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a b s t r a c t

Composite thin walled members, produced by the manufacturing process of pultrusion, exhibit structural
behaviour that is governed by their specific stiffness and strength properties.

Although the basic knowledge about their constitutive behaviour has already been assessed in current
technical literature, several relevant features are still being studied. They include the evaluation of the
long term behaviour, the influence of the shear deformations, the buckling load as well as the influence
of the web-flange junction stiffness.

Due to the presence of unidirectional fibres along the length of the beam, the condition of a rigid con-
nection between the flanges and web panel should be replaced by accounting for possible relative tor-
sional rotations, which can influence the pre-buckling behaviour.

In this paper, a one dimensional mechanical model with the purpose of detecting such an influence is
presented. The model, which is based on many common assumptions (a linear kinematics conjugated
with small strains and moderate rotations), is innovative in relation to the presence of a few additional
degrees of freedom which allow to simulate the web/flange relative rotations, thus generalizing the clas-
sical assumptions concerning the generic cross-section which maintains it un-deformed.

Many numerical examples obtained by using a finite element approximation with the aim of highlight-
ing the model capabilities have been developed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few years, FRPs have been used in the field of Civil
Engineering for different structural applications, including the res-
toration of existing concrete [1] and masonry [2,3] members, as
well as the erection of new structures entirely made of FRP, such
as bridges, footbridges, roof structures and wide membranes.

Within the context of new structures, FRPs are mainly used as
pultruded members.

From a mechanical point of view, FRP pultruded profiles can be
considered as linear elastic, homogeneous and transversely isotro-
pic, with the plane of isotropy being normal to the longitudinal axis
(i.e. the axis of pultrusion). Generally, due to the small thickness,
the mechanical behaviour is highly affected by warping strains.
In addition, the low values of the shear elastic moduli, more or less
the same as the polymeric resin, can provoke a non-negligible in-
crease in terms of lateral deflections, thus affecting both the local
and global buckling loads.

Consequently, the design of FRP members is usually driven by
deformability and stability requirements which are generally more
relevant than the strength limits of the material.

There are numerous studies on both the theoretical and exper-
imental buckling behaviour of members under either axial com-
pressive loads [4–11] or transverse loads [12–19]. A
comprehensive study, however, on the influence of the web-flange
junction stiffness is still lacking.

The condition under which the pultrusion guarantees a very
high strength and stiffness along the longitudinal direction of the
beam, while lower structural performances are available with re-
spect to the other directions, suggests the need for a more detailed
study on this subject. Moreover, the stiffness of the web/flange
connection is expected to be affected by both a higher resin volume
fraction as well as a higher risk of local imperfections.

According to the experimental results presented in [20], the
stiffness of the web/flange junction can be modelled by a bilinear
law which relates the torsional interaction per unit length to the
conjugated torsional rotation between the flange and the web.
More details are given in the Section 3.3.

From an engineering point of view, two values are thereby rel-
evant: the elastic limit and the ultimate one of the web/flange rota-
tion, with the latter corresponding to the failure of the junction.
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Within this context, the present paper aims to develop a beam
model capable of accounting for the web/flange rotations by
assuming the following hypotheses:

(a) the cross-section of the beam is subdivided into a defined
number of interconnected thin sub-components;

(b) five degrees of freedom are introduced to simulate the fol-
lowing generalized displacements: the axial displacement
(i.e. the displacement of the beam axis along the z direction);
the lateral deflections (i.e. the displacements of the beam
axis along the x/y directions); the flexural rotations (i.e.
the rotations of the cross-section around the x/y axis);

(c) additional degrees of freedom are introduced to simulate the
torsional rotation of any sub-component independently
from each other;

(d) the strains are assumed to be small, while the flexural/tor-
sional rotations are moderate.

Finally, the basic idea relates to the presence of a separate tor-
sional degree of freedom for any thin sub-component. This feature
allows for the web-flange torsional rotation to emerge. In addition,
it is also possible to investigate the behaviour of the beam account-
ing for more general constraints: torsional constraints applied only
to the bottom or upper flange as well as to the web panel can be
easily simulated by fixing a prescribed value of the corresponding
torsional degree of freedom.

The paper is completed by many numerical examples, devel-
oped by means of a finite element approximation, which highlight
the capabilities of such an approach.

2. Notations

The main relevant symbols utilized are listed below.

{X, i, j, k} global reference system
L beam axis length
B flange width
H web depth
bf flanges thickness
bw web thickness
R generic cross-section
R(i) intersection between R and the ith sub-

component
R(1), R(2) ends of the beam
O intersection between the k axis and R
P generic point of the beam
x, y, z Cartesian components of P
x position vector of the generic point P:

(x = xi + yj + zk)
u displacement field
H displacement gradient
e symmetric part of H
E Green strain tensor
S Cauchy stress tensor
dLint internal virtual work
dLext external virtual work
dLcon virtual work due to the deformability of the web/

flange junction
b external force per unit volume
p external force per unit surface acting on the

boundary of the beam
E longitudinal Young modulus
G transverse shear modulus
k load multiplier

( � )T the transposition symbol
d( � ) the variational symbol
( � )0 the derivation symbol with respect to the axial

coordinate z

3. Mechanical model

In this section the mechanical model briefly introduced in Sec-
tion 2 is developed in detail. It is important to note that the model
presents a 1-D formulation. In the authors’s opinion, this feature
fits the main motivations of this study: to propose a user-friendly
tool for predicting the behaviour of pultruded members with
deformable web/flange junctions overcoming the need for sophis-
ticated approaches relating to 2-D formulations.

3.1. Kinematics

With reference to the generic H-profile shown in Fig. 1, the dis-
placement field assumes the following form:

uðiÞ ¼ uo �uð2Þ3 yðiÞo �uðiÞ3 y� yðiÞo

� �
ð1:aÞ

v ðiÞ ¼ vo þuðiÞ3 x ð1:bÞ

wðiÞ ¼ wo þu1y�u2x ð1:cÞ

In Eqs. (1) the index i (i = 1, 2, 3) refers to the generic panel (upper/
bottom flange or web), the symbol uðiÞ3 denotes its own twisting
rotation and the symbol yðiÞo indicates the y-coordinate of the cen-
troid of the same panel, assumed as the pole for the rotation uðiÞ3 .
Referring to Fig. 1, it results that yð1Þo ¼ H

2 ; y
ð2Þ
o ¼ 0 and yð3Þo ¼ � H

2.
Five basic generalized displacements are present: uo, vo, wo, u1 and

u2. The symbols uo, vo and wo denote the displacement components of
the point O, which lies on the beam axis (Fig. 1) and coincides with the
centroid of the web panel, while u1 and u2 denote the flexural rota-
tions of the cross-section around the x and y axis, respectively.

From Eqs. (1.a–c), it easy to express the components of the dis-
placement gradient H with reference to the global axes (Fig. 1):

H11 ¼ 0 ð2:aÞ

H12 ¼ �uðiÞ3 ð2:bÞ

H13 ¼ u0o �u0ð2Þ3 yðiÞo �u0ðiÞ3 ðy� yðiÞo Þ ð2:cÞ

H21 ¼ uðiÞ3 ð2:dÞ

H22 ¼ 0 ð2:eÞ

H23 ¼ v 0o þu0ðiÞ3 x ð2:fÞ

H31 ¼ �u2 ð2:gÞ

H32 ¼ u1 ð2:hÞ

H33 ¼ w0o �u02xþu01y ð2:iÞ

The Green strain tensor thereby assumes the following form:

E ¼
E11 E12 E13

E12 E22 E23

E13 E23 E33

2
64

3
75 ¼ 1

2
HþHT þHTH
� �

¼ eþ 1
2

HTH ð3Þ

where e ¼ 1=2ðHþHTÞ.
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It is worth considering the following comments.
Despite E13, E23 and E33 being expected to be the only non-trivial

strain components, it emerges that so are E11 – 0, E12 – 0, and
E22 – 0. This is due to the simplified form of the displacement field.
Even if it easy to satisfy the condition E11 = E12 = E22 = 0 via more
general kinematic assumptions [15], the simplified kinematics pro-
posed in Eqs. (1) has been evaluated as appropriate for practical pur-
poses. Without losing accuracy, the terms E11, E12 and E22 can be
neglected, thus reducing the only non-zero strains to the following:

E13 ¼
1
2

u0o �u0ð2Þ3 yðiÞo �u0ðiÞ3 ðy� yðiÞo Þ �u2 þ v 0ou
ðiÞ
3

h

þu0ðiÞ3 uðiÞ3 x�u2w0o �u2u
0
1yþu2u

0
2x
i

ð4:aÞ

E23 ¼
1
2

v 0o þu0ðiÞ3 xþu1 � u0ou
ðiÞ
3 þu0ð2Þ3 uðiÞ3 yðiÞo

h

þu0ðiÞ3 uðiÞ3 ðy� yðiÞo Þ þu1w0o þu01u1y�u02u1x
i

ð4:bÞ

E33 ¼ w0o �u02xþu01y

þ 1
2
ðu0oÞ

2 þ ðv 0oÞ
2 þ ðw0oÞ

2 þ ðu01Þ
2y2 þ ðu02Þ

2x2
h i

þu0ð2Þ3 u0ðiÞ3 yðiÞo ðy� yðiÞo Þ � u0ou
0ð2Þ
3 yðiÞo � u0ou

0ðiÞ
3 ðy� yðiÞo Þ

þ v 0ou
0ðiÞ
3 xþw0ou

0
1y�w0ou

0
2x�u01u

0
2xy

þ 1
2

u0ðiÞ3

� �2
x2 þ ðy� yðiÞo Þ

2
h i

þ 1
2

u0ð2Þ3

� �2
yðiÞo

� �2 ð4:cÞ

The final expression of the Green Strain tensor as well as its first
variation are thereby:

E ffi
0 0 E13

0 0 E23

E13 E23 E33

2
64

3
75 ð5Þ

dE ¼ 1
2

dHþ dHT þ dHTHþHTdH
� �

ffi
0 0 dE13

0 0 dE23

dE13 dE23 dE33

2
64

3
75 ð6Þ

3.2. Stress–strain relationship

The classical Cauchy tensor S has been adopted as a suitable
stress measure:

S ¼
S11 S12 S13

S11 S22 S23

S13 S23 S33

2
64

3
75 ð7aÞ

It is assumed that the stress components are conjugated with
the Green strain components through the classical linear elasticity
relationships;

S13; S23; S33½ �T ¼
2G 0 0
0 2G 0
0 0 E

2
64

3
75 E13; E23; E33½ �T ð7bÞ

where the symbols E and G denote, respectively, the Young modulus
along the beam axis and the shear modulus within the (x–z) and (y–
z) planes (Fig. 1).

3.3. Web/flange connection

The web/flange junctions are expected to be rotationally
deformable. This circumstance, which mainly depends on the uni-
directional arrangement of the fibers, can be exacerbated by the
presence of resin-rich zones, as highlighted in Fig. 2.

Fig. 1. Beam configuration.

Fig. 2. Resin-rich zones at the web/flange junctions of composite pultruded
profiles.
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In line with the experimental evidence discussed in [20], the
web/flange junctions have been modelled by means of rotational
springs (Fig. 1) according to the bilinear law depicted in Fig. 3.

The symbols introduced in Fig. 3 have the following meaning:

Du3 relative web/flange rotation
l3 web/flange interaction (per unit length along the

beam axis k)
K1 elastic stiffness parameter
K2 post-elastic stiffness parameter
Du3,elas maximum elastic rotation
Du3,ult ultimate rotation

The results proposed in [20] have been obtained by Mosallam
et al. by means of an innovative experimental set-up shown in
Fig. 4.

The experimental tests were performed on both H-profiles and
L-profiles made of E-glass fibres embedded in a polyester resin. In
order to investigate the desired behaviour, the specimens were
held fixed at the lower flange and web, while rotation was applied
on the upper flange by means of a rigid steel device.

3.4. Principle of virtual displacement

The virtual work of internal stresses can be expressed as
follows:

dLint ¼
X

i¼1;2;3

Z L

0
dz
Z

RðiÞ
2S13dE13 þ 2S23dE23 þ S33dE33½ �dR ð8Þ

It is worth noting that the internal work dLint accounts for 2nd order
terms.

On the other hand, the virtual work done by the external force
assumes the following form:

dLext ¼
X

i¼1;2;3

Z L

0
dz
Z

RðiÞ
ðbduÞdRþ

Z
@RðiÞ
ðpduÞds

� �

þ
Z

RðaÞ

ðpduÞdR ð9Þ

being:
– b = [b1, b2, b3]T the external force field –per unit volume–;
– p = [p1, p2, p3]T the external force field acting on the boundary of

the beam –per unit surface–;
– u = [u, v, w]T the displacement field given by Eqs. (1);
– a = 1, 2 an index which refers to the current end of the beam

(Fig. 1).

Due to the linear form of the displacement field, the 2nd order
terms do not emerge in Eq. (9).

It results:

dLext ¼
Z L

0

h
q1duo þ q2dvo þ q3dwo þm1du1 þm2du2

þ . . .þmðiÞ3 duðiÞ3 þ . . .
� �

þ tðiÞ3 duð2Þ3

� �i
dzþ Q ðaÞ1 duðaÞo þ Q ðaÞ1 dv ðaÞo

þQ ðaÞ3 dwðaÞo þ CðaÞ1 duðaÞ1 þ CðaÞ2 duðaÞ2 þ . . .þ Cða;iÞ3 duða;iÞ3 þ . . .
� �

þTða;iÞ3 duða;2Þ3 ð10Þ

with:

q1 ¼
Z

R
b1dRþ

Z
@R

p1ds ð11:aÞ

q2 ¼
Z

R
b2dRþ

Z
@R

p2ds ð11:bÞ

q3 ¼
Z

R
b3dRþ

Z
@R

p3ds ð11:cÞ

m1 ¼
Z

R
b3ydRþ

Z
@R

p3yds ð11:dÞ

m2 ¼ �
Z

R
b3xdR�

Z
@R

p3xds ð11:eÞ

mðiÞ3 ¼
Z

RðiÞ
�b1ðy� yðiÞo Þ þ b2x
� 	

dR

þ
Z
@RðiÞ

�p1ðy� yðiÞo Þ þ p2x
� 	

ds ð11:fÞ

tðiÞ3 ¼ �
Z

RðiÞ
b1yðiÞo dR�

Z
@RðiÞ

p1yðiÞo ds ð11:gÞ

and

Q ðaÞ1 ¼
Z

RðaÞ

p1dR ð12:aÞ

Q ðaÞ2 ¼
Z

RðaÞ

p2dR ð12:bÞ

Q ðaÞ3 ¼
Z

RðaÞ

p3dR ð12:cÞ

CðaÞ1 ¼
Z

RðaÞ

p3ydR ð12:dÞ

CðaÞ2 ¼ �
Z

RðaÞ

p3xdR ð12:eÞ

Cða;iÞ3 ¼
Z

Rða;iÞ

½�p1ðy� yðiÞo Þ þ p2x�dR ð12:fÞ

0

μ
3

Δϕ 3Δϕ 3,elas Δϕ 3,ult

μ3,ult

μ3,elas

arctg K
2

arctg K1

Fig. 3. Relationship between the web/flange relative rotation and the correspond-
ing interaction-per unit length.

Fig. 4. Experimental set-up followed by Mosallam et al.
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Tða;iÞ3 ¼ �
Z

Rða;iÞ

p1yðiÞo dR ð12:gÞ

Finally, the Principle of Virtual Displacements can be expressed
as follows:

dLint þ dLcon ¼
Z L

0
qdvdzþ Q ðaÞdvðaÞ ð13Þ

where

q ¼ ½q1; q2; q3;m1;m2;m
ð1Þ
3 ; ðmð2Þ3 þ tð1Þ3 þ tð2Þ3 Þ;m

ð3Þ
3 �

T
ð14:aÞ

v ¼ uo; vo;wo;u1;u2; . . . ;uðiÞ3 ; . . .
h iT

ð14:bÞ

Q ðaÞ ¼ Q ðaÞ1 ;Q ðaÞ2 ;Q ðaÞ3 ;CðaÞ1 ;CðaÞ2 ;Cða;1Þ3 ; Cða;2Þ3 þ Tða;1Þ3 þ Tða;3Þ3

� �
;Cða;3Þ3

h iT

ð14:cÞ

vðaÞ ¼ uðaÞo ; v ðaÞo ;wðaÞo ;uðaÞ1 ;uðaÞ2 ; . . . ;uða;iÞ3 ; . . .
h iT

ð14:dÞ

dLcon ¼
X
r¼1;2

Z L

0
lðrÞ3 d DuðrÞ3

� �
dz ð14:eÞ

It is worth noting how the term dLcon accounts for the contribution
relative to the web/flange interactions lðrÞ3 where the index r refers
to the rth web/flange junction (r = 1, 2).

3.5. Finite element approximation

Let ue be the numeric vector collecting the degrees of freedom
related to a generic finite element, with the subscripts ‘‘a’’ and
‘‘b’’ denoting the first and second node, respectively:

ue ¼ uo;vo;wo;u1;u2; . . . ;uðiÞ3 ; . . .
� �

a
; u0o;v 0o;w0o;u01;u02; . . . ;u0ðiÞ3 ; . . .
� �

a

h
;

ðuo; vo;wo;u1;u2; . . . ;uðiÞ3 ; . . .Þb; ðu
0
o; v 0o;w0o;u01;u02; . . . ;u0ðiÞ3 ; . . .Þb

iT
ð15Þ

The generalized displacements field u ¼
½uo;vo;wo;u1;u2; . . . ;uðiÞ3 ; . . .�

T
can be interpolated over the generic

finite element as follows:

u ¼ Nue ð16Þ

In Eq. (16), the symbol N denotes the following block matrix:

N ¼ N10; N11; N20; N21½ � ð17Þ

where

Npq ¼

hpq 0 0 0 0 . . . 0 . . .

hpq 0 0 . . . 0 . . .

hpq 0 0 . . . 0 . . .

hpq 0 . . . 0 . . .

hpq . . . 0 . . .

sym . .
.

0 . . .

hpq . . .

. .
.

2
66666666666666664

3
77777777777777775

ð18Þ

and hpq are the following cubic Hermitian interpolating functions
(p = 1,2), (q = 0,1):

h10 ¼
1
4
ð2� 3nþ n3Þ ð19:aÞ

h11 ¼
le

8
ð1� n� n2 þ n3Þ ð19:bÞ

h20 ¼
1
4
ð2þ 3n� n3Þ ð19:cÞ

h21 ¼
le

8
ð�1� nþ n2 þ n3Þ ð19:dÞ

being n the normalized axial coordinate ð�1 6 n 6 1Þ and le the
length of the current finite element.The internal stresses can be ex-
pressed as a function of the nodal displacements by means of:

½S13; S23; S33�T ¼ CðBL þ uT
e BNLÞue ð20Þ

where S13, S23 and S33 denote the internal stresses given in Eq. (7b),
C accounts for the elastic moduli while BL and BNL account for the
linear and non-linear part of the strain field, respectively. In partic-
ular, it results:

C ¼
ð2G=vÞ 0 0

0 ð2G=vÞ 0
0 0 E

2
64

3
75; ð21Þ

where the term (G/v) denotes the shear modulus with v the cross-
section corrective factor, while the term E indicates the Young mod-
ulus along the k-axis.The secant stiffness matrix Ke assumes the fol-
lowing final form, where the subscript ‘‘e’’ refers to a generic finite
element:

Ke ¼
le

2

Z þ1

�1
BTCBdnþ

X
r¼1;2

le
2

Z þ1

�1
NT dðrÞT KsecdðrÞNdn: ð22Þ

In Eq. (22), the following positions have been introduced:

B ¼ BL þ uT
e BNL; ð23:aÞ

dðrÞ ¼ dðiÞ � dðjÞ ð23:bÞ

with r = 1, 2 and Ksec denoting the secant stiffness of the rth web/
flange junction.

In Eq. (23.b), the symbols d(i) and d(j) denote two numeric vec-
tors which exhibit null components except for the twisting degree
of freedom relative to the ith and jth sub-component, respectively.
By virtue of this position, the relative torsional rotation between
the ith and jth sub-component can be expressed by the following
row by column product: d(r)u.By standard procedures, the equilib-
rium equations of the finite element model can be written as
follows:

KgUg ¼ F ð24Þ

where Kg is the global secant stiffness matrix, Ug and F denote the
nodal global displacements and external forces vectors in the refer-
ence system {X, i, j, k}, respectively.

4. Numerical results

In this section, some numerical results concerning a composite
H-profile are presented and discussed.

The goals are the following:

- the assessment of the proposed approach by comparing the
numerical predictions with other results presented in
literature;

- the evaluation of the influence of the external torsional con-
straints, which can be applied to either the whole cross-section
or the upper/bottom flange only, as well as the web;

- the evaluation of influence of the web/flange junction stiffness;
- the evaluation of the influence of the shear deformability of the

flanges and/or the web.

F. Ascione, G. Mancusi / Composites: Part B 55 (2013) 599–606 603
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4.1. Model assessment

The first scheme examined by the authors concerns the GFRP H-
profile shown in Fig. 5. The beam is simply supported with sup-
ports preventing the torsional rotations of both the flanges and
web.

The geometrical and mechanical properties are summarized in
Table 1. The cross-section is depicted in Fig. 6.

A constant bending moment C1 is attained over the beam axis.
This scheme, already considered in [21–24], has been here

reproduced in view of a preliminary comparison.
In order to accommodate the mechanical hypotheses assumed

in [21,23], the model presented in Section 3 has been applied in
combination with the following choices:

(a) both the flanges and web have been assumed shear deform-
able only in the plane between the z-axis and the current
tangent to the mid-line, while shear un-deformability has
been considered in the plane between the z-axis and the
normal to the mid-line.

(b) the stiffness of the web/flange junctions has been increased
towards infinite.

The comparison has been reported in terms of the buckling load
(i.e. the critical value of the external moments applied to the ends
of the beam), with the numerical results being summarized in
Table 2.

The prediction obtained by the present model (C1,CR(PM)) has
been compared with the buckling loads given in [21] (C1,CR(R))
and in [23] (C1CR(A)).

Despite the strategy followed in [23] (i.e. eigenvalue problem),
the value C1,CR(PM) has been obtained as the asymptotic limit of
the non-linear response evaluated via the numerical model dis-
cussed in Section 3.5. An imperfection has been included in terms
of a small initial deflection along the x-axis.

The accuracy of the mesh adopted (Table 3) has been checked a
posteriori with respect to the torsional rotation of the web panel,
uð2Þ3 for beam with L = 1900 mm, and flexural rotation, u1 for the
beam with L = 6000 mm. Both the monitored values have been
evaluated at the mid-span cross-section under the critical value
of the external moment.

(i=3)

(i=2)

(i=1)

C1C1

z

y

y

O
x

L

Fig. 5. Structural scheme.

Table 1
Mechanical and geometrical properties.

Shape E (MPa) G (MPa) B (mm) H (mm) bf = bw = b (mm) L (mm)

200 � 200 � 10 18633 4428 200 190 10 1900
200 � 200 � 10 18633 4428 200 190 10 6000

w

f

y

O

x

B

H

b

b

Fig. 6. Dimensions of the cross-section.

Table 2
Buckling loads – comparison.

Shape L (mm) C1,CR(R)

(k Nm)
C1,CR(A)

(k Nm)
C1,CR(PM)

(k Nm)

200 � 200 � 10 1900 78.60 73.39 76.00
200 � 200 � 10 6000 11.90 10.80 17.00

(PM) present model.

Table 3
Convergence tests.

Mesh
refinement

Convergence test 1 –
L = 1900 mm

Convergence test 2 –
L = 6000 mm

Finite
elements

uð2Þ3 � 10þ6 Finite
elements

u1

#1 50 �2.5689 1000 �0.02013
#2 100 �2.5625 1500 �0.01343
#3 200 �2.5554 2000 �0.01008
#4 500 �2.5545 3000 �0.00672
#5 600 �2.5545 3500 �0.00672
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It is worth noting that there is a good agreement with the re-
sults presented in current literature in the case of the less slender
beam.

4.2. Influence of the kinematic boundary conditions

With the aim of highlighting the influence of the kinematical
boundary conditions on the pre-buckling behaviour of a simply
supported GFRP beam with H-profile, the authors have considered
a new beam cross-section (both for geometrical and mechanical
properties) with respect to the previous Section 4.1. The aforemen-
tioned properties are summarized in Table 4.

The analysis has been carried out taking into account:

– four different values of L (length of the beam): 1000 mm,
2000 mm, 3000 mm and 4000 mm;

– two different choices concerning the torsional constraints
applied at the ends of the beam: the first one, called ‘‘FFC’’, cor-
responds to the following condition: uð1Þ3 free;uð2Þ3 free;uð3Þ3 ¼ 0
(i.e. only the torsional rotation of the bottom flange is pre-
vented), while the other one, ‘‘CCC’’, corresponds to
uð1Þ3 ¼ uð2Þ3 ¼ uð3Þ3 ¼ 0 (the torsional rotations of both the web
panel as well as the upper and bottom flanges are prevented);

– a uniform eccentric load per unit length applied as depicted in
Fig. 7;

– two different relationships to model the web/flanges junction
by means of rotational springs (Fig. 1): the first one is the bilin-
ear relationship depicted in Fig. 3; the second one is a simplified
linear relationship obtained by assuming the secant stiffness at
failure. The relationship parameters are summarized in Table 5.

The results are plotted in Fig. 8 in terms of the critical load mul-
tipliers k versus beam length, L, related to the above cited FFC and
CCC kinematic boundary conditions.

It is worth considering the following considerations.
First of all, as previously stated, the critical value of k has been

evaluated by detecting the asymptote of the non-linear response of
the numerical model.

From the graph of Fig. 8, it is possible to understand that the
kinematical boundary conditions do not influence the beam buck-
ling load. The comparison between the numerical results obtained
by the relationships M1 and M2 do not show any relevant differ-
ences, thus allowing to simplify the experimental characterization
of the junction behaviour.

Table 4
Mechanical and geometrical properties.

E (MPa) G (MPa) B (mm) H (mm) bf (mm) bw (mm)

23000 3000 100 196 8 5

w

f

yq   = λ 1.0 N/mm

y

O

x

B

H

b

b

Fig. 7. Cross-section under investigation.

Table 5
Mechanical parameters of the web/flange connection relationship.

Web/flange
junction model

Du3,elas

(rad)
Du3,ult

(rad)
K1

(N mm/mm)
K2

(N mm/mm)

M 1 0.04 0.3 7,500,000 400,384
M 2 0.3 0.3 1,347,000 –

[mm x 10 ]0 1,0 2,0 3,0 4,0

100

200

300

400

500

600

0

λ

FFC/CCC

Web/flange relationship (M1)

FFC/CCC

Web/flange relationship (M2)

L
3

700

Fig. 8. Influence of constraint conditions and junction relationships on the load
multiplier k.

0

μ
3

Δϕ30.04 0.3

μ
3,ult

μ
3,elas

(a)

(b)

(c)
(d)

Fig. 9. Web-flange rotations at the buckling point [L = 1000 mm (a) L = 2000 mm
(b) L = 3000 mm (c) L = 4000 mm (d)].
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4.3. Influence of the deformability of the web/flange connection

The entity of web/flange relative rotations has been investi-
gated with reference to the same scheme previously considered
in Section 4.2.

The constraint condition named ‘‘FFC’’ has been considered due
to the circumstance that the main effects emerge at the ends of the
beam where Duð23Þ

3 ¼ uð2Þ3 �uð3Þ3 with uð3Þ3 ¼ 0. The results have
been presented in Fig. 9 with reference to several length values
for the corresponding critical values of the load multiplier.

It is possible to understand for the low slenderness beam the
elastic limit (Du3,elas) appears before the buckling load is reached.

It is worth noting that the possibility to capture this last result
is particular to the mechanical model presented here.

4.4. Influence of shear deformability

The influence of the shear deformability on the buckling has
been investigated with reference to the same scheme previously
considered in Sections 4.2 and 4.3.

In this example, only the constraint condition named ‘‘FFC’’ has
been considered. Limiting our discussion to the junction model M1,
the numerical results are reported in Table 6 in terms of the critical
values of the load multiplier k .

The results reveal that the simplified model proposed by the
authors is able to account for a relevant influence of the shear
deformability of the web and flanges on the global buckling limit,
especially for a short length beam.

5. Conclusions

This paper deals with the formulation of a simplified mechani-
cal model with the purpose of detecting the influence of the web/
flange junction stiffness on the pre-buckling behaviour of pultrud-
ed composite beams.

The main feature of the model is to adopt an innovative 1-D for-
mulation which allows to predict the aforementioned influence in-
stead of using more complex 2-D analyses.

The present model has been derived from the classical Timo-
shenko’s beam formulation by including a few additional degrees
of freedom capable of simulating the web/flange relative rotations.
This is based on the choice of subdividing the cross-section into
sub-components (i.e. the flanges, the web panel) which can exhibit
a local torsional rotation field.

The stiffness of the web/flange junction has been modelled
according to recent results presented in current literature relating
the web/flange relative rotation and the conjugated interaction per
unit length. This relationship is assumed to be bilinear and de-
pends on a few parameters: the elastic limit and ultimate limit of
the relative web/flange rotation, the elastic and post-elastic
stiffnesses.

Many numerical results have been obtained by means of a finite
element discretization in order to highlight the capabilities of the
model, which deal with the influence of the junction stiffness,

but also with the possibility of prescribing separate torsional con-
straints on any sub-component.

The numerical results, relative to the H-profile subjected to
eccentric vertical load, have shown that when dealing with low
slenderness beams, it emerges that the elastic limit of the web/
flange rotation can be attained before the buckling load is reached.
This last result represents a particularity of the proposed mechan-
ical model.

Finally, this suggests the need for the manufacturer to perform
a mechanical characterization of the web/flange junction stiffness.
The authors have also shown that it is possible to obtain the char-
acterization of the web/flange junction relationship by means of a
simplified test intended to detect only the ultimate point of the
relationship. This could be useful for technical purposes, due to
the possibility to overcome the complexity of a full identification
of all the parameters of the bilinear relationship.

References

[1] Benzarti K, Freddi F, Frémond M. A damage model to predict the durability of
bonded assemblies. Part I: debonding behaviour of FRP strengthened concrete
structures. Constr Build Mater 2011;25(2):547–55.

[2] Baratta A, Corbi O. Stress analysis of masonry vaults and static efficacy of FRP
repairs. Int J Solids Struct 2007;44(24):8028–56.

[3] Corbi I. FRP composites retrofitting for protection of monumental and ancient
constructions. Open Constr Build Technol J 2012;6:361–7.

[4] Turvey GJ, Zhang Y. A computational and experimental analysis of buckling,
post buckling and initial failure of pultruded GRP columns. Comput Struct
2006;84:1527–37.

[5] Mottram JT. Determination of critical load for flange buckling in concentrically
loaded pultruded beams. Composites: Part B 2004;35(1):35–47.

[6] Di Tommaso A, Russo S. Shape influence in buckling of GFRP pultruded
columns. Mech Compos Mater 2003;39(4):329–40.

[7] Qiao P, Davalos J, Wang J. Local buckling of composites FRP shapes by discrete
plate analysis. ASCE J Struct Eng 2001;127(3):245–55.

[8] Kollar LP. Local buckling of fiber reinforced plastic composite structural
members with open and closed cross sections. ASCE J Struct Eng
2002;129(11):245–55.

[9] Minghini F, Tullini, Laudiero F. Buckling analysis of FRP pultruded frames using
locking-free finite elements. Thin Wall Struct 2008;46:223–41.

[10] Pecce M, Cosenza E. Local buckling curves for the design of FRP profiles. Thin
Wall Struct 2000;37(33):207–22.

[11] Qiao P, Shan L. Explicit local buckling analysis and design of fiber-reinforced
plastic composite structural shapes. Compos Struct 2005;70:468–83.

[12] Mittelstedt C. Local buckling of wide-flange thin-walled anisotropic composite
beams. Arch Appl Mech 2007;77:439–52.

[13] Feo L, Mancusi G. Modeling shear deformability of thin-walled composite
beams with open cross section. Mech Res Commun 2010;37(3):320–5.

[14] Feo L, Mancusi G. The influence of the shear deformations on the local stress
state of pultruded composite profiles. Mech Res Commun 2013;47(1):44–9.

[15] Mancusi G, Feo L. Non-linear pre-buckling behaviour of shear deformable thin-
walled composite beams with open cross-section. Composites: Part B
2013;47:379–90.

[16] Ferreira AJM, Carrera E, Cinefra M, Roque CMC, POLIT O. Analysis of laminated
shells by a sinusoidal shear deformation theory and radial basis functions
collocation, accounting for through-the thickness deformations. Composites:
Part B 2011;42:1276–84.

[17] Bourgeois S, Cochelin B, Guinot F, Picault E. Buckling analysis of tape springs
using a rod model with flexible cross-sections. Eur J Comput Mech
2012;21:184–94.

[18] Guinot F, Bourgeois S, Cochelin B, Blanchard L. A planar rod model with flexible
thin-walled cross-sections. Application to the folding of tape springs. Int J
Solids Struct 2012;49:73–86.

[19] Feo L, Mosallam AS, Penna R. Mechanical behaviour of web-flange junctions of
thin walled pultruded I-profiles: an experimental and numerical evaluation.
Composites: Part B 2013;48:18–39.

[20] Mosallam AS, Elsadek AA, Pul S. SemH-rigid behaviour of web-flange junctions
of open-web pultruded composites. In: Proceedings of the international
conference on FRP composites. San Francisco, California; 2009.

[21] Roberts TM, Al-Ubaidi H. Influence of shear deformation on restrained
torsional warping of pultruded FRP bars of open cross-section. Thin Wall
Struct 2001;39:395–414.

[22] Roberts TM. Influence of shear deformation on buckling of pultruded fiber
reinforced plastic profiles. J Compos Constr 2002;6(4):241–8.

[23] Ascione L, Giordano A, Spadea S. Lateral buckling of pultruded FRP beams.
Composites: Part B 2011;42(4):819–24.

[24] Ascione L, Berardi VP, Giordano A, Spadea S. Buckling failure modes of FRP
thin-walled beams. Composites: Part B 2011;42(4):819–24.

Table 6
Critical values of k.

L (mm) k

G = 3000 MPa G ?1

1000 640 1000
2000 85 100
3000 25 26
4000 12 12
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