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Abstract: For a minimally repaired system, whose failure process is described by a non-homogeneous 
Poisson process (NHPP), the classical maximum likelihood estimation procedures cannot be used when the 
system failures are hidden and detected only at inspection epochs. By assuming that the failure process 
follows a NHPP with power law intensity function, the Expectation-Maximization (EM) algorithm was 
recently proposed to estimate the model parameters and a procedure to test the presence of trend in the real 
failure data of some components of identical medical infusion pumps was discussed. However, the EM 
algorithm suffers in this application from some limitations due to its complexity and the large computational 
time required for convergence. This paper proposes a new estimation algorithm which is still iterative but, 
unlike the EM algorithm, is not based on the expectation of the log-likelihood function with respect to the 
conditional distribution of the unobserved data, but rather on the expectation of the conditioning variables, 
that is, of the unknown age of the system at the previous failure. This approach allows one to specify a 
simpler and much faster estimation procedure. A comparison between the proposed and the EM algorithms 
shows that the former performs as well as the latter, while requiring a drastically reduced computational 
burden. In addition, the proposed scheme can be applied to other intensity functions, such as the log-linear 
and the 2-parameter logarithmic functions. As a result, the test hypothesis of no trend in one of the analyzed 
datasets, which can not be rejected under the power law intensity function, is instead rejected under the 
alternative hypothesis of a log-linear intensity function. 
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1.  INTRODUCTION 
 
Sometimes, the failures of repairable systems are hidden and detected only at (not necessarily equispaced) 
inspection epochs, so that the exact times between two successive failures (the interarrival times) are 
unknown (interval censored data). An example of such event data can be found in the failures of an audible 
component in a medical infusion pump used in the hospitals [8,9]. The component informs the operator on 
the level of liquid delivered to a patient to whom the device is attached. When the liquid is reduced to a 
given level, then the audible component starts sending warning alarms. If the audible component fails, the 
pump can still operate, but the health risk of the patient increases if the operator does not take any action. For 
this reason, the component is periodically inspected and is immediately repaired, if found failed. 
 
If the system is substituted or is subject to a perfect repair when found failed (renewal assumption), then the 
distribution of the interval censored failure times does not depend on the (unknown) failure times because 
interarrival times are independent and identically distributed random variables; then, classical maximum 
likelihood estimation procedures for interval censored data can be used. 
 
But if the system is minimally repaired, so that its failure process follows a Non-Homogeneous Poisson 
Process (NHPP) [10], and it does not age in the intervals between each failure and the successive repair 
action, then the distribution of the interarrival times depends on the actual age of the system at the previous 
failure which is unknown. In this case, the classical maximum likelihood estimation procedures cannot be 
used. 
 
By assuming that the failure process follows a NHPP with power law intensity [4], an Expectation-
Maximization (EM) algorithm was recently proposed by Taghipour and Banjevic [8,9] to estimate the model 
parameters. The EM algorithm was applied to three data sets of some components of identical infusion 



pumps, but the algorithm suffers from some limitations due to its complexity and the large number of 
iterations and computational time required for convergence. 
 
In this paper we propose a new estimation algorithm which is still iterative but, unlike the EM algorithm, is 
not based on the expectation of the log-likelihood function, but on the expectation of the conditioning 
variables, namely the unknown age of the system at the previous failure. This new approach allows one to 
design a simpler estimation algorithm which does not require any numerical integration. Some comparisons 
between the different estimation procedures show that the new algorithm performs at least as well as the EM 
one, while requiring a drastically reduced computational burden and thus a much smaller computational time 
for convergence. 
 
In addition, this paper is not limited to the power law intensity, but also considers other functional forms for 
the intensity function, namely the log-linear function and the 2-parameter logarithmic intensity, thus enabling 
a wider analysis of the failure process to be carried out. As a result, the test hypothesis of no trend in one of 
the datasets analyzed by Taghipour and Banjevic [8,9], which is not rejected under the power law process, is 
instead denied under the alternative hypothesis of a log-linear intensity function.  
 
2.  ESTIMATION PROCEDURE 
 
Let us consider a repairable system subject to the following operating assumptions: 
 

1. the system is inspected at not necessarily equispaced times over the observation period of length τ ; 
2. the system failures are detected only when the system is inspected; 
3. the system is minimally repaired at the moment of inspection, if found failed; 
4. inspection and repair times are negligible; 
5. the system does not age when it is not operating. 

 
The assumption #3 that the system is minimally repaired at failure implies that the failure process follows a 
NHPP with intensity function );( θtλ  and mean number of failures );(θtΛ , ),...,( 1 kθθ=θ  being the vector of 
length k  of the parameters that index the NHPP model. 
 
Let il  ( ni ,...,1= ) denote the last inspection time when the system is still working before the i -th failure, and 
let iu  denote the successive inspection time when the system is found failed. Due to assumption #4, iu  is 
also the time of the i -th repair. Both il  and iu  ( ni ,...,2= ) are measured from the repair time 1−iu  of the 
previous failure, i.e. from the time when the system begins again to operate. In addition, if the last inspection 
occurs after the detection of the n -th failure, that is nuu ++> ...1τ , then the )1( +n -th failure is right 
censored. In this case, 1+nl  ( 01 ≥+nl ) denotes the length of the interval between the last repair and the end of 
the observation period. In this interval, the system has not failed. 
 
Although both il  ( 1,...,1 += ni ) and iu  ( ni ,...,1= ) are measured from the repair time of the previous 
failure, due to the assumption #5 of no aging during non-operating intervals, the actual age of the system at 
the inspection times il  and iu  is equal to ii lt +−1  and iii utt +≤ −1 , respectively, where it  is the actual age of 
the system at the i -th failure. Obviously, ∑ =+= i

k ki xtt 10 , where kx  is the interarrival time of the k -th 
failure, and 0t  is the initial age of the system, which is assumed to be known (see Figure 1).  

 

      
Figure 1. Censoring intervals for failure times and last censoring time. 



Let ]} ,(],..., ,(],..., ,({ 111110101 rrrrrkkkkk utlttutlttutltt ++∈++∈++∈= −−−−D  denote the censored data, 
where nr =  if the system was found failed at the last inspection (that is, if nuu ++= ...1τ ), and 1+= nr  if 
the system was observed to operate after the last repair (that is, if nuu ++> ...1τ ). In the latter case, we set 

∞=≡ +1nr uu , so that also the )1( +n -th (unobserved) failure, which is actually right censored 
( 11 ++ +> nnn ltt ), can be treated as interval censored: ) , ( 111 +++ ++∈ nnnnn utltt . 
 
The actual log-likelihood function relative to the interval censored data D  is given by 
 

1 1
1 0 1 

 1,...,

( | ) ln ( ,..., | , ) d ...d  
i i i i i

r rt l t t u
i r

f t t t t t  
− −+ < ≤ +
=

 
 =
 
 
∫ ∫ TD θ θl L   ,                (1) 

 
where 
 

[ ]
11 0 1 1 0 0

1

( ,..., | , ) ( | , ) ... ( | , ) ( ; ) exp ( ; ) ( ; )
r

r

r T r r T i r
i

f t t t f t t f t t t t tλ−
=

 = ⋅ ⋅ = −Λ + Λ 
 
∏T θ θ θ θ θ θ           (2) 

 
is the joint distribution of the so-called “complete data” ),...,( 1 rtt=t . 
 
The log-likelihood (1) generally involves multivariate integral whose dimension is equal to the number n  of 
failures experienced by the system and, in general, it is not available in a closed-form. If there is no trend in 
the failure process, so that the NHPP reduces to the Homogeneous Poisson process (HPP) with constant 
failure intensity λλλ =);(t  and tt  );( λλ =Λ , the integrals in (1) can be solved analytically and the log-
likelihood function )|( λDl  results in: 
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Thus, in case of an HPP, the parameter λ  can be easily estimated through a numerical maximization 
procedure. 
 
On the contrary, if a trend is assumed to exist (so that the intensity function can not be assumed constant), 
the log-likelihood (1) is not available in a closed-form and a more complex, iterative procedure is needed. 
 
Taghipour and Banjevic [8,9] proposed Expectation Maximization (EM) algorithms to estimate the model 
parameters under the assumption that the failure process follows a power-law process, that is, an NHPP with 
power law intensity function 1  ),;( −= βα ββαλ tet . 
 
The EM algorithm finds the ML estimate of θ  iteratively by setting an initial guess )(s

θ  and using the 
following two steps: 
 

1. Expectation Step: Calculate the expectation of the complete data log-likelihood )|( θtl  with respect to 
the joint distribution ),|,...,( )(

01
s

r tttf θT : 
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2. Maximization Step: Find )1( +s
θ  that maximizes the expected log-likelihood, viz.  

 
  )],([max arg )()1( ss Q θθθ

θ

=+ .     (5) 

 
The iteration continues until the convergence of )(s

θ . It is worth noting that the function ),( )(sQ θθ  in (4) and 
(5) is recursively computed by r⋅3  univariate numerical integrations. 
 
Taghipour and Banjevic [8] used the “complete” EM algorithm [6], whereas Taghipour and Banjevic [9] 
used also a modification of the EM, namely the EM gradient algorithm [5], which solves the M-step of the 
algorithm using one iteration of the Newton–Raphson method. These algorithms suffer from some 
limitations due to their complexity and the large number of iterations and computational time required for 
calculating the function ),( )(sQ θθ  in (4). 
 
The new estimation procedure proposed in this paper is not based on the expectation of the log-likelihood 
function, but on the expectation of the conditioning variables, such as the unknown ages of the system at the 
previous failure. 
 
The conditional probability that the i -th failure ( ri ,...,1= ) occurs at an unknown time in the interval 

] ,( 11 iiii utlt ++ −− , given the age 1−it  of the unit at the previous failure, is  
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For 1+= ni , since ∞=+1nu , eq. (6) reduces to    
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Then, if the conditioning variables 1−it  ( 1,...,2 −= ri ) were known, the log-likelihood function of the 
interval censored data D  would be 
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Note that, if there is no trend in the failure process, so that the NHPP reduces to the HPP with constant 
failure intensity λλλ =);(t , then the probabilities in (6) become 
 

) exp() exp(};|Pr{ 111 iiiiiiii ultuttlt λλλ −−−=+≤<+ −−−  , 

 
and the corresponding log-likelihood function reduces to (3).  
 
However, if each conditioning variable 1−it  ( ri ,...,2= ) in (6) is replaced by an estimate of it, such as its 
(conditional) expectation, then the log-likelihood (8) does not depend on unknown variables and can be 
easily maximized. 
 
In particular, under the NHPP assumption, the conditional distribution of the interval censored failure time 

1−it  ( ri ,...,2= ), that is the probability that the )1( −i -th failure occurs in the interval ]  ,( 1212 −−−− ++ iiii utlt , 
given that the previous failures occurred at 2−it  and that no failure occurs from 2−it  up to 12 −− + ii lt , is given 
by 
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while its conditional expectation, given the age 2−it , is 
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Then, the proposed iterative procedure is: 
 
1. Set 0θθ = . 
2. Estimate recursively from (10) the conditional expectations }};{|{~

211 θ−−− = iii tEtEt  ( ni ,...,2= ),  with 
00}{ ttE = , by using 0θ  in place of the unknown parameters θ . 

3. Use the estimate of the failure time 1
~

−it , given the (estimated) age 2
~

−it , in place of the (unknown) value 
of the conditioning random variable 1−it  in the log-likelihood function (8): 
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4. Estimate θ  by numerical maximization of the log-likelihood (11). 
5. Compare the ML estimate of θ , say θ̂ , with 0θ . If ε>− |ˆ/)ˆ(| 0 θθθ , then repeat steps from 2 to 4 by 

using θ̂  for estimating }};{|{ 21 θ−− ii tEtE  until the convergence of θ̂ . 
 

2.1.  Special cases 
 
Several functional forms for the failure intensity );( θtλ  can be chosen. In particular, we consider the power 
law process, the log-linear process, and the 2-parameter logarithmic process, because these processes have 
intensity functions able to cover a large range of monotone behaviors.  
 
• The power law process (PLP) [4] has intensity function of the form 1  ),;( −= βα ββαλ tet , ∞<<∞− α , 

0>β , and mean number of failures βαβα tet  ),;( =Λ . Note that we use the unusual formulation used by 
Taghipour and Banjevic [8,9] to simplify the comparison with their results. When 1>β  ( 1<β ), the 
power law intensity is monotonically increasing (decreasing) with the operating time, whereas when 1=β , 
the PLP reduces to the HPP with constant intensity equal to αe . For a PLP, equations (6) and (10) are: 
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• The log-linear Process (LLP) has intensity function ) exp( ),;( tt βαβαλ −= , 0>α , ∞<<∞− β , and 

)] exp(1[ )/(),;( tt ββαβα −−=Λ  [3]. Its intensity function is monotonically increasing (decreasing) 
when 0<β  ( 0>β ). When 0|| →β , then the LLP tends to the HPP with constant intensity equal to α . 
For a LLP, equations (6) and (10) are written as 
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• The 2-parameter Logarithmic Process (2-LP) is a simplified form of the 3-parameter Logarithmic process 

of Cavallo and Ruggeri [2] and has (decreasing) intensity function ( ; , ) /(1  )t tλ α β α β= + , 0, >βα , and 
( ; , ) ln(1  )t tα β α β βΛ = + . When the shape parameter 0→β , the 2-LP tends to the HPP with constant 

intensity equal to α . For a 2-LP, eqs. (6) and (10) become 
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For all the proposed intensity functions, the expectations },};{|{ 21 βα−− ii tEtE  ( ni ,...,2= ) are independent 
of the parameter α ; thus, in the proposed iterative estimation procedure we have to assign a starting value 
only to β , say 0ββ = . Of course, we have to reach the convergence both of β̂  and of α̂ . 
 
It is worth noting that, whenever PLP, LLP, and 2-LP tend to the HPP, the expectations (13), (15), and (17) 
provide one and the same result: 2/)(},;|{ 11221 −−−−− ++= iiiii ultttE βα . As expected, it is confirmed by 
easily solving (10) under the HPP assumption. 
 
3.  CONFIDENCE INTERVALS 

 
Approximate confidence intervals for the model parameters can be obtained by using asymptotic results. An 
approximation of the standard deviation of the ML estimators of the k -dimensional parameter vector θ  is 
provided by the estimated )( kk ×  covariance matrix 1)]ˆ([ −

θJ , where the entries in the observed Fisher 
information matrix )ˆ(θJ  are the negative second derivatives of the log-likelihood function with respect to 
the model parameters evaluated at the ML estimates θ̂ ; such derivatives can be numerically evaluated. For 
example, the estimated standard deviation of 1̂θ  is given by 
 

1
1 )]ˆ([in entry    )1 ,1()ˆ(ˆ −= θJθσ  .    (18) 

 
Under the usual assumption that 1̂θ  is asymptotically normal, the approximate equal-tails γ−1  confidence 
interval for 1θ  is )ˆ(ˆˆ 12/1 θσθ γ ⋅± z , where 2/γz  is the 2/γ  quantile of the standard normal distribution. 
 
However, for a parameter iθ  which is constrained to be positive, the normal approximation is sometimes 
unsatisfactory because the distribution of its estimator can be highly skewed when the sample size is not 
large. In this case, the normal approximation for )ˆln( iθ  rather than for iθ̂  can be used. The delta-method [7] 
states that iii θθσθσ ˆ/)ˆ(ˆ)}ˆ{ln(ˆ ≅ . Thus, if )ˆln( iθ  is asymptotically normal, then 
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is asymptotically standard normal [1], and the γ−1  approximate confidence interval for iθ  is 

]ˆ/)ˆ(ˆexp[ ˆ 2/ iii z θθσθ γ ⋅± . 
 



For the positive parameters, such as the shape parameter β  of the PLP and the scale parameter of the LLP, 
the log-normal approximation can then be more suitable, even because it prevents the lower limit from being 
negative, whereas the normal approximation is used for the parameters which are not constrained to be 
positive. 
 
By using the delta-method, the approximate standard deviation of the ML estimator of functions of interest 
can be also estimated. For example, the approximate standard deviation of the ML estimate of the intensity 
function )(tλ  is given by 
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where the first derivatives of the intensity function with respect to the process parameters are evaluated at the 
ML estimate θ̂ , and )ˆ,ˆ(vôC ji θθ  is the ),( ji  entry in the estimated covariance matrix 1)]ˆ([ −

θJ . From (20), 
approximate confidence intervals on )(tλ  can be easily obtained by using the lognormal approximation for 
its estimator. 
 
4.  TREND TESTING 
 
To test the presence of a trend in the observed failure process the likelihood ratio test can be easily applied. 
In particular, let )ˆ;data(0 λl  denote the log-likelihood function, estimated at the ML estimate λ̂  under the 
null hypothesis 0H  that the failure process follows an HPP with constant failure intensity λ , and let 

)ˆ;data(1 θl  denote the log-likelihood function, estimated at the ML estimate θ̂  under the alternative 
hypothesis 1H  that the failure process follows a given NHPP with (non-constant) failure intensity );(θtλ . 
 
When 0H  holds, then the log-likelihood statistic 
 

)]ˆ;data()ˆ;data([ 2 10 θll −−=Λ λ                        (21) 

 
is asymptotically distributed as a 2χ  random variable with 1kν = −  degrees of freedom. All the NHPP 
models suggested in this work are indexed by two parameters, so that 1=ν  hereinafter in the paper. Then, 
the null hypothesis of no trend has to be rejected against the alternative hypothesis 1H  if the corresponding 
p -value is lower than a given significance level γ , say 05.0=γ . 

 
5.  NUMERICAL APPLICATION 
 
The proposed estimation procedure is applied to two datasets given in Taghipour and Banjevic [9] and 
analyzed also in Taghipour and Banjevic [8]. The two datasets refer to two repairable components of several 
identical medical infusion pumps, namely the audible signal and the housing/chassis component, whose 
failures are hidden. The infusion pump can continue to operate if one of these components fails and the 
hidden failures are then rectified only at inspections, so that their failure times are censored. 
 
The dataset of the audible signal component refers to 80 units and contains 125 records or histories 
(including failure censoring intervals and the last right censoring interval), collected over observation 
intervals τ  of between 1.3 and 7.8 years, with inspection intervals of approximately 1.6 years. A total of 41 
audible signal units have not failed during the observation period, and each unit which failed experienced 
one or two (hidden) failures. The dataset of the housing/chassis component refers to 38 units and contains 
164 records or histories, collected over observation intervals τ  of between 6.3 and 7.8 years. Each 
housing/chassis unit experienced from 1 up to 6 failures. In both the datasets, all units continued to operate 
after the last repair up to τ , so that the last failure is always right censored. 
 
Taghipour and Banjevic [8,9] analyzed such datasets within the HPP and the PLP, and estimated the models 
parameters by using, for the PLP model, the “complete” EM algorithm and the EM gradient algorithm,     
and maximizing the log-likelihood (3) under the HPP assumption. They also showed that, within the PLP  



Table 1. ML estimates of the PLP parameters and estimated log-likelihood for the audible signal system. 

Estimation procedure  α̂  )ˆ(ˆ ασ  β̂  )ˆ(ˆ βσ  )ˆ,ˆ;( βαDl  

Proposed algorithm -1.665 0.252    0.919    0.141      -120.26 
Modified EM -1.672 0.249    0.921    0.141      -120.33 
Complete EM -1.672 0.249    0.920    0.141      -120.33 

 
Table 2. ML estimates of the PLP parameters and estimated log-likelihood for the housing/chassis system. 

Estimation procedure  α̂  )ˆ(ˆ ασ  β̂  )ˆ(ˆ βσ  )ˆ,ˆ;( βαDl  

Proposed algorithm -0.131 0.229    0.916    0.118      -153.26 
Modified EM -0.144 0.213    0.918    0.118      -153.42 
Complete EM -0.141 0.213    0.916    0.118      -153.42 

 
Table 3. Approximate 0.95 confidence intervals of the PLP parameters for the audible signal system. 

Estimation  procedure     α̂  β̂  

Proposed algorithm (-2.159, -1.170)      (0.642, 1.197)   
Modified EM (-2.161, -1.183)      (0.645, 1.197) 

 
Table 4. Approximate 0.95 confidence intervals of the PLP parameters for the housing/chassis system. 

Estimation  procedure     α̂  β̂  

Proposed algorithm (-0.579,  0.317)      (0.684, 1.147)   
Modified EM (-0.562,  0.274)      (0.696, 1.140) 

 
 
assumption, no trend exists in the failure process of both the components. 
 
By using the new estimation procedure proposed in this paper, we have estimated the parameters both of the 
PLP model and of the other suggested models, say the LLP and the 2-LP. Tables 1 and 2 give the point ML 
estimates of the PLP parameters and the approximate standard deviations, for the audible signal and the 
housing/chassis component, respectively, obtained of using the different estimation procedures. Also the 
estimated log-likelihood )ˆ,ˆ;( βαDl  is given in the last column of Tables 1 and 2. Tables 3 and 4 provide the 
approximate 95% confidence intervals of the PLP parameters, for the audible signal and the housing/chassis 
component, respectively; such intervals are based on the normal approximation for the distribution of α̂ , and 
on the log-normal approximation for the distribution of β̂ . 
 
By comparing the estimated values of the PLP parameters α  and β , we can affirm that the new estimation 
procedure provides estimates very close to those provided by the more complex and much more time 
consuming EM algorithms. In particular, it should be highlighted that the proposed procedure requires a 
computation time of less than 1 second running on a computer based on an Intel® Pentium® 4 3.06 GHz 
CPU, whereas the EM algorithms require computation times which are several order of magnitude larger on 
the same computer, since the latter requires a great amount of numerical integrations. In addition, the 
approximate confidence intervals on the shape parameter β  confirms the conclusions of Taghipour and 
Banjevic [8,9] that, within the PLP assumption, no trend exists in both the datasets. 
 
Table 5 gives the results of the trend testing, where the log-likelihoods have been estimated by means of the 
proposed procedure. Our results confirm again the results in Taghipour and Banjevic [8,9] that, for both the 
components, the null hypothesis of no trend can not be rejected when the alternative hypothesis is a PLP, 
because both the corresponding p -values are larger than, or equal to 0.50. However, the null hypothesis of 
no trend in the audible signal component has to be rejected against the alternative hypothesis of a NHPP with 
log-linear intensity function at the usual significance level of 05.0=γ . 
 
For this dataset, the ML estimates of the LLP parameters are 256.0ˆ =α  years-1 and 196.0ˆ =β  years-1, and 
since β̂  is positive, the estimated intensity function is decreasing with the operating time. The estimated 
covariance matrix 1)]ˆ([ −

θJ  is given by 



 
Table 5. Log-likelihoods estimated by the proposed algorithm for the audible signal and the housing/chassis 

systems under the HPP and the proposed NHPP models, and the correspondingp -values. 

 Audible signal  Housing/chassis  
Model )ˆ;( θDl  p -value )ˆ;( θDl     p -value 

HPP ( 0H )        -120.41  -153.51  

PLP -120.26       0.583 -153.26      0.500 
LLP -118.36       0.043 -153.31      0.408 
2-LP -119.01       0.094 -153.30      0.420 
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from which the estimated standard deviations of α̂  and β̂  follow: 0610.0)ˆ(ˆ =ασ  years-1 and =)ˆ(ˆ βσ  

0993.0  years-1. 
 
In addition, by comparing the estimated log-likelihoods of the suggested NHPP models (all indexed by one 
and the same number of parameters: 2=k ) given in Table 5, we can conclude that the log-linear process is 
the model that better fit the audible signal data, because the corresponding estimated log-likelihood )ˆ;( θDl  is 
the largest one.  
 
The 0.95 confidence interval for the shape parameter β  of the log-linear process relative to the audible 
signal component, say )3910.0 ,0017.0( , does not include the value 0=β , accordingly to the test result of a 
significant trend in the failure data of the audible signal unit. 
 
Finally, Figure 2 shows the ML estimate of the intensity function under the HPP and the LLP models and 
highlights the initial underestimation and subsequent overestimation of the intensity function that the wrong 
HPP assumption should produce. The approximate 0.95 confidence intervals are also reported.  
 
6.  CONCLUSIONS 
 
A new estimation procedure for the parameters of an NHPP is proposed when the failure data of a minimally 
repaired system are hidden and detected only at inspection epochs. The proposed procedure is much less 
complex than some Expectation-Maximization (EM) algorithms recently proposed to estimate the NHPP 
parameters under the (restrictive) assumption that the NHPP has a power-law intensity function. 
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Figure 2. ML estimates and 0.95 approximate confidence intervals of the intensity function under the HPP 

and the LLP models. 



The comparison of the estimation results obtained by using the new procedure with the results of the EM 
algorithms showed that the proposed procedure works as well as the EM algorithms and drastically reduces 
the required computational burden. 
 
In addition, the proposed estimation algorithm has been developed under other forms of the intensity 
function, namely the log-linear function and the 2-parameter logarithmic function. Thus, it is possible to 
select the model that provides the best fit of the observed data and to perform a more accurate test on the 
presence of a possible trend in the failure data. Indeed, the test of no trend in the failure data allows to reject 
the null hypothesis (HPP process) if the alternative hypothesis is the log-linear process rather than the power 
law process as assumed in the previous works.  
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