
Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2013, Article ID 853925, 7 pages
http://dx.doi.org/10.1155/2013/853925

Research Article
Characteristic Roots of a Class of Fractional Oscillators

Ming Li,1,2 S. C. Lim,3 Carlo Cattani,4 and Massimo Scalia5

1 School of Information Science & Technology, East China Normal University No. 500, Dong-Chuan Road, Shanghai 200241, China
2Department of Computer and Information Science, University of Macau,
Avenue Padre Tomas Pereira, Taipa 1356, Macau SAR, China

3 Faculty of Engineering, Multimedia University, Selangor Darul Ehsan, 63100 Cyberjaya, Malaysia
4Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy
5 Department of Mathematics, University of Rome, la Sapienza Piazzale Aldo Moro, 00185 Rome, Italy

Correspondence should be addressed to Ming Li; ming lihk@yahoo.com

Received 9 August 2013; Accepted 13 September 2013

Academic Editor: Gongnan Xie

Copyright © 2013 Ming Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The fundamental theorem of algebra determines the number of characteristic roots of an ordinary differential equation of integer
order.Thismay cease to be true for a differential equation of fractional order.The results given in this paper suggest that the number
of the characteristic roots of a class of oscillators of fractional order may in general be infinitely great. Further, we infer that it may
also be the case for the characteristic roots of a differential equation of fractional order greater than 1.The relationship between the
range of the fractional order and the locations of characteristic roots of oscillators in the complex plane is considered.

1. Introduction

Oscillators are an essential component in devices in electron
positron collider systems (see, e.g., Zhao et al. [1], Ma et al.
[2], Zang et al. [3], Ding et al. [4], Marder et al. [5], Barroso
[6], Miller et al. [7], and Lemke [8], just citing a few). As a
matter of fact, oscillations are phenomena widely observed
in sciences and engineering relating to high energy physics
(see, e.g., Akhmediev et al. [9], Bachas [10], Winter et al. [11],
Dodonov [12], Tan [13], Diamandis et al. [14], Greenwald et
al. [15], Mathews et al. [16], Faiman [17], Cocho et al. [18],
Baldiotti et al. [19], Kyu Shin [20], Kirson [21], Clement [22],
Sikström et al. [23], Asghari et al. [24], Um et al. [25], Bahar
andYasuk [26], Hassanabadi et al. [27], Bhattacharya andRoy
[28], and Saad et al. [29], simply mentioning a few).

There are various structures of oscillators, such as Math-
ieu oscillator (Floris [30]), Liénard type oscillator (Yaşar [31]),
relativistic oscillator (Osborne [32]), Schrödinger equation
type oscillator (Cornwall and Tiktopoulos [33]), and Duff-
ing oscillator (Baltanás et al. [34] and Erturk and Inman
[35]). In fact, oscillators play a role in various fields, rang-
ing from experimental physics to electronics engineering
(see, e.g., Riley et al. [36], Soong and Grigoriu [37], Harris

[38], Papoulis [39], Bendat and Piersol [40], Devasahayam
[41], Karrenberg [42], Edson [43], and Balaban et al. [44]).

This research is in the domain of fractional oscillators
that attract increasing interests of physicists and engineers.
More specifically, we aim at revealing specific properties of
characteristic roots of a class of fractional oscillators. In doing
so, we first consider an ordinary differential equation of order
𝑛 given by
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where 𝑛 is a natural number and 𝑏
𝑛
is any complex number.

We always assume that at least one of the higher coefficients
𝑏
𝑛

̸= 0 for 𝑛 > 1. The characteristic equation of (1) is given by

𝐵 (𝛼) = 𝑏
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𝛼
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The fundamental theoremof algebra says that the number
of roots of (2) is 𝑛 (G. A. Korn and T. M. Korn [45]). This
theorem is stated in the domain of complex variables (Krantz
[46]).

Suppose that the 𝑛 roots of 𝐵(𝛼) are 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
. For

each root 𝑟 of multiplicity of 𝑚, either real or complex, we
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always consider 𝑟 the𝑚 roots inwhat follows unless otherwise
stated. Using the partial fraction expansion, 𝐵(𝛼) can be
expressed by

𝐵 (𝛼) = 𝑏
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(3)

Now, we rewrite (3) by the following expression:
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(4)

where 𝑚
𝑗
, 𝑐
𝑗
, 𝑘
𝑗
, and 𝐾 are constants. Without loss of gener-

ality, we can suppose that the only simple zero of 𝐵(𝛼) is 𝛼
𝑛
if

𝑛 is odd.
The factor (𝑚

𝑗
𝛼
2

𝑗
+ 𝑐
𝑗
𝛼
𝑗
+ 𝑘
𝑗
) in (4) corresponds to the

oscillator equation in the form
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The characteristic equation of (5) is in the form
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+ 𝑘
𝑗
) = 0. (6)

There are two classes of fractional oscillators. One is in the
form (Ryabov and Puzenko [47, Eq. (1)], Ahmad et al. [48],
Radwan et al. [49], Drozdov [50, Eq. (9)], Tofighi and Pour
[51], Tofighi [52, Eq. (2)], Blaszczyk et al. [53, Eq. (10)], and
Narahari Achar et al. [54, 55])
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(7)

The other is expressed with the form (Lim et al. [56–58],
Muniandy and Lim [59], Eab and Lim [60], and Li et al. [61])
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𝑗
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2
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This research utilizes the form of (8).
According to the fundamental theorem of algebra, there

are only two characteristic roots with respect to the oscillator
equation (5). They are
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One might be carelessly misled to consider that there
exist only two characteristic roots regarding the fractional
oscillator equation (8) because
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𝛼
2

𝑗,12
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= 0. (10)

However, we shall show that the number of the roots in
the above expression dramatically differs fromwhat in the fol-
lowing expression:
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+ 𝑘
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) = 0. (11)

The contributions of this paper are twofold. One is to
exhibit that the number of the characteristic roots of (8) is in
general infinitely great. The other is to reveal the relationship
between the range of 𝛽 and the locations of the characteristic
roots of (8) in a complex plane. In addition, if all 𝛼

𝑗
(𝑗 =

1, . . . , 𝑛) are simple complex pair of roots, the ordinary
differential equation of order 𝑛 (1) and its generalization given
by

(𝑏
𝑛
𝐷
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𝐷
𝑛−1
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0
)

𝛽

= 𝑥 (𝑡) , 𝛽 > 0

(12)

may be taken as the product of oscillators of integer order and
fractional order in series in the wide sense for 𝑛 being even,
respectively.

The rest of the paper is organized as follows. We shall
give the results in Section 2, including the proof that there are
infinite characteristic roots regarding (8), and the explanation
that (1) and (12) may be taken as oscillators in series in the
wide sense. Discussions are given in Section 3, which is
followed by Conclusions.

2. Results

2.1. Result 1. The number of the characteristic roots of (8)
may be infinitely great.

Denote by C the set of complex numbers. Let 𝑧 ∈ C.
Suppose that a power function is given by

𝑤 = 𝑧
𝑏

= 𝑒
𝑏ln(𝑧)

. (13)

Then, the number of different values of 𝑤 relies on the value
of 𝑏 for a given 𝑧. More precisely, we express that by the
following lemmas, which can be found in the literature, such
as [45] or Yu [62].

Lemma 1. If 𝑏 is a rational number expressed by the irreducible
fraction 𝑙/𝑚, where𝑚 ≥ 1, the number of values of 𝑧𝑏 is𝑚.

Lemma 2. If 𝑏 is an irrational number or imaginary number,
the number of values of 𝑧𝑏 is infinitely great.

The general expression of 𝑤 is in the form

𝑤 = 𝑧
𝑏

= 𝑒
𝑏ln(𝑧)

= 𝑒
𝑏[ln |𝑧|+𝑖(arg 𝑧+2𝑚𝜋)]

, 𝑖 = √−1.

(14)

Therefore, from Lemma 2, we have the theorem below.

Theorem 3. The number of the characteristic roots of the
fractional oscillator (8) is infinitely great if 𝛽 ̸= 1.
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Proof. Let 𝑐
𝑗
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According to Lemma 2, the number of the roots of either
(𝛼 − 𝛼

𝑗,1
)
𝛽 or (𝛼 − 𝛼

𝑗,2
)
𝛽 is infinitely great. Thus, Theorem 3

results.

2.2. Result 2. Equations (1) and (12) may be taken as oscilla-
tors in series.

Denote (𝑚
𝑗
𝛼
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𝑗
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𝑗
+ 𝑘
𝑗
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Without loss of generality, 𝑛 is assumed to be even. In addi-
tion, we suppose that all 𝛼

𝑗
(𝑗 = 1, . . . , 𝑛) are simple complex

pair of roots. Then, we have the theorem below.

Theorem 4. The ordinary differential equation (1) may be
taken as an oscillator (i.e., product of oscillators) in the wide
sense if 𝑛 is even and all 𝛼

𝑗
(𝑗 = 1, . . . , 𝑛) are simple complex

pair of roots. By wide sense, one means that it is a system
consisting of the product of a series of conventional 2-order
oscillators.

Proof. On the one hand, 𝐵
𝑗
(𝛼) stands for the characteristic

equation of the 𝑗th oscillator of order 2 since 𝑛 is even and
all 𝛼
𝑗
(𝑗 = 1, . . . , 𝑛) are simple complex pair of roots. On the

other hand, the characteristic equation of (1) can be expressed
by

𝐵 (𝛼) =
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Based on the theory of filter design (Mitra and Kaiser
[63]), the system (1) in the case of 𝑛 being even may be
expressed by Figure 1.

Therefore, the system (1)may be expressed by the product
of a series of 2-order oscillators.

Denote by𝐵𝛽(𝛼) the characteristic equation of (12).Then,
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where

𝐵
𝛽

𝑗
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𝑗
𝛼
2

𝑗
+ 𝑐
𝑗
𝛼
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+ 𝑘
𝑗
)

𝛽
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Thus, the system of fractional order expressed by (12) may be
the product of a series of fractional oscillators of (8).

x(t) y(t)
B1(𝛼) B2(𝛼) Bn/2(𝛼)

Figure 1: Oscillators of 2-order in concatenation.

3. Discussions

The previous section says that there are infinite roots in
𝐵
𝛽

𝑗
(𝛼) if 𝛽 ̸= 1. In the case of 𝛽 = 1, 𝐵𝛽

𝑗
(𝛼) reduces to the

characteristic equation of the conventional oscillator (5) with
two roots only.Thus, the fraction 𝛽 ̸= 1 dramatically alters the
behavior of characteristic roots of oscillators. For facilitating
our discussions, we omit the subscript 𝑗 in what follows if
not confused. More precisely, we specifically consider the
fractional oscillator in the form

(𝑚𝐷
2

𝑦(𝑡) + 𝑐𝐷𝑦(𝑡) + 𝑘𝑦(𝑡))

𝛽

= 𝑥 (𝑡) for 𝛽 > 0.

(20)

Figure 2 shows an RLC resonance circuit in series, where
𝑅, 𝐿, and 𝐶 represent resistor, inductor, and capacity, respec-
tively. In Figure 2, 𝐼(𝑡) is the electronic current and V(𝑡) the
power source. According to the Kirchhoff voltage law, one has

𝐷
2

𝐼 (𝑡) +

𝑅

𝐿

𝐷𝐼 (𝑡) +

1

𝐿𝐶

𝐼 (𝑡) =

1

𝐿

𝑑V (𝑡)

𝑑𝑡

. (21)

Let 𝜔 = √1/𝐿𝐶 and 𝑅/𝐿 = 2𝑏. Denote (1/𝐿)(𝑑V(𝑡)/𝑑𝑡) by
𝑒(𝑡). Then, (21) becomes the form

𝐷
2

𝐼 (𝑡) + 2𝑏𝐷𝐼 (𝑡) + 𝜔
2

𝐼 (𝑡) = 𝑒 (𝑡) . (22)

Generalizing (22) to the fractional order 𝛽 yields

(𝐷
2

𝐼(𝑡) + 2𝑏𝐷𝐼(𝑡) + 𝜔
2

𝐼(𝑡))

𝛽

= 𝑒 (𝑡) . (23)

Below, we specifically study the circuit in Figure 2 with
𝑅 = 0, as indicated in Figure 3.

In the case of Figure 3, (23) becomes the form

(𝐷
2

𝐼(𝑡) + 𝜔
2

𝐼(𝑡))

𝛽

= 𝑒 (𝑡) . (24)

Denote by ℎ(𝑡) the impulse response function of (24).
Then, using the techniques in fractional calculus and differ-
ential equations [64–81], we have (see [61] for details)

ℎ (𝑡) =

√𝜋

Γ (𝛽) (2𝜔)
𝛽−1/2

𝑡
𝛽−1/2

𝐽
𝛽−1/2

(𝜔𝑡) ,

𝛽 > 0, 𝑡 ≥ 0,

(25)

where 𝐽
𝛽−1/2

(𝜔𝑡) is the Bessel function of the first kind of
order 𝛽 − 1/2.

The following theorems reflect the particularity of roots
of 𝐵𝛽(𝛼).

Theorem 5. If 0 < 𝛽 < 1, all roots of 𝐵𝛽(𝛼) are located in the
left side of the complex plane.
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Figure 2: Illustration of RLC resonance circuit in series.
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Figure 3: Illustration of LC resonance circuit in series with damping
𝑅 = 0.

Proof. Note that

𝐽V (𝑡) =

∞

∑

𝑚=0

(−1)
𝑚

𝑚!Γ (𝑚 + V + 1)

(

𝑡

2

)

2𝑚+V

. (26)

From the above, we have the asymptotic expression in the
form

𝐽V (𝑡) ∼
1

√𝑡

for 𝑡 → ∞. (27)

Applying (27) to (25) produces

lim
𝑡→∞

ℎ (𝑡) = lim
𝑡→∞

√𝜋

Γ (𝛽) (2𝜔)
𝛽−1/2

𝑡
𝛽−1/2

𝐽
𝛽−1/2

(𝜔𝑡)

= 0, 0 < 𝛽 < 1.

(28)

Denote by 𝐻(𝑠) the Laplace transform of ℎ(𝑡). Then,
according to the final-value theorem, we have

lim
𝑠→0

𝑠𝐻 (𝑠) = 0, 0 < 𝛽 < 1. (29)

The above implies that all poles of𝐻(𝑠) except the origin
are strictly in the left side of 𝑠 plane. In the right of the 𝑠 plane,
𝐻(𝑠) is analytic. This completes the proof.

Theorem6. If𝛽 > 1, at least, parts of roots of𝐵𝛽(𝛼) are located
in the right side of the complex plane.

Proof. Note that

𝐽V (𝑡) =
(𝑡/2)

V

Γ (V + 1/2) Γ (1/2)

× ∫

1

−1

(1 − 𝑢
2

)

V−1/2
cos (𝑡𝑢) 𝑑𝑢, Re V > −

1

2

.

(30)

From the above, we have the following:

−(𝑡/2)
V

Γ (V + 1/2) Γ (1/2)

∫

1

−1

(1 − 𝑢
2

)

V−1/2
𝑑𝑢

≤ 𝐽V (𝑡) ≤
(𝑡/2)

V

Γ (V + 1/2) Γ (1/2)

∫

1

−1

(1 − 𝑢
2

)

V−1/2
𝑑𝑢.

(31)

Since 𝛽 > 1 implies V > 1/2, we immediately see that both
the right side and the left one on the above expression are
respectively unbounded when 𝑡 → ∞. Thus, for 𝛽 > 1, the
fractional oscillator (24) is nonstable according to the theory
of systems (Gabel and Roberts [77], Dorf and Bishop [78]).
Consequently, at least, some of poles of 𝐻(𝑠) are in the right
of the 𝑠 plane. Therefore, at least, parts of roots of 𝐵𝛽(𝛼) are
located in the right side of the complex plane.

Most of previous discussions take oscillators of fractional
order (24) as a specific object. Note that the number of the
characteristic roots of differential equation in general in the
form of (12) may also be infinitely great. Hence, comes the
following theorem in passing.

Theorem 7. Fractional-order differential equation expressed
by (12) has infinite characteristic roots if 𝑛 > 1 and if there
is at least a pair of roots that are simple complex.

Proof. The characteristic equation of (12) may be decom-
posed in the form of (18) due to 𝑛 > 1. Because there is at
least a pair of roots that are simple complex, the number of
the characteristic roots of (19) is infinitely great. Thus, the
number of characteristic roots of (12) is infinitely great. This
completes the proof.

The previous discussions exhibit interesting phenomena
of the characteristic roots of the oscillators of the fractional
type of (24). In the future, we will work on exploring the
answers of the questions described below.

(i) Are all poles of 𝐻(𝑠) with respect to (24) in the right
of the 𝑠 plane when 𝛽 > 1?

(ii) Might there be interesting oscillation behavior of (12)
if all 𝑐

𝑗
= 0 in (18) and if 𝑛 is even?

4. Conclusions

We have explained that the number of the characteristic
roots of fractional-order oscillators of (24) is usually infinitely
great. This conclusion has been further inferred to the case
of fractional-order differential equation of (12). We have
exhibited that all characteristic roots of (24) are strictly
located in the left side of the complex plane if 0 < 𝛽 < 1 and at
least some of characteristic roots of (24) are in the right side
of the complex plane if 𝛽 > 1. In the case of 𝛽 = 1, (24) reduce
to an ordinary damping-free oscillator.
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