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a  b  s  t  r  a  c  t

Due  to  the  relevance  of  shear  deformability,  the  practical  use of  composite  profiles  still  conflicts  with
the  serviceability  requirements  related  to  the  stiffness  demand  for civil  applications.  Moreover,  when
dealing  with  shear  deformable  beams,  it is also  well  recognized  that  displacement-based  1-D  models  can
lead to inaccurate  stress  predictions.

Hence, a relatively  simple  beam  model  allowing  to evaluate  both  strains  and  stresses  accurately  may
represent  a  useful  tool.

The  main  motivation  of the  present  paper  is precisely  to  investigate  these  features  by presenting
relevant  numerical  results  dealing  with  the  mechanical  response  of  pultruded  composite  profiles  with
thin-walled  open  cross-section  made  of both  Glass  (GFRP)  and  Carbon  Fiber  Reinforced  Plastic  (CFRP).

Comparisons  with  solutions  given  via  classical  1-D/2-D  mechanical  models  are  also  provided,  which
highlight  the  accuracy  of  the  proposed  kinematics,  especially  with  the  aim of a  reliable  stress  evaluation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composite materials (FRP), already extensively
studied by many authors (Barbero, 1993; Massa and Barbero, 1998;
Mudder and Chaturvedi, 1999; Vasiliev and Jones, 1993; Winson
and Sierakowski, 1987), are spreading in the field of civil engineer-
ing and, in particular, in the field of structural rehabilitation.

In this context, FRPs have been used successfully for a decade ago
for the retrofitting of structural elements made of masonry (Ascione
et al., 2005a),  reinforced concrete (Ascione et al., 2005b; Mancusi
et al., 2012a), steel and wood.

Although many international codes or guide-lines provide spe-
cific rules concerning the strengthening of pre-existing members,
which are thereby helpful in the design of such interventions and,
at the same time, have encouraged their use, more effort has still to
be made in order to investigate the use of FRP profiles for construc-
tions entirely made of FRP, necessarily accounting for the shear
deformability (Feo and Mancusi, 2010; Minghini et al., 2007), which
obviously affects the buckling behavior (Minghini et al., 2008,
2009a,b; Mancusi and Feo, 2012), the dynamic behavior (Minghini
et al., 2010), the long term behavior, i.e. creep (Ascione et al., 2012;
Mancusi et al., 2012b), the joint behavior (Ascione and Mancusi,
2010a,b).

∗ Corresponding author.
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This paper aims at contributing to the evaluation of the reliabil-
ity of constructions entirely made of pultruded composite profiles,
that are becoming increasingly numerous, especially in some spe-
cific contexts such as bridge decks, large span roofs and footbridges,
where the main advantages of pultruded composite profiles clearly
emerge: lightness; high strength to weight and stiffness to weight
ratios; resistance against corrosion.

A correct use of the pultruded composites requires, in fact,
an accurate assessment of both short and long term stresses
and strains. In particular, the mechanical behavior of FRP profiles
depends on numerous factors, such as:

- the shear deformability, no longer negligible due to the rather
small values of shear moduli of elasticity;

- the amount of creep strains, potentially detrimental in terms of
structural integrity and/or serviceability performance;

- the brittle connotation of failure mechanisms, which requires an
accurate stress prediction.

In the present work a finite element numerical investigation on
the short-term static behavior of FRP pultruded elements is pre-
sented. The main aim is to investigate the influence of the shear
deformations on the prediction of the stress state.

The simulations are based on a one-dimensional mechanical
model previously presented by the authors which is specifically for-
mulated to analyze the effects of the shear deformations (Ascione
et al., 2000; Feo and Mancusi, 2010). The numerical results are
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Fig. 1. Cross-section of a thin-walled beam.

compared with those obtained via both classical Timoshenko and
Vlasov models, or via finite element analyses in 2-D elasticity under
plane stress hypothesis.

2. Kinematic model

The kinematics of a thin-walled beam, as discussed elsewhere
(Feo and Mancusi, 2010), has been modeled as follows (Fig. 1):

� = �(s, z) = �c(z) − �(z) · (y(s) − yc), (1a)

� = �(s, z) = �c(z) + �(z) · (x(s) − xc), (1b)

� = �(s, z) = �c(z) − ˇ(z) · x(s)

+ ˛(z) · y(s) − �′(z) · ω(z) + �i(z) · ωi(s). (1c)

In Eq. (1a)–(1c) xc, yc correspond to the coordinates of a
fixed point C assumed as pole of a rigid transformation;
�c(z), �c(z) are the displacement components of the point C
along the x and y axes, respectively; ˛(z) and ˇ(z) are the
cross-section flexural rotations. Furthermore, the following posi-
tion exists: �c(z) = �M(z) + ˇ(z)·xM − ˛(z)·yM with �M = �|s=0 and
M(xM,yM) denoting the origin of the curvilinear abscissa s. More-
over, �′(z) is the derivative of the twisting rotation �(z) with respect
to the z coordinate while ω(s) is the current sectorial area as in
the classical theory of thin-walled beams (Vlasov, 1961). Finally,
the terms � i(z) (i = 1, 2, . . .,  Ns) are further generalized kinemat-
ical unknowns conjugated with the geometrical quantities ωi(z),
defined as:

ωi(s) =
∫ P

M

fi(t)dt, (2)

In Eq. (2) the symbol fi denotes a polynomial of the curvilinear
coordinate.

The authors stress the importance for the reader to consult a pre-
vious theoretical paper (Feo and Mancusi, 2010), which concerns
the extended formulation of the beam model. Here they just limit
the discussion remarking that the additional terms � i(z)provide a
more refined modeling of shear deformability as the parameter Ns

increases.
Finally, it is possible to recognize that the displacement field

components (1a)–(1c) allow the generic cross-section depicted
in Fig. 1 to exhibit: (i) a rigid transformation in its own plane;

Fig. 2. Cross-section under consideration.

(ii) a warping out of the same plane; and (iii) the following angular
sliding along the mid-line �:

�tz(n, s, z)
∣∣
n=0

= � (0)
xz (z)

dx

ds
+ � (0)

yz (z)
dy

ds
+ �i(z)fi(s), (3)

A few comments are appropriate.
The expression for the longitudinal displacement given by Eq.

(1c) may  lead to serious difficulties in modeling the continuity
conditions between contiguous beams with the axes being non-
parallel. The high accuracy of the model, in fact, is obtained by
increasing the number Ns of the additional warping functions and
this unavoidably yields a high numerical complexity even in the
case of typical portal frames. This point still requires a further inves-
tigation.

The relevance of shear strains, which are absent in the classical
theory of Vlasov, it is clearly understandable taking into account
the small values of the shear moduli exhibited by pultruded com-
posite beams, which are substantially coincident with those of the
resin. Their influence can be captured by the proposed 1-D model
with the same accuracy of more complex 2-D finite element mod-
els (being this the actual goal of the authors) only if the number of
additional warping functions is appropriate. This number is related
to a parameter (No) denoting the maximum polynomial exponent,
as discussed in Feo and Mancusi (2010), where many simulations
obtained for different values of No are compared.

Given that polynomials up to the third order are found able to
guarantee the best accuracy in terms of predicted stresses, deflec-
tions and rotations, the required number of additional warping
functions generally depends on the geometry of the cross-section.
According to the multi-step procedure proposed in Feo and
Mancusi (2010) for cross-sections made of interconnected thin
rectangles, it results Ns = (No + 1) × Nseg − 2, where Nseg denotes the
number of rectangles.

Hence, No = 3 implies Ns = 10 if Nseg = 3, as for the shape consid-
ered in Section 3.

As expected, when the additional kinematic variables � i(z) are
constrained, a loss of accuracy is found in the neighborhood of the
corresponding cross-section. This error mainly affects the predic-
tion of the internal stresses close to the considered cross-section,
but it suddenly vanishes. A theoretical estimation of the distance
from singularities at which the proposed model begins to lose accu-
racy still requires a further investigation.

3. Numerical analyses

Numerical analyses have covered the static behavior of pul-
truded “U” profiles (dimensions 360 × 108 × 18) made of CFRP
or GFRP. With reference to the symbols indicated in Fig. 2, the
following assumptions have been made: B = 342 mm,  H = 99 mm,
b = 18 mm,  coinciding with the cross-section dimensions of a GFRP
U-profile manufactured by Fiberline Composites (FC).
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Fig. 3. (a) Scheme 1. Cantilever beam (F = 1 N – C = 0.171 N m)  (b) Scheme 2. Hyper static beam (F = 1 N – C = 0.171 N m). (c) Scheme 3. Two-span beam (q = 1 N/m). (d) Scheme
4.  Two-span beam (q = 1 N/m; c = 0.171 N m/m).

The proposed 1-D model incorporates a simple linear elastic (up
to failure) constitutive law which requires only two elastic moduli
to be determined:[

	tz


zz

]
=

[
Gtz 0

0 Dzz

]  [
�tz

εzz

]
(4)

being Dzz the longitudinal normal modulus (Dzz = EL) while Gtz the
shear modulus relative to the directions t and k (Gtz = GTL). Due to
the considered orientation of the fibers, which are aligned to the
k unit vector (i.e. the pultrusion axis), the out of diagonal terms in
Eq. (4) are not present.

For the purpose of completeness, all elastic moduli have been
listed in Tables 1 and 2. They concern typical epoxy resin FRP pro-
files. Table 1 refers to carbon fiber-composite profiles (CFRP), while
Table 2 refers to glass fiber-composite profiles (GFRP). Transverse
isotropy has been accounted for.

In the previous Tables 1 and 2, the subscripts N, T and L denote
the natural system {N, T, L} in which L corresponds to the fiber
orientation (longitudinal axis of the beam), and N and T correspond
to the axes n and t (Fig. 1), respectively.

In addition to EL and GTL, which are required for the constitutive
law given in Eq. (4),  other moduli will be utilized for 2-D elastic
analyses, as stated in the following.

Table 1
Elastic moduli – CFRP.

Young moduli (MPa) EN = 8800 ET = 8800 EL = 115,000
Poisson moduli vNT = 0.5720 vNL = 0.2168 �TL = 0.2168
Shear moduli (MPa) GNT = 2800 GNL = 3100 GTL = 3100

The structural schemes examined are illustrated in Fig. 3a–d.
While the Scheme 1deals with a cantilever beam under a shear

force and a torsion couple applied at the free end, the other
schemes, which instead are hyperstatic, refer to: a beam with rota-
tionally fixed supports under a shear force and a torsional couple
applied at mid-span cross-section (Scheme 2); a two-spam beam
under a transverse uniform load per unit length (Scheme 3); a two-
spam beam under a transverse uniform load and torsional couple
per unit length with supports preventing torsional rotations but
allowing both flexural rotations and warping (Scheme 4).

The length parameter L assumes the following values: L = 3.0 m,
L = 5.0 m.

The beam axis has been discretized by a uniform mesh con-
sisting of “Hermitian” finite elements; due to evident symmetry,
the discretization of two-span beams (Schemes 3 and 4) has con-
cerned one span only. A uniform mesh consisting of sixty finite
elements has been employed. More details are given in Feo and
Mancusi (2010).

For what concern the numerical simulations presented, the
polynomials fi have been considered up to the third order. As
previously remarked, this ensures the best approximation of the
numerical prediction with respect to the solutions given via 2-D
elastic analyses.

Table 2
Elastic moduli – GFRP.

Young moduli (MPa) EN = 8500 ET = 8500 EL = 23,000
Poisson moduli vNT = 0.42 vNL = 0.09 �TL = 0.09
Shear moduli (MPa) GNT = 3000 GNL = 3000 GTL = 3000
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Table 3
Convergence test.

Scheme L (m)  Generalized displacement
under monitoring

Monitored values

Number of finite element employed over a single span

2 4 10 50 60 70

1
3.0

Deflection (end B) (m)
9.82218 × 10−6 9.82369 × 10−6 9.82411 × 10−6 9.82415 × 10−6 9.82415 × 10−6 9.82415 × 10−6

5.0 4.38587 × 10−5 4.38627 × 10−5 4.38639 × 10−5 4.38641 × 10−5 4.38641 × 10−5 4.38641 × 10−5

2
3.0

Mid-span deflection (m)
2.52001 × 10−7 2.55730 × 10−7 2.58593 × 10−7 2.59977 × 10−7 2.60060 × 10−7 2.60060 × 10−7

5.0 8.67559 × 10−7 8.74397 × 10−7 8.79604 × 10−7 8.82165 × 10−7 8.82210 × 10−7 8.82210 × 10−7

3
3.0

Flexural rotation (end A)
−7.52103 × 10−7 −7.48244 × 10−7 −7.47739 × 10−7 −7.47720 × 10−7 −7.47720 × 10−7 −7.47720 × 10−7

5.0 −3.02537 × 10−6 −3.00383 × 10−6 −3.00103 × 10−6 −3.00090 × 10−6 −3.00090 × 10−6 −3.00090 × 10−6

4
3.0

Torsional rotation (support B)
9.03321 × 10−5 9.03090 × 10−5 9.03073 × 10−5 9.03072 × 10−5 9.03072 × 10−5 9.03072 × 10−5

5.0 4.15723 × 10−4 4.15632 × 10−4 4.15625 × 10−4 4.15625 × 10−4 4.15625 × 10−4 4.15625 × 10−4

3.1. Convergence

The Table 3 presents many tests developed by the authors in
order to assess the convergence rate of the numerical model pro-
posed. The tests are limited to the analysis of CFRP beams only. A
mesh composed of at least ten finite elements seems to exhibit a
sufficient accuracy.

3.2. Numerical results

The Table 4a–d propose many numerical results obtained via the
present theory (P.T.). They are compared with the results predicted
by using the Vlasov kinematics (VL), which preserves any generic
cross-section un-deformed in its own plane, allows the cross sec-
tion to warp but does not allow the mid-line � to exhibit shear
strains. Percentage differences are also presented with reference
to the Vlasov solution.

In Figs. 4a, b and 5a, b comparisons are given in terms of tangen-
tial and normal stresses (unit MPa) along the mid-line � evaluated
by using the present theory (P.T.), the Vlasov theory (VL) and, last, a
2-D finite element analysis performed by means of a standard code
(ST.) (Straus 7). In particular, the mesh adopted for 2-D analyses
subdivides the mid-plane of the thin-walled beam by 20 elements
(along the mid-line �) × 30 or 50 elements (along the longitudinal
axis), the last choice depending on the value of the length L = 3.0 m
or L = 5.0 m,  respectively. The comparisons are limited to the CFRP
beams of Schemes 1 and 2 with a length L = 5.0 m.

5.450 E-4 (VL.)6.130 E-4 (P.T.)

(a)

(b)

6.260 E-4 (ST.)

5.251 E-2 (VL.)
5.251 E-2 (ST.)

5.142 E-2 (P.T.)

Fig. 4. (a) Tangential stresses along the mid-line �. (Scheme 1 – L = 5.0 m, z = 1/4 L
– CFRP). (b) Normal stresses along the mid-line �. (Scheme 1 – L = 5.0 m,  z = 1/4 L –
CFRP).

3.580 E-4 (P.T.)

(a)

(b)

3.590 E-4 (ST.) 3.091 E-4 (VL.)

-6.261 E-3 (P.T.)
-6.126 E-3 (ST.)
-6.184 E-3 (VL.)

Fig. 5. (a) Tangential stresses along the mid-line �. (Scheme 2 – L = 5.0 m,  z = 3/8 L
–  CFRP). (b) Normal stresses along the mid-line �. (Scheme 2 – L = 5.0 m,  z = 3/8 L –
CFRP).

Furthermore, Figs. 6a, b and 7a and b allow to compare tangen-
tial and normal stresses evaluated by the proposed model (P.T.)
with reference to both CFRP and GFRP beams. The comparisons are
limited to Schemes 3 and 4, which are hyper static, and refer to the
length L = 3.0 m.  A not negligible dependence on the elastic moduli
has been found.

- 4.128 E-4 (CFRP)
- 5.281 E-4 (GFRP)

- 6.373 E-4 (GFRP)
- 6.237 E-4 (CFRP)

(a)

(b)
8.711 E-3 (GFRP)

9.422 E-3 (CFRP)

-1.363 E-3 (GFRP)

-5.926 E-4 (CFRP)

Fig. 6. (a) Tangential stresses along the mid-line � (P.T.) Comparison between CFRP
and  GFRP beams (Scheme 3 – L = 3.0 m,  z = L). (b) Normal stresses along the mid-line
�  (P.T.) Comparison between CFRP and GFRP beams (Scheme 3 – L = 3.0 m, z = L).
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Table 4
Comparisons – Schemes 1 (a), Schemes 2 (b), Schemes 3 (c), Schemes 4 (d).

(a)

Length (m)  Material Displacement/rotation (end B) P.T. VL Var. (%)

3.0

CFRP

Deflection (m)
9.824 × 10−6 9.271 × 10−6 5.63

5.0  4.386 × 10−5 4.292 × 10−5 2.14
3.0

Flexural rotation
−4.740 × 10−6 −4.635 × 10−6 2.22

5.0  −1.299 × 10−5 −1.288 × 10−5 0.85
3.0

Torsional rotation
4.900 × 10−5 4.786 × 10−5 2.33

5.0  1.366 × 10−4 1.356 × 10−4 0.73

3.0

GFRP

Deflection (m)
4.694 × 10−5 4.635 × 10−5 1.26

5.0  2.155 × 10−4 2.146 × 10−4 0.42
3.0

Flexural rotation
−2.328 × 10−5 −2.318 × 10−5 0.43

5.0  −6.448 × 10−5 −6.438 × 10−5 0.16
3.0

Torsional rotation
1.020 × 10−4 1.016 × 10−4 0.39

5.0  2.099 × 10−4 2.095 × 10−4 0.19

(b)

Length (m)  Material Displacement/rotation (mid-span) P.T. VL Var. (%)

3.0

CFRP
Deflection (m)

2.601 × 10−7 1.449 × 10−7 44.29
5.0  8.822 × 10−7 6.706 × 10−7 23.99
3.0

Torsional rotation
1.635 × 10−6 1.132 × 10−6 30.76

5.0  5.726 × 10−6 4.937 × 10−6 13.78

3.0

GFRP
Deflection (m)

8.600 × 10−7 7.423 × 10−7 13.69
5.0  3.589 × 10−6 3.353 × 10−6 6.58
3.0

Torsional rotation
5.443 × 10−6 4.999 × 10−6 8.16

5.0  1.889 × 10−5 1.837 × 10−5 2.75

(c)

Length (m) Material Displacement/rotation P.T. VL Var. (%)

3.0

CFRP
Deflection (m)  (z = 0.50·L)

6.501 × 10−7 4.345 × 10−7 33.16
5.0  4.003 × 10−6 3.353 × 10−6 16.24
3.0

Flexural rotation (support A)
−7.477 × 10−7 −5.794 × 10−7 22.51

5.0  −3.001 × 10−6 −2.683 × 10−6 10.60

3.0

GFRP
Deflection (m)  (z = 0.50·L)

2.422 × 10−6 2.173 × 10−6 10.28
5.0  1.748 × 10−5 1.677 × 10−5 4.06
3.0

Flexural rotation (support A)
−3.103 × 10−6 −2.897 × 10−6 6.64

5.0  −1.378 × 10−5 −1.341 × 10−5 2.69

(d)

Length (m)  Material Displacement/rotation P.T. VL Var. (%)

3.0

CFRP

Deflection (m)  (z = 0.50·L)
6.501 × 10−7 4.345 × 10−7 33.16

5.0  4.003 × 10−6 3.353 × 10−6 16.24
3.0

Flexural rotation (support A)
−7.477 × 10−7 −5.794 × 10−7 22.51

5.0  −3.001 × 10−6 −2.683 × 10−6 10.60
3.0

Torsional rotation (support B)
9.031 × 10−5 8.893 × 10−5 1.53

5.0  4.156 × 10−4 4.144 × 10−4 0.29

3.0

GFRP

Deflection (m)  (z = 0.50·L)
2.422 × 10−6 2.173 × 10−6 10.28

5.0  1.748 × 10−5 1.677 × 10−5 4.06
3.0

Flexural rotation (support A)
−3.103 × 10−6 −2.897 × 10−6 6.64

5.0  −1.378 × 10−5 −1.341 × 10−5 2.69
3.0

Torsional rotation (support B)
1.840 × 10−4 1.838 × 10−4 0.11

5.0  6.098 × 10−4 6.097 × 10−4 0.02

Table 5
Comparisons in terms of deflections and rotations.

Scheme L (m)  Generalized displacement CFRP GFRP

P.T. VL TM P.T. VL TM

1
3.0

Deflection (end B) (m)
9.824 × 10−6 9.271 × 10−6 9.856 × 10−6 4.694 × 10−5 4.635 × 10−5 4.696 × 10−5

5.0 4.386 × 10−5 4.292 × 10−5 4.390 × 10−5 2.155 × 10−4 2.146 × 10−4 2.156 × 10−4

2
3.0 Mid-span deflection

(m)
2.601 × 10−7 1.449 × 10−7 2.912 × 10−7 8.600 × 10−7 7.423 × 10−7 8.755 × 10−6

5.0 8.822 × 10−7 6.706 × 10−7 9.145 × 10−7 3.589 × 10−6 3.353 × 10−6 3.605 × 10−6

3
3.0 Flexural rotation (end

A)
−7.477 × 10−7 −5.794 × 10−7 −6.827 × 10−7 −3.103 × 10−6 −2.897 × 10−6 −3.009 × 10−6

5.0 −3.001 × 10−6 −2.683 × 10−6 −2.861 × 10−6 −1.378 × 10−5 −1.341 × 10−5 −1.360 × 10−5

4
3.0 Torsional rotation

(support B)
9.031 × 10−5 8.893 × 10−5 – 1.840 × 10−4 1.838 × 10−4 –

5.0  4.156 × 10−4 4.144 × 10−4 – 6.098 × 10−4 6.097 × 10−4 –
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Table 6
Comparisons in terms of deflections and rotations (percentage differences).

Scheme L (m)  Generalized displacement CFRP GFRP

Var. 1 (%) Var. 2 (%) Var. 1 (%) Var. 2 (%)

1
3.0

Deflection (end B) (m)
5.96 −0.32 1.27 −0.04

5.0  2.19 −0.09 0.42 −0.05

2
3.0 Mid-span deflection

(m)
79.50 −10.68 15.86 −1.77

5.0 31.55 −3.53 7.04 −0.44

3
3.0 Flexural rotation (end

A)
29.05 9.52 7.11 3.12

5.0  11.85 4.89 2.76 1.32

4
3.0 Torsional rotation

(support B)
1.55 – 0.11 –

5.0  0.29 – 0.02 –

(a)

(b)

- 5.966 E-4 (CFRP)
- 6.305 E-4 (GFRP)

- 5.283 E-4 (GFRP)
- 4.130 E-4 (CFRP)

2.142 E-2 (GFRP)

4.081 E-2 (CFRP)

Fig. 7. (a) Tangential stresses along the mid-line � (P.T.) Comparison between CFRP
and  GFRP beams (Scheme 4 – L = 3.0 m,  z = L). (b) Normal stresses along the mid-line
� (P.T.) Comparison between CFRP and GFRP beams (Scheme 4 – L = 3.0 m,  z = L).

Finally, in Table 5, displacements and flexural/torsional rota-
tions are compared with those given via the Vlasov (VL) and the
Timoshenko (T.M.) beam models. In the last case the evaluations
have been made assuming the following shear corrective factor:

 = 5.88.

The corresponding percentage differences with reference to
both the Vlasov beam solution (Var. 1) and the Timoshenko beam
solution (Var. 2) are also presented in Table 6.

4. Conclusions

The simulations presented show the accuracy of the mechan-
ical model proposed by the authors for the study of the static
behavior of pultruded composite profiles. Comparisons in terms
of stress components show a substantial agreement between the
values predicted by the authors and those evaluated via a two-
dimensional mechanical modeling. More or less marked differences
were found, however, in comparison with the classical theory of
sectorial areas.In fact, for the beams considered, differences of
about 16% and 2% were found with regard to shear and normal
stresses, respectively. Moreover, for the CFRP beams, the deflec-
tions and the flexural rotations predicted by the proposed model
are about 80% (Schemes 2 with L = 3.0 m)  and 29% (Schemes 3 with
L = 3.0 m)  greater, respectively. For the GFRP beams the influence
of the shear deformation decreases and the percentage differences
with respect to Vlasov’s theory become +16% and +7% for deflec-
tions and flexural rotations, respectively. Comparison, however,
with the predictions obtained via the Timoshenko beam model
indicate differences in terms of displacement up to −11% (Scheme 2
with L = 3.0 m – CFRP) and, in terms of rotation, up to +10% (Scheme
3 with L = 3.0 m – CFRP). Furthermore, for cases relating to the GFRP

material, the difference between the proposed model and the solu-
tion of Timoshenko beam is quite negligible.

It emerges that the proposed model, although belonging to the
group of one-dimensional models, is able to capture displacements
and stresses with high accuracy. This property is particularly impor-
tant in view of the brittle nature of the FRP composites, since an
accurate stress evaluation is at the base of a correct use of any failure
criteria.
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