dijh,tn + eijh, Z /BijlYl[n]> + Fo(tn + cih),
i=1 =1 (1.2)

j=1

i=1,2,...,u;n=0,1,..., N — 1. Here, p is a fixed integer, ¢, = ty + nh,
n=0,1,..., N, Nh = T—ty, is the uniform grid and f ( ntcih)is an approx—
imation to the tail F,(t, + ¢;h) defined by F,( ) + ft” (t s, y(s )ds.
With this notation the equation (1.1) can be rewrltten as

t
tn

The tail approximation ﬁn(tn + ¢;h) to Fy(t, + ¢;h) should be chosen in such
a way that it preserves the order of convergence of the VRK method and that
it is as efficient as possible in terms of the number of evaluations of the kernel
function k appearing in (1.1), (1.2), and (1.3). Similarly as in [18] we can define
the tail approximation of the form

)+ Y > ikt ey +cih, YY), (1.4)

k=1 j=1

with weight vector v = [y1,...,7,]7. The resulting method (1.2) with the
tail approximations F(t, + ¢;h) defined by (1.4) was referred to in [8], as an
extended VRK method. A different approach to tail approximations based on
natural continuous extensions of the numerical solution of degree d < p was
proposed by Bellen et al. in [4]. These natural continuous extensions u(t,, +6h)
are defined by

u(ty + 0h) = ij o)y, (1.5)

n=0,1,...,N —1; 6 € [0,1], where w;(6) are polynomials of degree d,
|p/2] < d < min{r —1,p}.



Natural Volterra Runge-Kutta methods 3

Here, |p/2] stands for the integer part of p/2. These polynomials satisfy the
linear system of equations

> wiO)ck =0%, k=0,1,....d (1.6)
j=1
See [4] for comparison. We then consider the following tail approximation

Fo(t) = g(t) + 7YY vjk(t b1 + &b ultu—s + &), (1.7)

k=1 j=1

where the weight v; and abscissas &; correspond to a quadrature rule of order
greater or equal to p. The resulting formulas with tail approximation defined
by (1.7) will be referred to as natural VRK methods.

Natural continuous extensions of Runge-Kutta (RK) methods for ODEs
were introduced by Zennaro in [26].

The coefficients a;;, 35, and w;, and the abscissas ¢;, d;;, and e;; will be
chosen so that the VRK method has order p and stage order ¢ = p, and some
desirable stability properties with respect to the basic and the convolution test
equations.

Since, in general, k(t, s,y) is defined only for s < t, we will always assume
the so-called kernel condition e;; < d;;.

The VRK methods (1.2) were first introduced in [4] and further investigated
in [5]. They include as special cases Pouzet-type methods [23]

VI = 03 agh(t, + ety + esh Y 4 Byt + eih),
i=l (1.8)
Yn+1 = hz bjk(tn + h,tn + th, Yj[n]) + Fn(tn =+ h)v

j=1

1=1,2,...,m;n=0,1,..., N — 1, and Bel’tyukov-type methods [6]

Y = 0 aik(tn + ejhotn + ¢jh, Y,™) + Fy(tn + cih),
=1 (1.9)
Y1 = h Y bik(tn + ejhty + cih, Y/™) + Fy(t, + h),

j=1

i1=1,2,....,m;n=0,1,...,N — 1. Pouzet-type methods (1.8) correspond to
p=m,v=m-+1,c=[cy,ca,...,cm, 1], and

Qij = aij, 4,5 =1,2,....m, apmyr;=0b;, j=12,...,m,
dij:ci’ i5j:1)27"'5m7 dm+l7j:17 j:1,2,...,m7
eij = Cj, 1=1,2,....om+1, j57=12,...,m,

Biﬂ:dﬂ, LWl=12,....m+1, j=12,...,m,
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wj:5m+17j, j=L12...,m+1.

Similarly, Bel’tyukov-type methods (1.9) correspond to u = m, v = m + 1,
c=ler ¢, 0m, 1]T, and

o = aig, 5,3 =12,....m, amy1;=0b;, j=12,...,m,

dij=¢ej, 4,j=12,....om+1, j=12,...,m,

ei=c;, i=1,2,...,m+1, j=12...m,

Biji =05, i,1=1,2,....m+1, j=1,2,...,m,
Wi = Omsrgs G=1,2,..m+1.

Choosing ¢, =1, w; =0, j = 1,2,...,v — 1, w, = 1, we obtain a class
of methods for which the external approximation y,1; is equal to the last
internal stage, i.e., Ypi1 = v,

The numerical solution of Volterra integral and integro-differential equa-
tions, including Volterra equations with weakly singular kernels, is discussed in
a monograph [8]. Two-step Runge-Kutta methods for Volterra integral equa-
tions have been introduced and analyzed in [10-12].

In the next section we derive conditions on the coefficients of (1.2) so that
the resulting VRK methods have order p and stage order ¢ = p. In Sections 3
and 4 we investigate stability properties of VRK methods (1.2) with respect
to the basic and the convolution test equations. We are mainly interested in
the derivation of A-stable and Vj-stable methods. These stability concepts are
defined in Sections 3 and 4, respectively. In Section 5 we derive examples of
A-stable and Vp-stable natural VRK methods withp=qg=p=vforv =1, 2,
3, and 4. Numerical experiments which confirm the expected order and stage
order are reported in Section 6. Finally, in Section 7 some concluding remarks
are given and plans for future work are briefly outlined.

2 Stage order and order conditions
To discuss order conditions for VRK methods (1.2), with no loss of generality
(cfr. [4], [7]), we will consider a simpler form of VIE (1.1), where the kernel

function k(¢, s, y(s)) is independent of s. This can be accomplished if we define,
for example,

. t - to ~, 1
= , = , k(t,y(s)) = .
) L,@)] e L,(t)] (8:3() [k(t,s,ms))]

Then the equation (1.1) can be reduced to the form

y(t) = g(t) + / k(b y(s))ds, t € [to.T], (2.1)

to



Natural Volterra Runge-Kutta methods 5

where for convenience we have written y, g and k instead of ¥, g and k. The
VRK method for (2.1) now takes the form

m v

Yy =n > ik (tn + dijh, Zﬁmﬁ“) + Fu(tn + cih),
j=1 =1 (2.2)

yn_,’_l = Z w]Y][’ﬂ]’

j=1

i=1,2,...,v,n=0,1,...,N — 1, where ﬁn(tn + ¢;h) is an approximation to
the tail F,, (¢, + c;h) of sufficiently high order defined by

tn
Fo(t) = g(t) +/ k(t,y(s))ds, t€[tn,tns1], n=0,1,...,N -1,

to

The tail approximation (1.4) now takes the form

Fo(t) = g(t) +h Z iwt, YY), (2.3)

k=1 j=1

and the tail approximation (1.7) based on natural continuous extensions (1.5)
takes the form

m

Fo(t) = g(t) + 7YY vik(tulte—s +&h)). (2.4)

k=1 j=1

It follows from definition of k(t,7(s)) that with abscissas e;; defined by
e = Bgie, i=12...,v, j=12..,p (2.5)
=1

the order conditions for (2.2) applied to (2.1) are the same as the order con-
ditions for (1.2) applied to (1.1). As in [4] we also assume that

> Bu=1, i=12..v j=12..u (2.6)
=1

Order conditions for VRK methods (2.2) were derived in [4] using a gen-
eralization of the RK theory for VIEs of the second kind developed in [7].
This theory is based on formally transforming the VIE (2.1) into an infinite
system of partitioned ordinary differential equations (ODEs), and then using
the theory of P-series developed by Hairer [14], which for RK methods for
VIEs (2.1) reduces to the so-called V-series [7]. Alternatively, order conditions
for VRK methods can be also obtained using a generalization of the approach
proposed by Albrecht [1,2] for RK methods for ODEs, and extended in [21]
to the general class of two-step RK methods. This was illustrated recently by
Garrappa [13], who derived order conditions for some classes of RK methods
for Volterra integral equations with weakly singular kernels.
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In this section we derive the conditions which guarantee that VRK methods
(2.2) have order p and stage order ¢ = p. This means that

hd; = O(hP™), i=1,2,...,v, h—0, (2.7)

and R
hd = O(h**h), h — 0, (2.8)
where hd;, i = 1,2,...,v, are local discretization errors of the stage values

Yi[”], and hd is the local discretization error of Yn+1- These errors are defined as

residues obtained by replacing Yi["] by y(t,+cih), f‘n(tn +c;h) by Fy,(t,+c;h),
and Yy, 41 by y(tn41) in (2.2), where y(t) is the solution to (2.1), i.e

hd; := y(t,+c;h) hZa” (n+dm,z Bijy(t +clh)> w(tnteih), (2.9)

=1

i=1,2,...,v, and
hd = yY(tnt1) Zwat +¢;h) (2.10)

It follows from (2.7) and (2.8) that the stage order and order conditions
can be obtained by expanding hd;, : = 1,2,...,v, and hd into Taylor series
around the point ¢, and equating to zero the coefficients of the resulting ele-
mentary differentials up to stage order ¢ = p and order p. These elementary
differentials depend on the y, k, derivatives of y, partial derivatives of k, and
their combinations. In what follows we will illustrate this process to derive
stage order and order conditions up to the order p = 4 and stage order g = 4.

The expressions hd; and hd have the following Taylor expansions up to the
order four

2,2
hd; = y(tn) — Fu(tn) + (' (tn) — Fl(tn))cih + (4 (tn) — Fr'[(tn))clT
313 4p4
+ (y/"(tn) o Fv'rlll/(tn))cz6 + (y(4)(tn) — F£4)(tn))0124
" v
— hzaijk(tn + dijh,y<tn) + Zﬂijlcly/(tn)h
Jj=1
Y 2
+ ;Bz‘jl 2l h2 + Zﬂljl /// n > + O(h5)v
i=1,2,...,v, where we have used (2.6), and
R v h2
hd = (1—2:1wj> ( ijcj) <1_Zw3 ]> 128 3
J

h
(1—ij e 6+(1—ijcj)y (t) 57 + O(R?).
j=1
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p=gq differential conditions for order p and stage order ¢
p=0 y D wy =1

p=1 Yy > =1 wic =1

g=1 k Yo =ci

p=2 y" Z“ 1ch =1

q=2 % ZJ 1 Qijdij —02 -

qg=2 %y/ Z? 1 g 2oi=y Bijici = 71

Table 1 Order and stage order conditions for p=0,p=q¢=1,and p=¢q¢ =2

We evaluate next y(t) — F,(t), y'(t) — E(t), " (t) — E(t), y"'(t) — F))/'(t), and
y®(t) — F,(L4)(t) for t = t,,. After some computations it follows from (1.3) that

y—F,=0, ¢ —F,=k o' —F/ =25 +%y,
2
~F'= 32,;? + 35)@’;1/ +Shy? + g’;y”,

t28yy + 48t8y2y "+ 48t8y

3
+ gylscy/ +36 k / //+ 6k ///

where we have skipped the arguments in y, F,,, and their derivatives and
in k and its partial derivatives. Substituting the above expressions into hd;,
i = 1,2,...,v, and expanding the function k appearing in hd; into Taylor
series around the point (¢,,y(t,)), and then equating to zero the coefficients
of the resulting elementary differentials we obtain stage order conditions up to
the stage order ¢ = 4. Similarly, equating to zero the powers of h in hd up to
the order four we obtain the order conditions of the form 2;21 ché? =1k=
0,1,2,3,4. We will refer to these conditions as quadrature order conditions.
These order and stage order conditions are listed in Table 1 forp =0,p=¢g =1
and p = ¢ = 2, in Table 2 for p = ¢ = 3, and in Table 3 for p = ¢ = 4.
Observe that multiplying the stage order conditions by w; and then summing
the resulting expressions from i = 1 to ¢ = v and taking into account the
quadrature order conditions we obtain stage order conditions derived in [4].
Observe also that for p = ¢ = 3 the last two of the stage order conditions
listed in Table 1 in [4] are not necessary.

The class of methods we are interested in this paper are natural VRK
methods with p = ¢ = p = v, i.e., methods with the tail approximation
defined by (2.4).

We conclude this section by listing in Table 4 the number of conditions
(which include order and stage order conditions and relations (2.6)) and the
number of free parameters c;, w;, o;j, dij, and B;; for natural VRK methods
withp=¢=pu=v, forv =1, 2, 3, and 4. Constructing such methods we will
usually assume that the last component ¢, of the abscissa vector c¢ is equal to
one.
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p=gq differential conditions for order p and stage order ¢
_ i v P S
p=3 y2 ijl wjc; =1
— 9%k H .42 — .3
q=3 512 Zj:1 a”dij =<
—3 9%k 1 % idis SOV By _
9= dtoy Y =1 QijGij 2 =1 Pijici = 2
_ 9%k 12 i v 2 _ ¢
q=3 92 Yoy aii (X Biie)” = F
3
— Ok, 1 © NV L2 <y
q=3 oy Y Zj:l Qij 21— Bijic] = 3

Table 2 Order and stage order conditions for p = ¢ =3

p=gq differential conditions for order p and stage order ¢
p=4 y Sy wici=1
qg=4 % Z?ﬂ O‘ijd?j =c} .
qg=4 3‘327521/ 2 Soh_y aigdii (301 Bijicr)” = <

4
q= a‘%yy’ Sy ud 3o Bijier = %4
q=4 oy Yo ity Tila Bt = 5
a=4 | Shyy' | S ay S0 e T Binc =
1= Sy Sy g (i Bijier)” ::zg
q=4 Gy Sohy i Sl Bipne} = 5

Table 3 Order and stage order conditions for p = q¢ =14

p=q=p= # of conditions: ¢ = p # of parameters
1 4 5
2 13 20
3 34 51
4 7 104

Table 4 Number of conditions and number of free parameters for natural VRK methods
withp=q=pu=v,forv=1,2, 3, and 4

3 Stability analysis with respect to the basic test equation

In this section we investigate stability properties of VRK methods (2.2) with
the tail approximation defined by (2.4) with respect to the basic test equation

t
y(t) =14 A / y(s)ds, >0,
0
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where A € C. We will follow the approach of [4]. Applying VRK method (2.2)
to (3.1) we obtain

v H
KM]ZhAE:E:au@ﬂEML+P%@n+Qh%
J=Li=1 (3.2)
Yn+1 = Z wj}/j[n]7
7j=1

n=0,1,..., where the tail approximation (2.4) takes now the form
Fo(t) =1+ 0D > vulte—r + &h). (3.3)
r=11=1

It follows from (1.5) that u(tx—1 + &§h) = ij’:l wj(fl)}/j[kil] and the relation
(3.3) can be written as

Fo(t)=1+8A3. Y byt (3.4)

k=1 j=1

if we define b; = >", vw;(&). Putting z = h\, e =[1,..., 1" e R,

“w
b=l b]" A= lalliny, an =Y agBy, Y= [y )]

j=1

and assuming that I — zA is invertible the relation (3.2) with F,(¢) given by
(3.4) can be written in the vector form

vyl = (1 + 2 Z bTY[”‘”) (I —zA)"te. (3.5)
k=1

Here, I is the identity matrix of dimension v. Observe that for VRK methods
of stage order ¢ > 1 we have

v v.op H v H
E Qi = E E ijBiji = E Qij E Biji = g Qij = Ciy
=1 1=1 j=1

1=1 j=1 j=1

i=1,2,...,v, where we have used (2.6) and stage order condition correspond-
ing to ¢ = 1. Let R(z) be the rational function defined by

R(z) := 1+ 20" (I — zA) e, (3.6)
Then it can be demonstrated that

Vi = (R(2))"(I — 2A) e, (3.7)

T
)
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n=0,1,..., compare [5]. It follows from the second formula in (3.2) and (3.7)
that y,+1 = (R(z))an(I — zA) e, where w = [wy, ..., w,]|T. Hence,

Yn+1 = R(Z)yru (38)
n=0,1,... . As observed before in [5], and in [17] in the context of extended

Pouzet-type methods, it follows from relation (3.8) that stability properties of
VRK methods (2.2) with the tail approximation defined by (2.4) with respect
to the test equation (3.1) are the same as stability properties of the underlying
RK method for ODEs with respect to ¥’ = Ay, ¢ > 0. This underlying RK
method for ODEs is given by the Butcher table

In particular, the region of absolute stability of a VRK method is given by
A={z€C: |R(z)| <1},

where the stability function R(z) is defined by (3.6), and the VRK method
is A-stable, i.e., its region of absolute stability includes the left half of the
complex plane {z € C: Re(z) < 0}, if the underlying RK method for ODEs is
A-stable.

The stability function R(z) can be written as R(z) = P(2)/Q(z), z € C,
where P(z) and Q(z) are polynomials of degree less than or equal to v. Then
it follows that the RK method (3.9) is A-stable if

|R(iy)| <1, yeR, (3.10)

and R(z) is analytic for Re(z) < 0, i.e., the polynomial Q(z) does not have ze-
ros in the negative half plane (compare [15]). The condition (3.10) is equivalent
to the fact that the so-called Ngrsett polynomial defined by

E(y) := |Q(iy)|* — |P(iy)|* = Qiy)Q(—iy) — P(iy)P(—iy)

satisfies the condition
E(y) >0, yekR (3.11)

The above observations were used in [5] to characterize VRK methods of collo-
cation type. In Section 5 we will use these results to investigate if the natural
VRK methods of order p and stage order ¢ = p, for p = 1, 2, 3, and 4, are
A-stable.
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4 Stability analysis with respect to the convolution test equation

In this section we investigate stability properties of VRK methods (2.2) with
tail approximation defined by (2.4) with respect to the convolution test equa-
tion

yt) =1 —l—/o (A&t —s))y(s)ds, t>0, (4.1)

where A, & € R. The solution y(t) to this equation tends to zero as ¢ tends to
infinity if and only if A < 0 and ¢ < 0 (compare [9]), and we will investigate
whether this property is inherited by the numerical solution {y, }5, obtained
by application of the VRK method (2.2) with tail approximation given by
(2.4) to the test equation (4.1). It can be verified that this numerical solution
depends on the parameters hA and h2¢, where h is the stepsize used. The
VRK method is said to be stable for given (h\, h2€) if y,, = yn(hX\, h2E) — 0
as n — oo. The region of stability S of a VRK method with respect to (4.1)
is the set of all (h\, h2¢) for which the method is stable, i.e.,

S:={(hA,h*¢) € R*: y,(hA,h?¢) -0 as n — oo} (4.2)

The VRK method is said to be Vj-stable if its region of stability includes the
set hA < 0 and h2€ < 0, i.e., {(h)\,h%) € R?: hA <0, 26 <0} C S.

The Vj-stability proved to be a very demanding property of numerical
methods and only a few examples of such formulas were discovered so far in
the literature on the subject. Wolkenfelt [25] has proved that no such formulas
exist in the class of reducible quadrature methods for (1.1). Further negative
results about nonexistence of Vy-stable methods of some types were obtained
in [3,16,17]. A first example of a Vj-stable method was given in the report [9].
This is a first order RK method of Bel’tyukov type with tail approximation
given by the composite right rectangular quadrature formula. A first example
of a VRK method of second order was reported in [5]. Vp-stable RK methods
of Bel'tyukov type of order p = 3 and p = 4 were discovered only very recently
by Izzo et al. [19]. In this paper we will present new examples of Vj-stable
natural VRK methods of order p and stage order ¢ = p up to the order four.

We will follow again the approach of [5]. Applying VRK method (2.2) to
(4.1) we obtain

v u v 12
vi" = ha Z Z i B Y™ + n2¢ Z Z 0 Bzt Vi

=1 j=1 =1 j=1

voou
— h%¢ Z Z Oéijeijﬂijlyl[n] + F,(t, + c;h), (4.3)
=1 j—1

Yn+1 = Z ijj[n]a

Jj=1
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i =1,2,...,v, where the tail approximation (2.4) now takes the form

Fulta +cih) =1+ XY Y vulte— + §h)
k=1 1=1

+ 12D > u(n =k Dultey +&R) + %Y e w1 +&h).

k=1 1=1 k=1 1=1
(4.4)
Putting

m

b = Z”lwi(fl)’ rj = Zvl&’w;‘(fl), (4.5)
=1

1=1
it follows from (1.5) that (4.4) can be rewritten in the form

Fo(tn +cih) =1+ 0> by
=151 (4.6)

+h2§ZZb n—r+ 1Y ”+h2§ZZbQ Syl

r=17=1 k=1 j=1

Putting « = hA, y = h2€, r = [7"1,...77“,,]T, e= [1,...,1]T e RY,

m
A= [ail}zl=1a Qi = Zaijﬂijh B = [bll i,l=1" by = Zalj zyﬂzglv

J=1

n
C=leulyi—y, cu= Zaijeijﬁijh b=1[b,....0)", c=let,....a],
=1

] ’ - 7 g
vl — [Yl ,...,YJ@} Rl — [Fﬁ(t,{ terh), ... Falte +ch)|
the relation (4.3) can be written in the vector form
Y = (zA+y(B - )Y 4 Fl", (4.7)
and the tail approximation (4.6) takes the form
n
FIl = ¢4 Z (xebT +y(n — k4 1)eb? + y(cb” — eTT))Y[“_l], (4.8)
k=1
where r = b.c := [bicq, ... ,b,,cV]T. As in [5] we can reduce (4.7) and (4.8) to a
vector difference equation of order two. Putting
Q=Qzy)=1-zA—y(B-C) (4.9)

the relation (4.7) takes the form QY = FI"l. Tt can be verified that (4.8)
yields

pit2l _gplh+i 4 plnl = (2 + y)eb” + y(cb? — er?))y [+l

— (mebT +y(cb? — erT))Y["],
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and substituting this into the relation

Q(Y[n-l—Q] _ 2y[n+1] + Y[n]) — F[n+2] _ 2F[n+1] + F[n]

we obtain
QY+ = (2Q + (z + y)eb” + y(cbT — erT)) Y+l (£.10)
— (Q + zeb” + y(cb” — erT))Y["],
n = 0,1,.... This is the desired vector recurrence relation of order two. In

what follows we assume that the matrix @ defined by (4.9) is nonsingular and
we define the vectors ¢ = Q7 le, ¢ = Q~lc. We will look for solutions to (4.10)
in the form

vl = a6+ 8,2, (4.11)

where «a,, and 3, are some scalars which have to be determined. Substituting
(4.11) into (4.10) and comparing the coefficients of e and ¢ in the resulting
expressions, and taking into account that the vectors e and c are linearly
independent we obtain

Aniz = (24 (@ + ybT€ — yrTe)ant1 + ((z + y)bTe — yr7e) Buia
— (1 +abTe—yrTe)a, — (zbTc— yr’e)B,,

5n+2 = beEOén+1 + (2 + beg)ﬂnJrl - began - (]- + beaﬁnv

n =0,1,.... Next, we will reduce the above recurrence relations for «,, and
B, to a vector difference equation of the first order. Let

M:M(l‘,y):

24+ (x+y)bte—yrTe (z+y)blc—yrlec
JbTE 2 4 ybTE

N = N(z.y) = [—1 —abTe+yrTe —abTe+ er’cV]

—ybTe —1—ybTe
Then the system for ;42 and fS,42 can be written in a compact form
Upy1 = S Un, (4.12)

n=20,1,..., where

S = S(a.y) = [%

It follows from (4.7) and (4.8) that Y = Q-1 FI0 = ¢

T
4x4 4
eR x y,  Up = |:Oén+1 ﬂn—i—l Qo Bn:| € R

YU = Q71 F = (1 + (x + y)bTe — yrTe)e + yb' e,
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which implies that ag = 1, o = 0, a; = 1 + (z + y)bTe — yrle, By = yble.
Hence, the initial vector vy of the recurrence equation (4.12) takes the form

T N N N T
voz[alﬁlaoﬁo} Z[l—l—(m—l—y)bTe—ere ybTe 1 0

The stability properties of VRK method (2.2) with the tail approximation
(2.4) with respect to the convolution test equation (4.1) are determined by
the characteristic polynomial ¢(6) of the amplification matrix S = S(z,y)
appearing in (4.12). This polynomial takes the form

¢(0) = det(6I — S) = det(6?1 — OM — N).
It can be verified that ¢(6) = (6 — 1)%(#) with
V() =62 — (2+ (z+y)bTe+ybTc—rTe))o

(4.13)
+ 1+ able+yTe—rTe) +y2(bTerTe —vTerTe),

where 6 = 1 is an eigenvalue of S of algebraic multiplicity two and geometric
multiplicity one. It was demonstrated in [5] that this double eigenvalue 6 = 1
does not affect the stability properties of VRK methods (2.2) with respect to
(4.1). As a result, the stability region of VRK method (2.2) with respect to
the test equation (4.1) can be characterized as

Sz{(x,y)ERQ: |01(z,y)] <1 and |92(JL‘,y)|<1}7

where 61 = 01(z,y) and 02 = 62(x,y) are the roots of the polynomial ¥ (6)
defined by (4.13). Putting y = 0 in (4.13) this polynomial () reduces to

P(0) = 6% — (2+2b"€)0 + 1 + xbTE,

with the roots § = 1 and 6 = 1 + xbT¢ = 1 + xb? (I — xA)~te. The latter root
corresponds to the stability function R(z) defined by (3.6) with z = x, which
was encountered in the stability analysis of VRK methods (2.2) with respect
to the basic test equation (3.1).

We will use the Schur criterion [24,22,20] to find conditions under which
the roots 61 = 61(x,y) and 03 = Os(x,y) of (0) are inside of the unit circle.
This criterion implies that this is the case if and only if

L+ ab"e+yTc—rTe)+ 4?0 erTc—bTer"e)| < 1, (4.14)

|2+ (z +y)bTe+y(Tc—rTe)|
(4.15)
< |2+ abTe+y(bTe —rTe) + y2(bTerTe — bTere)|.

To search for Vjy-stable methods it is more convenient to reformulate (4.14)
and (4.15) in the form
o(x,y) >0, z,y<0, (4.16)

Y(x,y) >0, z,y<0, (4.17)



Natural Volterra Runge-Kutta methods 15

where the rational functions ¢(z,y) and i (z,y) are defined by
p(z,y) =1— (1+abTe+y@bTc—rTe) +y* (b erTc - chrTA))
Y(z,y) = (2+abTe+yTe—rTe) + y*(bTer’c—ble rT~))

- 2+ (@ +ypTe+y’c TN))
For VRK methods with p = v these functions take the form

Z (71)i+j£i(;)xiyj Z (71)i+j§i(j?)xzyj

0<i+j<2v 0<i+j<2v
pr,y) = —= L dla,y) = == ,
(3 wev) (3 wev)
0<i+j<v 0<i+j<v
(%) = (%) = (%) = 77(()%) = 1, where the coefficients fs ), nl(]l), i(]?), and 77( )

depend on the remaining free parameters of the methods Then the SuﬂiClent
conditions for Vj-stability take the form

M0, =010 1<itj<2, k=12 (4.18)
To enforce the conditions (4.16) and (4.17) we can also consider the polyno-
mials

=3 () o s =3 () o

k=0 k=0

obtained by substituting y = ¢tz in the numerators of ¢(z,y) and ¥(z,y).
Then the sufficient conditions for Vj-stability of VRK methods, which are less
restrictive than the conditions (4.18), take the form

(1) ()

>0, 7 >0 k=0,1,...,2, (4.19)

and
tM <o, t? <o, (4%)

where tgl) and tl(- ) are real Toots of the polynomials Ez 0 771( "and Zl 0 771
k=1,2,...,2v, appearing in y(z,t) and §(x, ).

Tt is easy to see that the conditions (4.18) imply the conditions (4.19) and
(4.20) and that the converse is not true. For example, the Vp-stable Bel’tyukov
VRK methods of order p = 3 and p = 4 constructed in [19] satisfy (4.19) and
(4.20), but do not satisfy (4.18).

In the next section we present examples of natural VRK methods up to
order four and stage order four which satisfy the conditions (4.18) or (4.19) and
(4.20) as well as the condition (3.11) in Section 3. This will lead to methods
which are both A- and Vj-stable.

’
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5 Examples of A- and Vj-stable natural VRK methods
5.1 Natural VRK methods with p=q=pu=v=1

It follows from order and stage order conditions and relations (2.5) and (2.6)
that wp, = 1, Cc1 = 1, 11 = 1, Blll = 1, and €11 = 1. MOI‘GOVGI‘, d11 must
satisfy the kernel condition e1; < dy1. Put d = dy;. It follows from (1.6) that
wi(0) =1, 6 € (0,1], and the resulting method is
V" = hk(t, + dh, Y{™) + By (tag),

] ] (5.1)
Yns1 =Y1, ultn+6R) =Yy, 6€(0,1],

n=0,1,..., N—1. Observe that u is discontinuous at the grid points. Choosing
m=1,v; =1, & =1, the tail approximation (2.4) takes the form

Fo(t) = g) + 0> k(tulte)) = g) + 1> k(Y. (52)

k=1

We have by = viwy; =1, a11 = a116111 = 1, and the underlying RK method is
the backward Euler method which is A- and L-stable.

We next investigate Vj-stability. It can be verified that for the method
(5.1), with the tail approximation defined by (5.2), the stability polynomial
¥ (0) equivalent to (4.13) takes the form

b(O) = (1 -2+ (1 —-dy)e*— (2—z+B-2d)y)0 + 1+ (1 - d)y.

It now follows from the Schur criterion that the region of Vj-stability is the
set of all points (z,y) € R? such that

z(—-2+2-21-dy) >0 and y(—2(2-=z)—(5—14d)y) > 0.

Hence, the method (5.1)-(5.2) is Vp-stable if and only if d > 5/4. This is
consistent with the results of [5].

5.2 Natural VRK methods withp=q=pu=v =2

Natural VRK methods with g = v = 2 take the form

Y[ e = hon1k(tn + dirh, 5111Y[n +5112Y[ ])

]
+ hale(tn + dq2h, 5121}/1["} + 5122Y2[ ]) n(tn +c1h),
Yg[n] = haoik(tn + da1h, 5211Y1[n] + ﬁzuyg[ ]) (5.3)
+ hagok (tn + daoh, fan Yy ")t Baaa Y ) + Fy(ty, + c2h),

Yna1 = w1 Y 4wy,

where

Z (’Ulk t u r—1 —|—€1 )) + Ule(t’u(tK;_l + fgh))), (54)
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and u is the natural continuous extension defined by
ulty-1 +0h) = wi ()Y +wp(0) vy, (5.5)
k=1,2,...,n,0€0,1].

To satisfy the kernel conditions, e;; < d;;, we assume that d;; = e;; + py;,
where p;; > 0, 4,7 = 1,2. The order conditions are

wi +we =1, wicy +wacy =1, w1c? + wgcg =1, (5.6)

and the stage order conditions expressed in terms of p;; and e;; take the form

2
1

ai +aig = e, Aupn T M2P12 = o5 aqpeny + apgern =

A
PT
~

-

N"&m N"»—gw

2
— c -
Q21+ 022 = €2, (1 poy + Qgopas = 52’ Q21621 + Qgz€22 =

Moreover, the conditions on the weights v; and abscissas &; of the quadrature
rule (5.4) are

1 1
vitue=1 nl+ni =g, 01€} + o€l = 3
and the conditions on continuous weights w; (#) of natural continuous extension
(5.5) are

(5.8)

wl(ﬂ) + ’LUQ(G) =1, w1(9)01 + w2(0)02 = 9, 0 e [0, 1] (59)

Moreover, the coefficients 8;;; satisfy the conditions

2 2
D Bu=1, Y B =ey, i,j=12
=1 =1

which can be used to express 8;;; in terms of e;; by solving the above system
of linear equations with respect to 3;;;.

To satisfy order conditions (5.6) we choose w; = 0, we = 1, and ¢p = 1.
We also fix ¢; = . Then we solve stage order conditions (5.7) with respect to
11, a2, o1, a2, €11 and es, the system (5.8) with respect to vy, va, and &7,
assuming that & = 1, and the system (5.9) with respect to w(6) and w2 (6).
This leads to a six parameter family of methods (5.3) depending on p11, p12,
D21, P22, €12, and egq, with

3 1 1 6 1
17 'UQ—Z, 51—5, W1(9)—g(1_9)7 wz(a)—g(Ge—l)
It can be verified that the underlying RK formula of order 2 for ODEs of this

family of VRK methods is

v =
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The Ngrsett polynomial of this method is E(y) = y*/36 and it follows that the
above family of VRK methods is A-stable for all choices of the free parameters
Dij and €ij, Z,] = 1,2

We will describe next the search for V{-stable methods. The polynomial
equivalent to (4.13), denoted by the same symbol (), takes now the form

V(0) = p2(z,y)0° — p1(z,y)0 + po(z,y),

where pa(x,y), p1(z,y), and po(x,y) also depend on the free parameters of
the method. It can be verified using the Schur criterion or the conditions
(4.14) and (4.15) that ¢(0) is a Schur polynomial if these parameters satisfy
a complicated system of eight inequalities which are not listed here. Choosing

_ 8+pu _ 3pa—1
12py — 17 3(2po1 — 1)’

€22 =
so some of these inequalities become equalities, we obtain a four-parameter
family of Vj-stable VRK methods depending on pi1, pi2, p21 and pos. The
coefficients of the resulting methods are

e=[11]". w=lo1]". v=[23]". e=[11]"

€12

1-12pi2 12p1;—1 8+pi2 8+pi11
72(p11—p12) 72(p11—pi12) 12p12—1  12p11—1
a= , E= ,
1—2pao 2p21—1 1—3pa2 1—3p21
2(p21—p22) 2(p21—Pp22) 3(1—2p22) 3(1—2p21)
8—p11+pi12+12p11p12  8+pi11—pi2+12p11pi2
12p12—1 12p11—1
D = ,
143p21—3p22—6p21p22 1—3p21+3p22—6pa1paz
3(1—2p22) 3(1—2p21)
_ - r 6(9711p12) 6(9711p11) T
B111 Bio1 5(1-12p12) 5(1—12p11)
Bl - = )
| B211 B221 | 2(2-3p22)  2(2—3pa1)
L 5(1—2p22) 5(1—2p21) |
- - [ _49—6pio 49—6p11
P12 B122 5(12p12—1) 5(12p11—1)
B2 = =
| B212 B222 | Appo—1  _4py—1
L 5(2p22—1) 5(2p21—-1) |

5.3 Natural VRK methods withp=gq=p=v=3

Similarly as in the previous subsection we assume that d;; = e;; + p;;, where
pij > 0,14,7 =1,2,3. The order conditions are

> wick =1, k=0,1,2,3, (5.10)
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and the stage order conditions corresponding to ¢ =1, ¢ = 2, and ¢ = 3 are

3
Do =ci, i=1,2,3 (5.11)
j=1
c2 3 c?
D aupij = 5 > aijei; = 50 =123 (5.12)
s =
3 3 3 3 3 3 3 3
Zaijp?j = EZ Z Qij€ijPij = Elv Zazye EZ Z o fij = é (5.13)
j=1 j=1 =1 =1

i = 172,3, where €ij = Zl:l Bijlcl, f’ij = Zl:l ﬂiﬂcl, ’L,] = 1,2,3. The
conditions on the weights v; and abscissa &; of the quadrature rule (2.4) corre-
sponding to m = 3 are Z?zl vi€F =1/(k+1), k=0,1,2, and the continuous
weights of the natural continuous extension (1.5) corresponding to v = 3 are
polynomials of degree d, 1 = |p/2] < d < min{r—1,p} = 2. We assume d = 2.
The system of equations for w;(8) is Z? L Wy (9)0 = 0% k=0,1,2. To satisfy
the order conditions (5.10) we will always assume that w; = we = 0, w3 = 1,
and c3 = 1. We can also express the coeflicients 3;;;, in terms of e;; and f;; by
solving the system of linear equations

3 3 3
S Bip=1, Y Biua=ey, Y Biuct =fi, i,j=1,2,3
=1 =1 =1

We next compute the coefficients a;; from stage order conditions (5.11) and
(5.12) corresponding to ¢ =1 and ¢ = 2, and e;5, fi1, f21, and f31 from stage
order conditions (5.13) corresponding to ¢ = 3. This leads to a seventeen
parameter family of natural VRK methods of order p = 3 and stage order
q = 3 depending on ci, ¢z, fi2, fi3, f22, f23, f32, f33, and p;j, 4,5 =1,2,3. It
can be verified that the Ngrsett polynomial E(y) for this family of methods
depends only on ¢; and ¢y and takes the form

—142(c1 +¢2) —6eica 4 " el g
36 36 7

E(y) =

Hence, it follows that the methods are A-stable if 1 — 2(¢q 4 ¢2) + 6¢1c0 < 0,
and to guarantee A-stability we compute co from 1 — 2(¢; 4 ¢2) + 6¢1c2 = 0,
e, ca=(2¢1 —1)/(2(3¢c; — 1)).

We next investigate Vy-stability. Performing an extensive computer search
in this space of free parameters ci, fi2, fis, f22, fo3, f32, fa3, and pyj, 1,5 =
1,2,3, where we started with many random guesses, we were able to find
methods of order p = 3 and stage order ¢ = 3 which are A- and Vj-stable. An
example of such a method is given in the Appendix.

To our knowledge this is the first example of a VRK method of order p = 3
and stage order ¢ = 3 which is A- and Vjy-stable. The Bel’tyukov VRK method
of order p = 3 with four stages constructed in [19] is also A- and Vp-stable,
but its stage order is only ¢ = 1.
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5.4 Natural VRK methods withp=gq=pu=v=4

We assume again that d;; = e;; + ps;, where p;; > 0, 4,5 = 1,2, 3,4. The order
conditions take the form

Y wicf =1, k=0,1,2,34, (5.14)

and the stage order conditions up to the stage order ¢ = 4 expressed in terms
of pij, €ij, fij, and gi; are

4

daij=ci, i=1,2,3,4, (5.15)
Jj=1
4 c? 4 c?
S apgp =2 > ouje =, i=1,2,3,4, (5.16)
‘ 2 ‘ 2
j=1 j=1
) 63 4 C3 4 3 4 03
Zaijpij = 71’ Z Q;j€55Pij = i Zalj 1] i Zazjfz] = iv (517)
— 3 = 6’ — 3’ — 3
Jj=1 Jj=1 j=1 Jj=1
4 4 4 4 4 4
C; C; C;
Zaijpu = Izv Z zgeszzg = 712 Z l]eljpz] 1*227
7t =t =1 (5.18)
4 et A A A A4 At ’
Zaz]pzjfm ZQ Zaljeljfl] = Zl Z ZZ Z ij9ij = sz
j=1 j=1

i=1,2,3,4, where
4 4 4
e = Biier, fij =Y B, gij =Y Biuct, ,5=1,2,34
=1 =1 =1

The conditions on the weights v; and abscissa &; of the quadrature rule (2.4)
corresponding to m = 4 are 2?21 v = 1/(k+ 1), k = 0,1,2,3, and the
continuous weights of the natural continuous extension (1.5) corresponding
to v = 4 are polynomials of degree d, 2 = |p/2] < d < min{v — 1,p} = 3.
We assume d = 3. The system of equations for w,(6) is Z?Zl w;(0)ch = 0F,
k=0,1,2,3. To satisfy the order conditions (5.14) we will always assume that
the weights w; are given by w; = wy = ws = 0, wy = 1, and that ¢4 = 1. We
can also express the coefficients ;1 in terms of e;;, fi;, and g;; by solving the
system of linear equations

4 4 4 4
> Biu=1, Y Bija=ey, Y Biuct =Ffis, Y Bijcl = gij,
1=1 =1 1=1 1=1
1,7 = 1,2,3,4. We next compute the coefficients a;; from the first equations
of the stage order conditions corresponding to g =1, ¢ =2, ¢ = 3, and ¢ = 4,
i.e., from the system of linear equations

k+1
Z%pm_ 3 1= 1234, k=0123
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We also compute f;;, ¢ = 1,2,3,4, j = 1,2, from the fourth equations of
the stage order conditions corresponding to ¢ = 3 and ¢ = 4, and ¢;1, ¢ =
1,2,3,4, from the last stage condition corresponding to ¢ = 4. Then we try
to compute the parameters e;j, 4, j = 1,2, 3,4, from the remaining stage order
conditions, which is the system of nonlinear equations of dimension 24. We
have used for this purpose the function FindMinimum from Mathematica, with
high precision options, where the objective function was defined as the sum of
squares of equations corresponding to the stage order conditions, and where
we were looking for solutions for which this minimum was equal to zero (or
was very small). This program turned out to be successful for many choices of
free parameters and leads to a thirty-nine parameter family of natural VRK
methods of order p = 4 and stage order ¢ = 4, depending on ¢y, ¢z, ¢3, fij,
1=1,2,3,4,5=3,4, g;5, 1 =1,2,3,4, j = 2,3,4, and p;5, 4,5 = 1,2, 3,4.

The next main challenge is then to identify the VRK methods which are
A- and Vp-stable. It can be verified that the Ngrsett polynomial E(y) for this
family of methods depends only on ci, ¢s, and c3 and takes the form

E(y) = ag(c1,c2,¢3) y° + as(cr, ea,¢3) y°,

where ag(c1, ca,c3) is not listed here and ag(c1,cz2,c3) = c2c3c3/576. Hence,
the method is A-stable if and only if ag(ci,ca,c3) > 0. To identify natural
VRK methods which are Vy-stable we have performed an extensive computer
search based on (4.19) and (4.20) in the space of all free parameters. We have
found methods of order p = 4 and stage order ¢ = 4 which are both A- and
Vo-stable. An example of such a method is given in the Appendix.

It can be verified that this method, listed in the Appendix, satisfies also
the stability conditions (4.18). To our knowledge this is the first example of a
VRK method of order p = 4 and stage order ¢ = 4 which is A- and Vj-stable.
The Bel’tyukov VRK method of order p = 4 with eight stages constructed in
[19] is also A- and Vj-stable, but its stage order is only ¢ = 1.

6 Numerical experiments
We implemented the methods reported in Section 5 and Appendixes 1 and 2
in a fixed stepsize code and performed numerical tests on several linear and

nonlinear problems from literature ([8]). We report here the results obtained
on the following nonlinear tests problems:

¢
y(t) = 1+ sin(t) — / 3sin(t — s)y2(s)ds, t e [0,5], (6.1)
0
with exact solution y(t) = cos(t), and
¢
y(t) =e* +/ e Hy(s) + e v)ds, te0,20], (6.2)
0

with exact solution y(t) = log(t + €).
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For each test and for each numerical method we have chosen the step-
size h = (T — to)/N, with N = 2%, i = 6,7,...,10 and have computed the
corresponding numerical solution yy and the stages YIN~1. Then we have
computed the correct digits as

cdyn = —logio(|y(T) — yn|), cdYn = —logao(|[Y — YINH|))
and the estimated orders as
p = (cdyn — cdyny2)/l0g10(2), ¢ = (cdYn — cdYny2)/logio(2),

where Y = [y(tN—l + Clh), . 7y(?f]\[_1 + C,/h)]T

The results reported in Tables 1, 2 and 3 show as the methods converge
and attain the expected order and stage order. Observe that for the method
with p = ¢ = 3 the estimated order and stage order are close to four. This
can be partially explained by the fact the this method satisfies the first four
of stage order conditions corresponding to ¢ = 4. However, this method does
not satisfy the last three stage order conditions corresponding to g = 4.

Problem (6.1) Problem (6.2)
N cdYn q cdyn P cdYn q cdyn P
64 0.62 - 0.67 - 1.91 - 1.88 —

128 1.39 2.54 1.41 2.47 2.80 2.95 2.76 2.95
256 2.09 2.33 2.10 2.30 3.70 2.98 3.66 2.98
512 2.75 2.19 2.75 2.17 4.61 3.02 | 4.57 | 3.02
1024 3.38 2.10 3.38 2.09 5.53 3.08 5.50 | 3.08

Table 1 Numerical results for VRK method of Section 5.2 with p1; =1, p12 =0, p21 = 1,
p2=0,p=q=2.

Problem (6.1) Problem (6.2)
N cdYn q cdyn P cdYn q cdyn P
64 1.11 - 1.10 - 2.05 - 2.05 -

128 2.24 3.74 | 223 | 3.77 3.16 3.67 | 3.16 | 3.69
256 3.41 3.90 | 3.41 3.91 4.31 3.83 | 432 | 3.84
512 4.60 3.95 | 4.60 | 3.96 5.49 3.91 5.50 | 3.92
1024 5.80 3.98 | 580 | 3.98 6.68 3.96 | 6.69 | 3.96

Table 2 Numerical results for VRK method of Appendix 1 with p =¢q = 3.
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Problem (6.1) Problem (6.2)
N cd YN Zj cdy N ﬁ cd YN Zf cdy N ﬁ
64 2.05 — 1.99 — 2.89 — 2.87 —

128 3.27 4.07 | 3.24 | 4.17 4.09 3.98 | 4.05 3.93
256 4.49 4.05 | 4.48 | 4.10 5.33 4.12 5.30 | 4.14
512 5.70 4.03 5.69 | 4.05 6.57 4.10 | 6.55 | 4.14
1024 6.91 4.01 6.91 4.02 7.79 4.06 7.78 | 4.09

Table 3 Numerical results for VRK method of Appendix 2 with p = ¢ = 4.

7 Concluding remarks

We described a systematic search for highly stable natural VRK methods (1.2)
of order p and stage order ¢ = p for Volterra integral equations (1.1). Examples
of methods which are both A- and Vj-stable are presented with p =qg=pu=v
for v =1, 2, 3, and 4. To our knowledge the methods of order p = 3 and stage
order ¢ = 3 and of order p = 4 and stage order ¢ = 4 are the first examples
of VRK methods which are both A- and Vj-stable. The previous examples of
the Bel'tyukov VRK methods of order p = 3 and p = 4 which are A- and
Vp-stable, had stage order of ¢ = 1 only.

The future work will address the construction of highly stable VRK meth-
ods with more “balanced” coefficients and with the components of the abscissa
vector ¢ in the unit interval [0, 1], and various implementation aspects related
to these methods.
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Appendix
1. Coeffcients of A- and Vj-stable VRK method with p=¢=pu=v =3:

T T
c=¢= [0.2986793639978812 1.936484620788317 1] ,w= [0 0 1] ,

32.56961736991217 —41.99309472466154 9.722156718747259
a = | —4.161355012670768 4.879541694296535 1.218297939162551
0.6776823435367453 —0.3281654092330291 0.6504830656962838

)

0.2986793639978812 0.2986793639978812 0.2986793639978812
1.936484620788317 1.936484620788317 1.936484620788317
1 1 1

—1.346553231360564 —1.430077578837826 —1.661365425814824
E = | 1.323898168980016  1.033127308380405  1.923182148594542
0.7375804560553820 —0.4657284124449499 —0.2347197261846119

D =

)

)

4.921882655709681  5.348697045172605 6.655082395586630
B1 = | —1.414299318231974 —0.4574205056380096 —2.523779005744676
0.7556717097159309  2.976938883652643  1.787408095661566

)

1.180227222673612 1.410673496755580  2.142033246435904
B2 = | —0.7132836071749915 —0.3071819068549123 —0.9042285693173371
L 0.2856946224028209 0.6642503731178405 0.02010332667742674 |

[ —5.102109878383293 —5.759370541928185 —7.797115642022534 ]
B3 = 3.127582925406965 1.764602412492922  4.428007575062013
| —0.04136633211875173 —2.641189256770483 —0.8075114223389929 |

T
v = [0.6978557058854169 —0.01129692071379275 0.3134412148283758] )

w1 (6) = 1.685913054558716 — 2.556517982922362 0 + 0.8706049283636465 62,
wa(0) = 0.1947342344115391 — 0.8467184619289128 0 + 0.6519842275173737 92,
w3 () = —0.8806472889702551 + 3.40323644485127560 — 1.522589155881020 02.
2. Coeffcients of A- and Vj-stable VRK method withp=q¢=pu=v =4:

T T
c=§= [2.762397779083248 1.913469432180418 0.1536783627086710 1] , w= [O 00 1] ]

47.23599624170400 9.533061854029514
—45.31266297570112 20.42562237707649

19.47734452896614 —99.80597747586084
651.9198600162418

—0.06153867452370376 —53.94512164212656
—2.636574632525243  29.43708466333030
—1.972074947692187  82.45438625729556
—840.3237901698746 —0.06675199086140641 189.4706821444943
[ 2.762397779083248

2.762397779083248 2.762397779083248 2.762397779083248
1.913469432180418

1.913469432180418 1.913469432180418 1.913469432180418
0.1536783627086710 0.1536783627086710 0.1536783627086710 0.1536783627086710
1

I 1 1 1

1.508806675989335 1.008138078375737 —0.4893268821398639

o —0.1188587575071992 —0.6049753222140734 —1.426290901096432
" | —1.431301040995621 —1.209945614977351

1.429143517912420

0.1712584972842957

—1.857257552290057 —1.170740675514594
| —0.03229009987419818 —0.04685707497725945 —1.731189146518958 —0.09468545513375631
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[ 0.4279842620145835 0.5508875619460129 —1.066855714840414 0.4676116389578849
_ | —0.7274604094091049 —1.179408759403227 —1.785109812837321 —0.4617559306556133
b= —1.227019361090619 —0.4733522004909464 —0.5790851512353563 —0.2970327009823673
| 0.3531777482403369 0.4257605737627339 —0.7913769844447518 0.6729778609723476
[ —1.647056352800810 —2.363199068791738 3.877918109504065 —1.883078753607592 ]
| 2.698766475031944  4.307714056830686 6.819446353268455 1.788220855616697
P2 = 4.291843816285965 2.043708990116466 2.601799888135156 1.522464387138038 |
| —1.341082547123978 —1.548577463191051 3.392665514727985 —2.253336506354883 |
[ —1.487689477636443 —1.413133165310170 3.723717147679234 —1.565788496191245 |
| 2.720035416436076 4.089878959703036 6.510022758334166 1.947757085496399
Fs = 4.949977400312023  3.831376034801120 4.978419136014973 3.589622961720761 |
| 0.5077169804395160 0.4521193500783359 5.240991311800451 0.2627678578843441 |
[ 3.706761568422670 4.225444672155895 —5.534779542342885 3.981255610840952
| —3.691341482058915 —6.218184257130496 —10.54435929876530 —2.274222010457483
Pa= —7.014801855507369 —4.401732824426639 —6.001133872914773 —3.815054647876432 | ’
| 1.480187818444125 1.670697539349981 —6.842279842083684 2.317590787498192

T
v = [0.02924952029775191 —0.1395352885214494 0.5010956238747390 0.6091901443489585] )

1(8) = —0.07534109200536251+0.6049669560288470 §—0.7858367964652556 02 4-0.2562109324417711 63,

wi (9)

wa(0) = 0.3110804920142088—2.447923892057980 6+2.869623785788667 02 —0.7327803857448962 03,

w3 (0) = 1.360453870544642—2.563932117959241 6+1.460859005472815 02 —0.2573807580582160 03,
Q)

w4 (0) = —0.596193270553488044.406889053988373 0—3.544645994796227 % +0.7339502113613411 63.



