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Abstract

In the Euclidean geometry points are the primitive entities. Point-based spa-

tial construction is dominant but apparently, in a constructive point of view and

a näıve knowledge of space, the region-based spatial theory is more quoted, as re-

cent and past literature strongly suggest. The point-free geometry refers directly

to sets, the spatial regions, and relations between regions rather than referring to

points and sets of points. One of the approach to point-free geometry proposes

as primitives the concepts of region and quasi-metric, a non-symmetric distance

between regions, yielding a natural notion of diameter of a region that, under

suitable conditions, allows to reconstruct the canonical model. The intended

canonical model is the hyperspace of the non-empty regularly closed subsets of

a metric space equipped with the Hausdorff excess. The canonical model can be

enriched by adding more qualitative structure involving a distinguished family of

bounded regions and a group of similitudes preserving bounded regions, so pro-

ducing a metric geometry in which shape is relevant. The main purpose of this

article is to highlight the role of nearness and emphazise the proximity aspects

taking part in construction by quasi-metrics of point-free geometries.

1 Introduction

The main purpose of this article is to highlight the role of nearness and emphasize

the proximity aspects taking part in the construction by quasi-metrics of point-free

metric geometries, not only the Euclidean one but all metric geometries in which the

notion of betweenness, metric convexity, external convexity and other basic geometric

properties make sense [3]. Euclidean geometry has points as primitive entities. Point-

based spatial construction is dominant but apparently, in a constructive point of view
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and a näıve knowledge of space, the region-based spatial theory is more quoted, as

recent and past literature strongly suggest. The point-free geometry refers directly to

sets, the spatial regions, and relations between regions rather than referring to points

and sets of points. At the beginning [5],[15],[16] a region-based theory of geometry

of space alternative to Euclidean geometry, which is point-based, corresponded more

to a logical-philosophical exigency rather than to a mathematical query. But then

region-based theories of space have been revealed useful in applications [1],[2],[4,[17],

especially in Computer Science and, in particular, in qualitative spatial representation

and reasoning, QSTR, [10]. In common life a point is perceived as the result of an

abstraction process, while regions appear as more realistic entities rooted in the em-

pirical experience. We have a better knowledge of a small region than a point and also

a basic natural intuition of nearness between regions and adjacency between sets of

regions. In Whitehedian geometry the primitives are the regions and the connection

relation between regions, that is the relation between two regions which either overlap,

a mereological concept, or at least share a common boundary point, a topological con-

cept. What is the most natural world in which the regions can live? Hyperspaces of

metric spaces are natural frameworks in which regions can be thaught as objects. This

suggests to go back to possible distances between sets in metric spaces. And the Haus-

dorff excess, the prototype of non symmetric distances called quasi-metrics appears

as the most appropriate. The Hausdorff excess is a half of the celebrated Hausdorff

metric which reveals very useful in many branches of Mathematics and appears as the

most natural one in measuring of natural world phenomena’s changes and also suitable

to decribe reciprocal positions of regions in the space. A canonical model of space of

regions is the hyperspace of the nonempty regular closed, or, equally well, regular open

subsets of a metric space equipped with the Hausdorff excess. So, it seems natural to

substitue the Hausdorff excess with a quasi-metric.

In [6] the authors proposed a point-free approach to geometry assuming as only

primitives the concepts of region and quasi-metric. A quasi-metric is a non symmetric

distance and in the real life non symmetric distances are very common.

Quasi-metric space of regions is a framework including all known, recent and clas-

sical, models giving a new formalization of region-based geometric theory. We hope

it can be a computationally efficient system. Our target is a representation theorem

for an abstract quasi-metric of regions as hyperspace of nonempty regular closed, or,

equally well, regular open subsets of a metric space carrying the Hausdorff excess or, in

other words, as canonical model. The final goal is to collect a system of conditions under

which an abstract space of regions can be seen as a canonical model. Essentially, we

are concentrated on geometric aspects. For that, we are interested to spaces of regions,
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when they admit points , enough points and the regions, entities of same dimension,

are fully determined by their own points. Of course, we construct the notion of point

by regions and state the relation a point belongs to a region. A quasi-metric of regions

induces naturally a parthood relation between regions, that in turn yields a natural

notion of diameter of a region. Nearness in the core of our construction. It comes in

consideration when defining point-representing sequences, that are special sequences

whose elements become smaller and smaller and nearer and nearer. Here nearness is

non symmetric. In a first tentative, we might assume a point-representing sequence as a

point, but this choise should reveal not completely satisfactory. For instance, two van-

ishing decreasing sequences {xn} and {yn} of Euclidean spheres each done by internally

tangent spheres at a same common point but with each xn externally tangent to each

ym should codify two distinct ideal points. To exclude this kind of double visualization

of a same point, inspired by the classical Cauchy construction of metric completion,

we proceed to an identification by adjacency. There are in literature [9] point-free

constructions having as primitives the notion of region, a parthood relations between

regions and diameter. But, different quasi-metrics, such as the Euclidean excess and

the Manhattan excess, [11], give the same parthood, the same diameter function, and,

being bi-Lipsctizian equivalent, the same nearness, consequentely the same point-space

but very different geometries.

To achieve our representation theorem, we proceed gradually justifying by coun-

terexamples at any step our constraints. To this end, we characterize the interior points

of a point-region by introducing a strong parthood relation between regions that is fi-

nally recast as the strong inclusion, the dual of Efremovic proximity, associated with

the metric of point-space.

When the point-space has been constructed then a metric geometry in the sense of

Blumenthal [3] can start. For instance, we can consider loci of lower dimension such

as lines, planes and so on. Of course, geometric definitions and properties in a metric

geometry so generated should be expressed in terms of properties of the generating

quasi-metric. Blumenthal gave metric characterizations of the Euclidean geometry but

also characterizations of the hyperbolic geometry and further of the elliptic geometry

as well. The hyperspace of a metric space can be metrized, as well-known, by the

Hausdorff metric that is the symmetrization of the Haudorff excess. But, unfortunately,

only little work has been done on Hausdorff metric geometry of the hyperspace.

In the end, we quote as an example the Tarski Geometry of Solids in three di-

mensional Euclidean space. In our opinion this model is not only interesting in itself

but it is suggestive of other models, for example which ones deriving from Minkowki

[11] and Chebichev metric. Finally, by using groups of general similitudes preserving
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shape or other relevant features like colours or orientation we introduce the notion of

featured-point.

2 Preliminaries

Background on the Hausdorff excess

What is the most natural world in which the regions can live? The answer is

immediate and simple. Hyperspaces are natural frameworks in which regions can be

thaught as objects. This suggests to go back to possible distances between sets in

metric spaces.

Let (X, d) be a metric space. At a first glance, for any two nonempty subsets a, b

of X the distance d between a and b defined as:

d(a, b) := inf {d(A, B) : A ∈ a, B ∈ b}

and the gap D defined as:

D(a, b) := sup{d(A, B) : A ∈ a, B ∈ b}

appear as natural but they both have serious liabilities. On one side, the d−distance

between distinct sets can be zero and further does not satisfy the triangle inequality.

On the other side, the gap of a set from itself is just the diameter of the same set.

Because of that, at the same time in which region-based theory of Euclidean geometry

appeared in literature [15],[16], F. Hausdorff introduced a new distance between sets

the excess of a over b, as just the same word suggests, as:

ed(a, b) := sup {d(A, b) : A ∈ a},

where d(A, b) := inf {d(A, B) : B ∈ b} is the usual distance between points and sets.

The excess ed is located in between d and D :

d(a, b) ≤ ed(a, b) ≤ D(a, b) for each a, b ⊆ X.

Denote as S(P, ε) = {Q : d(P, Q) < ε} the open sphere with center P and radius

ε, and as S(a, ε) = ∪{S(P, ε) : P ∈ a} the ε−enlargement of a, union of all spheres

having their center in a and radius less than ε.

A basic observation: ed(a, b) ≤ ε if and only if a ⊆ S(b, ε).

Any metric structure (X, d) yields a rich flow of many different and very interesting

notions close each other. Associated with a metric d there is the Efremovic proximity
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over the powerset of X defined as:

a is near b if and only if d(a, b) = 0.

That can be dually recast as a strong inclusion, a binary relation on the hyperset of

X :

a�d b if and only if a is far from X \ b

or, equivalently, a �d b if and only if there is a positive real number ε such that the

ε−enlargement of a is contained in b [7],[13]. Accordingly, strong inclusions have been

named in literature also as non tangential inclusions or well inside inclusions.

The Hausdorff excess ed is a non symmetric distance satisfying the triangle inequal-

ity. Further, ed(a, b) is zero if and only if a ⊆ Cl(b). So, to get zero-self distance

property we are forced to limit the action of ed to pairs of closed subsets or equally

well to pairs of regular open subsets. The Hausdorff excess is the prototype of non

symmetric distances which are called quasi-metrics.

• Interrelations

We give now a list of interrelations among a metric d, the Hausdorff excess ed and

the distance between points and sets. Whenever P, Q are points and x, y are nonempty

subsets, then the following relations holds:

ed({P}, {Q}) = d(P, Q) ; ed({P}, x) = d(P, x); ed({x}, P ) = sup{d(Q, P ) : Q ∈ x}.
ed(x, y) ≤ d(P, Q) , P ∈ x, Q ∈ y ; limn+∞ed(Bd(P, 1

n ), Bd(Q, 1
n)) = d(P, Q).

Further, if P, Q belong to x, y respectively, then max {ed(x, y), ed(y, x)} ≤ d(P, Q).
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3 Quasi-metrics

A quasi-metric q on a nonempty set X is a function operating on the pairs of elements

of X towards R+, the non negative real numbers, satisfying the following conditions:

q1) q(x, y) = q(y, x) if and only if x = y, zero-self distance plus antisymmetry

q2) q(x, y) ≤ q(x, z) + q(z, y), for each x, y, z ∈ X triangle inequality.

If q is a quasi-metric on X, then the function q−1 on X × X defined by q−1(x, y) =

q(y, x) for all x, y ∈ X is a quasi-metric as well, called the conjugate of q, and the

function qs defined on X ×X as qs(x, y) = max{ q(x, y), q(y, x)} for all x, y ∈ X is a

metric on X called the symmetrization of d. The symmetrization of a metric excess is

the Hausdorff metric.

Each quasi-metric q on X induces a T1 topology τ (q) on X whose a base is the

family of q−spheres : Sq(x, r) = {y ∈ X : q(x, y) < r}, where x ∈ X and r is a

positive real number.

Any quasi-metric is monotone increasing in its first component and monotone de-

creasing in the second one :

∀x, x′, y ∈ X, x ≤ x′ ⇒ q(x, y) ≤ q(x′, y) and x ≤ x′ ⇒ q(y, x) ≥ q(y, x′).

• Quasi-proximity

Any quasi-metric determines a non symmetric nearness.

Let (R, q) be a quasi-metric space. Jointly with q, a quasi-proximity, a binary

relation over the powerset exp R, can be given as follows, [12].

Let R1, R2 ∈ R. Then, R1 is near to R2 provided that for each positive real number

ε there is x ∈ R1 and y ∈ R1 such that q(x, y) < ε. It happens that :

p1) R is far from ∅ and ∅ is far from R.

p2) R1 is near to R2 ∪R3 iff R1 is near to R2 or R3 and

R1 ∪R2 is near to R3 iff R1 is near to R3 or R2 is near to R3.

p3) If R1 is far from R2, then there is R3 such that R1 is far from R3 and R2 is

far from R \R3.

• Parthood.

Any quasi-metric generates naturally a parthood.

Let X be a nonempty set. A parthood P on X is a binary relation over ”some” hyperset

of X satisfying the following axioms:

P1) ∀x[P (x, x)] reflexivity

P2) ∀x, y[(P (x, y) ∧ P (y, x))→ x = y antisymmetry

P3) ∀x, y[(P (x, y) ∧ P (y, x))→ P (x, z)] transitivity

P4) PP (x, y) ≡def P (x, y) ∧ ¬ P (y, x) proper parthood.
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Any parthood relation yields as subsequent binary relation the overlap relation O

defined as: O(x, y) ≡def ∃z(P (z, x) ∧ P (z, y)).

In mereology,[10], the following properties are required to a parthood :

∀x, y[¬P (y, x)→ ∃z(P (z, y) ∧¬O(z, x))] strong supplementation

The strong supplementation axiom makes the parthood extensional:

∀x, y[∀z(O(x, z)←→ (O(z, y))→ x = y] extensionality.

Furthermore, it is required the existence of both the mereological sum and intersection

conditional on overlap:

∀x, y[∃z∀u((O(u, z)←→ O(u, x)∨O(u, y))] (sum z = x + y)

∀x, y[O(x, y)→ ∃z∀u(P (u, z)←→ P (u, x)∧ P (u, y))] (intersectionz = x · y).

Any quasi-metric q gets a parthood relation ≤q as follows:

x ≤q y if and only if q(x, y) = 0

and in turn the overlap relation :

x and y overlap if and only if there exists a region z such that z ≤q x and z ≤q y.

The parthood naturally associated with the Hausdorff excess on the hyperspace of

all nonempty closed subsets and also on the hyperspace of regular open subsets of a

given metric space is the usual inclusion. But, when limiting to bounded regularly

closed subsets, the inclusion satisfies some more interesting properties as the strong

supplementation property and the mereological sum and mereological intersection of

two regions both make sense. The former as their usual union and the latter, when

they overlap, as the closure of the interior of their usual intersection.

• Diameter.

Let (Re, q) a quasi-metric space. A quasi-metric, plus the natural parthood associ-

ated with it, gives the notion of diameter in the following natural way:

q(x) := sup {q(x1, x2) : x1 ≤ x, x2 ≤ x}

or equivalently :

q(x) := { q(x, x′) : x′ ≤ x}.

The diameter function is, as expected, a monotone increasing function. ”How bad

diameter can be” is illustrated in [14].

In the metric space two diameter functions emerge : the usual one and that deriving

from the Haudorff excess. It happens that:

ed(x) ≤ diam(x).
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Moreover, the two diameter functions match when the hyperspace is BCL(X), the

hyperspace of all nonempty closed and bounded subsets, or RBCL(X), the hyperspace

of all nonempty regular closed and bounded subsets or, equally well, RO(X), the

hyperspace of all regular open and bounded subsets.

4 Points.

Our target is to construct a space of regions admitting points, enough points and with

the regions fully determined by their own points. For that, we introduce the notion of

point and the relation a point belongs to a region.

A point is the achievement of an inductive abstraction process. In an approximation

play which sequences might be the natural candidates? Of course, those ones whose

elements become smaller and smaller and also nearer and nearer. This basic observation

suggests to introduce the natural notion of a point-representing sequence.

Let (R, q) be a quasi-metric space. A sequence {xn} in R is a point-representing

sequence when:

1) For each positive real number ε there exists a positive integer ν such that

q(xn, xm) < ε for each n, m > ν or, equivalently, limn,m+∞q(xn, xm) = 0 (qs−Cauchy)

2) The diameter sequence {q(xn)} tends to zero ( vanishing )

In a first tentative we might assume a point-representing sequence as a point, but

this choise should reveal not completely satisfactory. For instance, two vanishing de-

creasing sequences {xn} and {yn} of Euclidean spheres each done by internally tangent

spheres at a same common point but with each xn externally tangent to each ym should

determine two distinct ideal points. The case forces to proceed to an identification by

using the natural nearness associated to a quasi-metric.

We say that a point-representing sequence {xn} is adjacent to a point-representing

sequence {yn} if and only if the underlying set of {xn} is q−near to the underlying set

of {yn} or, in other words:

{xn} is adjacent to {yn} if and only if limn+∞q(xn, yn) = 0.

Adjacency relation is reflexive and transitive but not symmetrical, [6]. It appears

natural to think that two point-representing sequences only when are adjacent each

other then they can represent a same point.

We will say that a quasi-metric space (R, q) is a quasi-metric space of regions, or,

briefly, a space of regions if the quasi-metric q satisfies the followimg:

Symmetry gap axiom :

|q(x, y)− q(y, x)| ≤ max {q(x), q(y)}, ∀ x, y.
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The symmetry gap axiom guarantees that q is approximately symmetric when evalu-

ated on regions of small size. In some sense the size, when small, forces symmetry.

Accordingly, for a space of regions the adjacency between point-representing sequences

is symmetrical, [6]. This takes naturally to the notion of point.

A point P in a space of regions (Re, q) is a class of adjacent point-representing se-

quences of Re.

Unfortunately, it can happen that a quasi-metric has no bounded regions as, for

instance, the standard quasi-metric on the reals or has no vanishing sequences as, for

instance, the discrete quasi-metric on the reals, see next examples. Thus, it appears

unavoidable to require the following:

Point-existence axiom : There exist point-representing sequences.

We denote as Pt(Re), or simply Pt, the set of all points of (Re, q) and refer to it as

the full space of points of (Re, q).

• Point-distance.

Let (Re, q) be a space of regions and {xn}, {yn} point-representing sequences. Since

they are qs−Cauchy, then limn+∞q(xn, yn) and limn+∞q(yn, xn) both do exist. But,

they are vanishing too. So, thanks to the symmetry gap axiom limn+∞q(xn, yn) do

coincide with limn+∞q(yn, xn). The previous observations yield a natural definition of

point-distance between points.

Let (Re, q) be a space of regions with points. Taken any two points P = [{xn}], Q =

[{xn}] in Pt(Re) we define their point-distance by the following formula, which is inde-

pendent of codification:

dq(P, Q) = limn+∞q(xn, yn).

Theorem 4.1 Let (Re, q) be a space of regions with points. Then full point-space

Pt(Re) equipped with the point-distance dq is a metric space.

Proof. Being defined as a limit and thanks to the symmetry gap axiom the point-

distance is a metric.

Theorem 4.2 The full point-space Pt(Re) of a quasi-metric space of regions with

points, when carrying the point-distance, embeds as isometric subspace in the Cauchy

metric completion of (Re, q
s), where qs is the metric symmetrization of q. Furthermore,

it is a complete metric space.

Proof. If {Ph}, where P h = [{xh
n}], is a Cauchy sequence in the point-distance dq,

then {Ph} converges to the point determined by the point-representing sequence {xh
n},

both h, n running, as can be proved easily by a classical diagonal procedure.
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Caso metrico. Of course, any metric d is a quasi-metric. The natural parthood

associated with d is the identity relation: any region is just an atom, thus with zero

diameter. Consequently, any sequence of regions representative a point is a d−Cauchy

sequence and the identification process gives the metric completion.

Examples of quasi-metric spaces.

• Example 0 : Any metric.

• Example 1: The discrete quasi-metric on a set P carrying a partial order ≤ defined

as: x, y ∈ P, q(x, y) = 0 when x ≤ y while q(x, y) = 1, otherwise. When P is the real

number space with the usual order, the symmetrization is the dicrete metric. Since any

sequence has diameter equal to one, no sequence can be vanishing. Thus, no point.

• Example 2: The standard quasi-metric ÷ on R defined as: x÷y = x−y, when x ≥ y

and x ÷ y = 0, otherwise. The metric symmetrization is in this case the Euclidean

metric. Since any region is unbounded, again no point .

• Example 3 : Any Haudorff excess. Let (X, d) stand for a metric space. The hyper-

space BRCL(X) of nonempty regular closed and bounded sets of X and the hyperspace

RO(X) of nonempty regular open subsets of X, when both carrying the Hausdorff ex-

cess ed, are spaces of regions with points.

• Example 4: A combination: Let ed be the Hausdorff excess on the hyperspace of all

nonempty bounded subsets of a metric space. Then, q(x, y) = ed(x, y)+ |ed(x)− ed(y)|
is a quasi-metric but not a quasi-metric of regions.

Point-regions.

Our target now is to express points in term of regions in which they in turn must

be located naturally.

Let (Re, q) be a space of regions with points. To any region x comes naturally

associated the point-region Ptx by saying that:

P = [{xn}] belongs to Ptx if and only if q(P, x) = limn+∞q(xn, x) = 0.

Now, we wonder: Can a point not to belong to any region? Can a region have no

point? Can a point-region have no inside points?

Answer to the first question: yes, it can. Let D be the unit closed disc of the

Euclidean plane. Choose as space of regions the collection of all closed discs in R2 \D

equipped with the Euclidean excess. Then, any point on the boundary of D, which,

as easily seen, can be codified by point-representing sequences, but, having a positive

distance from any region, is just for that outside of any region .

Answer to the second question: yes, it can. Any region in any discrete quasi-metric

space.
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Answer to the third question: it can. Let D the unit disc in the Euclidean plane.

Suppose the space of regions done by D and all closed ball contained in R2 \ D and

equipped with the Euclidean excess. Then D is an atom. Thus, it contains a unique

but not inside point.

Proposition 4.1 Let (Re, q) be a space of regions with points and x a bounded region,

i.e. q(x) < +∞, then the point-region Ptx is a bounded subset of the full point-space

Pt(Re).

Proof. Let P, Q ∈ Ptx. By generalized triangle inequality:

dq(P, Q) ≤ q(P, x) + q(x, Q) ≤ q(P, x)

and thanks to the relation:

|q(P, x)− q(x, P )| ≤ q(x)

it follows that diam(Ptx) ≤ q(x). So, the result is acquired.

Theorem 4.3 Any point-region is a closed subset of the full point-space.

Proof. By triangle inequality if {Pn} is a sequence points in x convergent to a point

P , then P is in x.

Theorem 4.4 If a region x is a part of a region y ( x ≤q y) then Ptx is contained in

Pty, but the vice versa is not true.

Proof. By triangle inequality if x ≤q y then Ptx ⊆ Pty. Vice versa. Let BRCL(R2)

be the hyperspace of all bounded regular closed nonempty subsets of the Euclidean

plane R2. Consider the quasi-metric space whose underlying set is Re = {(h, k) : h, k ∈
BRCL(R2), h ⊆ k} and q[(h1, (k1), (h2, k2)] = ed(h1, k1)⊕ ed(h2, k2), where ⊕ is the

average. It easily proved that (Re, q) is a quasi-metric space of regions. The associated

parthood is:

(h1, k1) ≤q (h2, k2) if and only if h1 ⊆ k1 and h2 ⊆ k2.

Let s, s′ be two disjoint closed discs. Then, (s, s ∪ s′) �q (s, s′) but Pt(s, s ∪ s′) =

Pt(s, s′). A point (P, Q) = [{(an, bn)}] is in Pt(s, s ∪ s′) if and only if the two points

[{an}], [{bn}] in the point-space associated with the quasi-metric BRCL(R2) with the

Euclidean excess are in Pts and in Pt(s, s ∪ s′) respectively. But P = Q since an ≤ bn

for each n and {bn} is vanishing. Moreover, observe that the region (s, s ∪ s′) is not a

part of (s, s) but any part of (s, s ∪ s′) coincides with (s, s). So, the parthood is not

extensional.
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How to avoid this inconvenience? By requiring a stronger form of extensionality of

the parthood associated with the quasi-metric, that we call:

Geometrical extensionality: If a region x is not a part of a region y, then there is

a point in x not in y. By geometrical extensionality it follows that:

x �q y if and only if Ptx = Pty.

Now, when a point P = [{xn}] and a region x are given, we can consider on one

side q(P, x) := limn+∞q(xn, x) and on the other dq(P, Ptx), this second being the

usual distance between a point and a subset in the full point-space equipped with the

point-distance. In general, q(P, x) is different from dq(P, Ptx), but always q(P, x) ≤
dq(P, Ptx). A positive gap indicates no enough points are in x. The quasi-metric space

examined in theorem 4.4 has a positive gap.

If there is no gap it happens that:

Theorem 4.5 Suppose that that q(P, x) = dq(P, Ptx) for any point P and any region

x. Then, for any two regions x, y it happens that q(x, y) ≥ edq (Ptx, Pty), [6].

As example with positive gap we can take the hyperspace of nonempty regular closed

subsets of a metric space BRCL(X) of a metric space (X, d) endowed with the quasi-

metric defined as: ed(x, y) + ed(x)÷ ed(y).

In the case of no coincidence it will mean again that there are too few points in a

region. But then, we might try to remove the obstacle enforcing the point-existence

axiom in the following one:

Nested point-existence axiom : Any region x contains as a part a region y with

diameter q(y) less than q(x)
2 and requiring:

No gap axiom:

q(P, x) = dp(P, Ptx) and d(x, y) = sup{ed(P, Pty) : P ∈ Ptx}, ∀P ∈ Pt, x, y ∈ Re.

Of course, the nested point-existence implies the existence of points codified by nested

vanishing sequence. And, moreover the full point-space has no isolated points, [6].

Theorem 4.6 Let (Re, q) be a space of regions with points. The set of points codified

by nested vanishing sequences is a, generally proper, subspace of the full point space

PtRe.

Proof. If (X, d) is a metric space, then the full point-space agrees with its metric

completion, while the nested point-space is just X.

A point [{xn}] represented by a nested sequence such that any region xn is a part

of the region x (the same xn ≤q x) is an inside point of Ptx ? Generally, no. It is
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enough to observe that a boundary point of an Euclidean sphere can be codified with

a vanishing decreasing sequence of spheres all internally tangent to the starting one.

How to recognize the interior points of a point-region? To exhibit a characterization

of the interior of a point-region in the full point-space we need to introduce the notion

of strong inclusion.

• Strong inclusion associated with a quasi-metric.

Let x, y be two regions. We say that x is strongly contained in y, or is a non

tangential part of y , and write x�q y, if and only if x ≤q y and there exists a positive

real number ε such that for any region z with distance q(z, x) < ε, it happens that

q(z, y) = 0 or equivalently z ≤q y.

• Relations between strong inclusions.

It happens that:

Theorem 4.7 Whenever x�q y, then Ptx�d Pty, or, in other words, strong inclu-

sion of regions yields the strong inclusion between their associated point-regions w.r.t.

the point-distance .

Proof. First, suppose x �q y. Next, choose ε so that any region z with q(z, x) < ε

is part of y. Then, we show that the ε
2
-enlargement of Ptx is contained in Pty. Of

course, x ≤q y. Let P = [{xn}], Q = [{yn}] two points such that q(P, x) = 0 and

d(P, Q) ≤ ε
2 . Then, all distances q(xn, yn), q(xn, x) and all diameters q(xn), q(yn),

are less than ε
2 residually. Thus, q(yn, x) is less than ε residually. Consequently,

q(yn, y) = 0 residually. That, finally, implies q(Q, y) = 0 = d(Q, Pty).

Vice versa holds true only partially.

Theorem 4.8 If S(Ptx, ε) ⊆ Pty and q(x) < ε
2
, then x�q y.

Proof. Suppose in contrast that S(Ptx, ε) ⊆ Pty, but x non strongly contained in y.

Since, from geometrical extensionality, Ptx ⊆ Pty it follows that x ≤q y. Consequently,

there exists a region z with q(z, x) < ε
2 but q(z, y) 6= 0. Again from geometrical

extensionality there is a point P which is in z but not in y. Now, let Q a point in x.

Then:

dq(P, Q) ≤ q(P, x) + q(x, Q) ≤ q(z, x) + q(x) < ε.

In conclusion, P being in a sphere having as center a point in x and radius less than ε

belongs to Pty. A contradiction.

When a point P is strongly contained in a region x ? It appears as natural to say

that a point P is strongly contained in a region x, P �q x, when P belongs to a region

y which in turn is strongly contained in the region x.
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When a point is strongly contained in a region, is it an inside point of the associated

point-region? What about the viceversa?

Theorem 4.9 A point P is strongly contained in a region x if and only if it is an

interior point of the point-region Ptx.

Proof. If P �q x then P is inside Ptx. We can apply theorem 4.7. Vice versa. If P

is an inside point of a point-region Ptx there is a sphere S(P, 2ε) contained in Ptx. Let

P codified by {xn}. Choose xh so that q(xh) and q(P, xh) both are less than ε
2.

Then,

by generalized triangle inequality, dq(P, Q) ≤ q(P, xn) + q(xn, Q) ≤ ε
2 + q(xh) < ε,

when Q is in xh. This gets S(Ptxh, ε
2) ⊆ Ptx. And the result follows from theorem 4.8.

For having point-regions with inside points we enforce the point-existence axiom in

the following way:

Inside point-existence axiom : Any region x contains as strong part a region y with

diameter q(y) < q(x)
2

.

The inside point-existence axiom guarantees the existence of points codified by

strongly nested vanishing sequences. This condition escludes that regions of different

dimension can coexist.

Now, let (Re, q) be a quasi-metric space of regions verifying the inside point-

existence axiom. Then, we can identify any region x in Re with Cl(int(Ptx)), the

closure of the interior of Ptx, which is a nonempty regular closed subset of the full

point-space PtRe.

To summarize:

Theorem 4.10 (Representation theorem) A quasi-metric space (R, q) is isometric via

the injection x → Cl(int(Ptx)) to a subspace of the hyperspace of nonempty regular

closed subsets of the full point-space PtRe carrying the Hausdorff excess associated

with the point-distance if and only if it satisfies to the symmetry gap axiom, no gap

axiom, inside point-existence axiom, geometrical extensionality.

5 Metric geometry and shape.

When the point-space has been constructed then a metric geometry in the sense of

Blumenthal [3] can start. For instance we can consider loci of lower dimension such

as lines, planes and so on. Of course, geometric definitions and properties in a metric

geometry so generated should be expressed in terms of properties of the generating

quasi-metric. Blumenthal gave metric characterizations of the Euclidean geometry but
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also characterizations of the hyperbolic geometry and further of the elliptic geometry

as well. The hyperspace of a metric space can be metrized, as we have seen, by the

Hausdorff metric that is the symmetrization of the Haudorff excess. But, unfortunately

only little work has been done on Hausdorff metric geometry of the hyperspace.

We quote as an example the Tarski Geometry of Solids in three dimensional Eu-

clidean space . In our opinion this model is not only interesting in itself but it is sugges-

tive of other models, for example which ones deriving from Minkowki and Chebichev

metric, [11]. In Tarski Geometry, in addition to the usual inclusion, an extensional

Lesniewski mereology, the notion of sphere is the only ”geometrical” primitive notion.

Here too a point is just the ”class” of all spheres which are concentric with a given

sphere. We list the previous definitions needed for giving the notion of two concentric

spheres and show that they all are expressable in terms of the Euclidean excess. Re-

mind that the diameter of a sphere is the same as the diameter of the Euclidean excess

being regular open when open and regular closed when closed; and, further, that two

open spheres are disjoint if and only if they don’t overlap and two spheres are disjoint

iff their Hausdorff distance, the symmetrization of the Euclidean excess, is greater than

the sum of their diameters.

• External tangency ET: A sphere a is externally tangent to a sphere b if 1) a is

disjoint from b and 2) given two spheres x, y containing a and disjoint from b, then at

least one of them has to be contained in the other one.

• Internal tangency IT: A sphere a is internally tangent to a sphereb if 1) a is a proper

part of b and 2) given two spheres x, y contained in b and containing a, then at least

one of them is contained in the other one.

• Externally diametrical ED : Spheres a, b are externally diametrical tangent to a sphere

c if 1) a, b are both externally tangent to c and 2) given two spheres x, y containing

a and b respectively both disjoint from c, then x is disjoint from y.

• Internally diametrical ID : Spheres a, b are internally diametrical tangent to a sphere

c if 1) a, b are both internally tangent to c and 2) given two spheres x, y both disjoint

from c, and such that a is externally tangent to x and b to y then x is disjoint from y.

• Concentric } : A sphere a is concentric with a sphere b if one of the following

conditions hold: 1) a and b coincide, 2) a is contained in b and, given two spheres

x, y externally diametrical to a and internally tangent to b,then x, y are both internally

diametrical to b, 3) b is a proper part of a, and, given two spheres x, y externally

diametrical to b and internally tangent to a, then are both internally diametrical to a.

• Equidistant points Points A and B are equidistant from a point C if there exists a

sphere a which belongs as element to the point C and is such that no sphere b belonging

as element to the point A or to the point B is a part of a or is disjoint from a.
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It is enough to show that two spheres a, b are externally tangent iff ed(a, b) =

diam(a) and ed(b, a) = diam(b); and are internally tangent iff ed(a, b) = 0 and ed(b, a) =

diam(b) − diam(a).

• Shape.

In the general construction of point-free geometries the shape seems irrelevant, but

it can play a discriminating role. The plane R2 can be metrized by the the Minkowski

metric defined as: dM ((x1, y1), (x2, y2)) = |x1− x2|+ |y1− y2| known also as the Man-

hattan or taxi-cab metric[11] considered a more appropriate measure of distance in an

urban environment as Manhattan. It is very well known that Euclidean and Minkowski

metrics are bi-Lipscitzian equivalent. For that the Euclidean and Minkowski excess de-

termine both as parthood the set-inclusion and also the same diameter function and

consequently the same space of points and the same point-regions. But, if we construct

points by using only spheres, then points are approximated by regions of very different

shape. In the Euclidean case we visualize points by circles and in the Minkowski case

by squares.

Let (Re, q) a space of regions. A similitude S of (Re, q) is a bijection of Re on itself

for which there exists a positive real number ρ such that q(x, y) = ρ q(S(x), S(y)), x, y ∈
Re. Of course, similitudes form a group S(Re). If a family S of bounded regions is

invariant under S(Re) and is a base for the underlying topology of the full point-space,

then codifications by sequences extracted from S give a natural notion of point with

shape. Of course, we can consider subgroups of the group of similitudes preserving

relevant features other than shape. We can think to preservations of colours or also

orientation and so on. This way we can get featured points.
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