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A kinematic model is presented for thin-walled composite beams able to account for axial force, bending,
torsion and warping. Shear deformations on the mid-surface are considered and modeled by means of a
polynomial approximation. For this scope appropriate shape functions on the curvilinear abscissa along
the cross-section mid-line are introduced.

Small strains and moderate rotations are considered over the pre-buckling range.
The model allows to predict the static non-linear behavior and the critical loads of composite pultruded

beams.
A finite element approximation is derived from a variational approach. Some numerical results are also

presented revealing the importance of the shear terms on the mechanical response and their effect on the
stability of pultruded composite members.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled composite beams with open cross-section ob-
tained by the pultrusion process have been increasingly used
in civil engineering. Nevertheless, due to the relevance of shear
deformability, the practical use of composite profiles still con-
flicts with the serviceability requirements related to the stiffness
demand for civil applications. Composite materials offer many
advantages over traditional materials, such as light weight and
high resistance against corrosion, but also require a rigorous
evaluation of their structural performance from many points of
view which are related to the instantaneous and long-term
behavior, the influence of the shear deformability as well as
the influence of the second order terms over the pre-buckling
behavior.

Limiting the study within the linear-elastic field, the behavior of
thin-walled composite beams with open cross-section can be
modeled by extending the theory of Vlasov [1] to account for
anisotropy [2,3] and shear deformations on the mid-surface
[4–8]. However, since both the fibers and resin of a composite
beam can sustain large elongations up to rupture, in most circum-
stances the failure is due to elastic buckling with the load carrying
capacity being directly related to the critical buckling load.
ll rights reserved.
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Specific studies available in literature [9–22] deal with the Euler
and torsional buckling of thin-walled columns as well as the lateral
buckling, which, in particular, shows a certain complexity since
structures may exhibit large or moderately large deflections and
rotations over the pre-buckling range.

Within this context the present paper deals with the formula-
tion of a moderate rotation theory of thin-walled composite
beams. The kinematic model is assumed to be characterized by
small strains at the longitudinal axis, small warping strains and
moderately large rigid-body rotations of the cross-sections As dis-
cussed elsewhere [23–26], under certain restrictions on the diam-
eter of the cross-section, such assumptions ensure small strains
and moderate rotations within the whole beam.

Shear deformability is modeled according to the approach
proposed in [6,7] by using a refined polynomial approximation
of the angular sliding on the mid-surface of the thin-walled
beam.

A finite element approximation is derived via a variational
approach. Numerical algorithms [27] are adopted to follow an
arbitrary equilibrium path of the beam as well as compute sta-
bility points. Finally, some numerical results are also given in
order to highlight the non-linear pre-buckling behavior of pul-
truded composite beams.
havior of shear deformable thin-walled composite beams with open cross-
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2. Notations

A list of the main relevant symbols is presented.
P
se
{X, i, j,k}
lease cite this
ction. Compo
Global reference system

fP;n; t;kg
 Local reference system

L
 Length of the beam axis

b
 Thickness of the walled beam

R(1),R(2)
 Ends of the beam

R
 Generic cross-section

A
 Cross-section area

k
 Mid-line of R

l
 Length of k

q
 In-plane curvature radius of k

O
 Intersection between the k axis and the plane of R

C
 Arbitrary fixed pole

P
 Generic point of the beam

x
 Position vector of the generic point

P
 Projection of P on the mid-surface

~x
 Oriented distance from P to P

s
 Curvilinear coordinate along k

M
 Origin of s

u
 Displacement field

f̂
 Warping function

H
 Displacement gradient

e
 Symmetric part of H

e
 Norm of e

E
 Green strain tensor

dLi
 Virtual work done by internal stresses

dLe
 Virtual work done by external loads

b
 External force for unit volume

p
 External force for unit surface acting on the

boundary of the beam
3. Mechanical model

In this section are introduced the main features of a mechanical
model proposed for the non-linear analysis of pultruded composite
beams. They relate to many assumptions concerning the geometric
and mechanical smallness as well as the constitutive relationships.

3.1. Geometric smallness

The geometry of the beam under consideration is given in Figs. 1
and 2. In particular, the global reference system {X, i, j,k} has been
Fig. 1. Thin-walled be
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oriented by aligning the unit vector k with the longitudinal axis of
the beam, while the reference systems fP;n; t;kg have been intro-
duced with the local origin P lying on the mid-surface of the beam.
It results:

n ¼ dy
ds

i� dx
ds

j t ¼ dx
ds

iþ dy
ds

j ð1:a;bÞ

dn
ds
¼ � 1

q
t

dt
ds
¼ 1

q
n ð2:a;bÞ

with x = x(s) and y = y(s) being the parametric equations of the mid-
line k and q the following quantity:

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x
ds2

 !2

þ d2y
ds2

 !2
vuut ð3Þ

From Eqs. (1) and (2), it descends:

d2x
ds2 ¼

dt
ds
� i ¼ 1

q
n � i ¼ 1

q
dy
ds

ð4:aÞ

d2y
ds2 ¼

dt
ds
� j ¼ 1

q
n � j ¼ � 1

q
dx
ds

ð4:bÞ

Due to the hypothesis of small thickness of the walled beam, the
following relationships are supposed to be satisfied:

b
l
� 1

b
q
� 1 ð5:a;bÞ

being l the length of the mid-line k.
From Eqs. (4) and (5), finally, it results:

b
d2x
ds2 � 1 b

d2y
ds2 � 1 ð6:a;bÞ
3.2. Basic kinematic assumptions

The position of a generic point P of the beam is:

xðPÞ ¼ xðPÞ þ ~xn ¼ xiþ yjþ zkþ ~xn ð7Þ

where P is the normal projection of P on the mid-surface of the
beam; x, y and z are the coordinates of P referred to the global sys-
tem; ~x denotes the oriented distance measured from P to P (Fig. 2).

Furthermore, the projections along n and t of the distance vec-
tor from an arbitrary fixed point C to P, are:

½xðPÞ � xðCÞ� � n ¼ r þ ~x ½xðPÞ � xðCÞ� � t ¼ p ð8:a;bÞ
am configuration.
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Fig. 2. Generic cross-section R.
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where

r ¼ ðx� xcÞ
dy
ds
� ðy� ycÞ

dx
ds

p ¼ ðx� xcÞ
dx
ds
þ ðy� ycÞ

dy
ds

ð9:a;bÞ

The kinematics of the thin-walled beam has been modeled by
assuming that the generic cross-section preserves itself un-
deformed and exhibits rigid-body rotations accompanied by warp-
ing displacements out of its plane:

uðxÞ ¼ uðxcÞ þ ðR � IÞðx� xcÞ þ f̂ðxÞk ð10Þ

In Eq. (10) the symbols have the following meanings:

– u = [n,g,f]T denotes the displacement field vector with n, g and f
indicating, in order, the displacement components along the
axes x, y and z;

– x is the position of a generic point P of the beam;
– xc = [xc,yc,z]T is the position of the point C relative to the generic

cross-section at a distance z from X;
– I is the identity tensor;
– R is a rotation tensor (RTR = RRT = I);
– f̂ðxÞ is the warping function.

According to the results presented in [26], the tensor R can be
expressed as follows:

R ¼ IþW ð11Þ

where

W ¼ Uþ 1
2!

U2 þ 1
3!

U3 þ � � � ð12Þ

being U a skew tensor. From Eqs. (11) and (12) it is possible to
write the displacement field components in the form:

n ¼ nc þW11ðx� xcÞ þW12ðy� ycÞ ð13:aÞ
g ¼ gc þW21ðx� xcÞ þW22ðy� ycÞ ð13:bÞ
f ¼ fc þW31ðx� xcÞ þW32ðy� ycÞ þ f̂ ð13:cÞ
Please cite this article in press as: Mancusi G, Feo L. Non-linear pre-buckling be
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where nc, gc and fc indicate, in order, the displacement components
along the axes x, y and z of the point C.

3.3. Strain smallness

From Eq. (13), it is easy to obtain the following components of
the displacement gradient H =ru, expressed with reference to
the global coordinates.

H11 ¼ W11 ð14:aÞ
H12 ¼ W12 ð14:bÞ
H13 ¼ n0c þW011ðx� xcÞ þW012ðy� ycÞ ð14:cÞ
H21 ¼ W21 ð14:dÞ
H22 ¼ W22 ð14:eÞ
H23 ¼ g0c þW021ðx� xcÞ þW022ðy� ycÞ ð14:fÞ

H31 ¼ W31 þ
@f̂
@x

ð14:gÞ

H32 ¼ W32 þ
@f̂
@y

ð14:hÞ

H33 ¼ f0c þW031ðx� xcÞ þW032ðy� ycÞ þ
@f̂
@z

ð14:iÞ

On the other hand, its symmetric part e = 1/2(H + HT) is given by:

e11 ¼ W11 ð15:aÞ
e22 ¼ W22 ð15:bÞ

e33 ¼ f0c þW031ðx� xcÞ þW032ðy� ycÞ þ
@f̂
@z

ð15:cÞ

e12 ¼
1
2
ðW12 þW21Þ ð15:dÞ

e13 ¼
1
2

n0c þW011ðx� xcÞ þW012ðy� ycÞ þW31 þ
@f̂
@x

 !
ð15:eÞ

e23 ¼
1
2

g0c þW021ðx� xcÞ þW022ðy� ycÞ þW32 þ
@f̂
@y

 !
ð15:fÞ

As discussed in [27], the following smallness hypotheses are
pivotal:

e� 1 ð16:aÞ
U ¼ Oðe1=2Þ ð16:bÞ
rf̂ ¼ OðeÞ ð16:cÞ
U0 ¼ Oðe1=2Þ ð16:dÞ
e0ðxc; yc; zÞ ¼ OðeÞ ð16:eÞ

with

e ¼ supz2½0;L�keðxc; yc; zÞk ð17Þ

All the above assumptions imply that the deformation of the beam
results in small strains and moderate rotations [25], according to
the following representation of the tensor W:

W ¼ Uþ 1
2

U2 þ Oðe3=2Þ

ffi
0 �uz uy
uz 0 �ux
�uy ux 0

24 35

� 1
2

u2
y þu2

z

� �
�uxuy �uxuz

�uxuy u2
x þu2

z

� �
�uyuz

�uxuz �uyuz u2
x þu2

y

� �
2664

3775 ð18Þ

Furthermore, it results [27]:

ux ¼ �g0c þ OðeÞ u0x ¼ �g00c þ OðeÞ ð19:a;bÞ
havior of shear deformable thin-walled composite beams with open cross-
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uy ¼ n0c þ OðeÞ u0y ¼ n00c þ OðeÞ ð19:c;dÞ

f0c ¼ OðeÞ f00c þ
@f
@z

����
x¼xc

 !0
¼ OðeÞ ð19:e; fÞ

As a consequence, the new form of the displacement field is:

n ¼ nc �
1
2

u2
y þu2

z

� �
Dxþ �uz þ

1
2
uxuy

� 	
Dy ð20:aÞ

g ¼ gc þ uz þ
1
2
uxuy

� 	
Dx� 1

2
u2

x þu2
z

� �
Dy; ð20:bÞ

f ¼ fc þ �uy þ
1
2
uxuz

� 	
Dxþ ux þ

1
2
uyuz

� 	
Dyþ f̂ ð20:cÞ

where

Dx ¼ x� xc þ
dy
ds

~x
� 	

Dy ¼ y� yc �
dx
ds

~x
� 	

ð21:a;bÞ

By means of Eq. (20), it is possible to up-date the components of
H =ru as follows:

H11 ¼
@n
@x
¼ �1

2
u2

y þu2
z

� �
ð22:aÞ

H12 ¼
@n
@y
¼ �uz þ

1
2
uxuy ð22:bÞ

H13 ¼
@n
@z
¼ n0c � uyu

0
y þuzu

0
z

� �
Dx

þ �u0z þ
1
2
uxu

0
y þ

1
2
u0xuy

� 	
Dy ð22:cÞ

H21 ¼
@g
@x
¼ uz þ

1
2
uxuy ð22:dÞ

H22 ¼
@g
@y
¼ �1

2
u2

x þu2
z

� �
ð22:eÞ

H23 ¼
@g
@z
¼ g0c þ u0z þ

1
2
uxu

0
y þ

1
2
u0xuy

� 	
Dx

� uxu
0
x þuzu

0
z

� �
Dy ð22:fÞ

H31 ¼
@f
@x
¼ �uy þ

1
2
uxuz þ

@f̂
@x

ð22:gÞ

H32 ¼
@f
@y
¼ ux þ

1
2
uyuz þ

@f̂
@y

ð22:hÞ

H33 ¼
@f
@z
¼ f0c þ �u0y þ

1
2
uxu

0
z þ

1
2
u0xuz

� 	
Dx

þ u0x þ
1
2
uyu

0
z þ

1
2
u0yuz

� 	
Dyþ @f̂

@z
ð22:iÞ
3.4. Integration of the warping function

With reference to the global axes it is easy to verify that the
Green strain tensor assumes the following form (being E13, E23

and E33 the only non-trivial strain components):

E ¼ 1
2
ðHþHT þHTHÞ ¼

0 0 E13

0 0 E23

E13 E23 E33

264
375 ð23Þ

where
Please cite this article in press as: Mancusi G, Feo L. Non-linear pre-buckling be
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E13 ¼
1
2

n0c �uy þ
1
2
uxuz þuzg

0
c

� 	

þ �u0z þ

1
2
uxu

0
y �

1
2
u0xuy

� 	
Dyþ @f̂

@x

#
ð24:aÞ

E23 ¼
1
2

g0c þux þ
1
2
uyuz �uzn

0
c

� 	

þ u0z �

1
2
uxu

0
y þ

1
2
u0xuy

� 	
Dxþ @f̂

@y

#
ð24:bÞ

E33 ¼ f0c þ
1
2

n0c
� �2 þ 1

2
g0c
� �2 þ @f̂

@z

þ �u0y þ
1
2
uxu

0
z þ

1
2
u0xuz þu0zg

0
c

� 	
Dx

þ u0x þ
1
2
uyu

0
z þ

1
2
u0yuz �u0zn

0
c

� 	
Dy

þ 1
2

u0y
� �2

þ u0z
� �2


 �
ðDxÞ2

þ 1
2

u0x
� �2
h

þ u0z
� �2

i
ðDyÞ2 �u0xu

0
yDxDy ð24:cÞ

In view of integrating the warping function, it is useful to repre-
sent the Green strain tensor as follows:

eE ¼ Q TEQ ¼
0 0 Enz

0 0 Etz

Enz Etz Ezz

264
375 ð25Þ

where the symbol ‘‘�’’ is used to indicate that the strain compo-
nents have been referred to the local reference system {n,t,k}. In
Eq. (25) the symbol Q denotes the well-known tensor:

Q ¼

dy
ds

dx
ds 0

� dx
ds

dy
ds 0

0 0 1

264
375 ð26Þ

With reference to the local axes, the strain components Enz and
Etz assume the following form:

Enz¼
1
2

n0c�uyþ
1
2
uxuzþuzg

0
c

� 	
dy
ds



� g0cþuxþ

1
2
uyuz�uzn

0
c

� 	
dx
ds
� u0z�

1
2
uxu

0
yþ

1
2
u0xuy

� 	
p

þ @f̂
@x

dy
ds
�@f̂
@y

dx
ds

 !#
ð27:aÞ

Etz¼
1
2

n0c�uyþ
1
2
uxuzþuzg

0
c

� 	
dx
ds



þ g0cþuxþ

1
2
uyuz�uzn

0
c

� 	
dy
ds

þ u0z�
1
2
uxu

0
yþ

1
2
u0xuy

� 	
ðrþ~xÞþ @f̂

@x
dx
ds
þ@f̂
@y

dy
ds

 !#
ð27:bÞ

Due the small thickness of the walled beam, it can be assumed
Enz = 0, thus implying that the derivative of the warping function f̂
with respect to n can be written as:

@f̂
@n
¼ @f̂
@x

dy
ds
� @f̂
@y

dx
ds

¼ � n0c �uy þ
1
2
uxuz þuzg

0
c

� 	
dy
ds

þ g0c þux þ
1
2
uyuz �uzn

0
c

� 	
dx
ds

þ u0z �
1
2
uxu

0
y þ

1
2
u0xuy

� 	
p ð28Þ
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By integrating Eq. (28), it results:

f̂¼ f̂j~x¼0¼� n0c�uyþ1
2uxuzþuzg0c

� �
dy
ds

~xþ g0cþuxþ1
2uyuz�uzn

0
c

� �
dx
ds

~x

þ u0z� 1
2uxu0yþ1

2u
0
xuy

� �
p~x

ð29Þ

where f̂j~x¼0 denotes the value of f̂ on the mid-line k. The derivative
of Eq. (29) with respect to the curvilinear abscissa s leads to:

@f̂
@s
¼ @f̂j~x¼0

@s
þ u0z �

1
2
uxu

0
y þ

1
2
u0xuy

� 	
~x ð30Þ

By substituting Eq. (30) into Eq. (27.b), we obtain:

Ctz ¼ 2Etz

¼ n0c �uy þ
1
2
uxuz þuzg

0
c

� 	
dx
ds

þ g0c þux þ
1
2
uyuz �uzn

0
c

� 	
dy
ds

þ u0z �
1
2
uxu

0
y þ

1
2
u0xuy

� 	
ðr þ 2~xÞ þ @f̂j~x¼0

@s
ð31Þ

Despite the usual assumption of zero shear strain along the
mid-line k [1], shear deformations have been modeled according
to the theoretical approach proposed by the authors in [7]. In
greater detail, the Green strain tensor referred to the local direc-
tions {n,t,k} has been represented as follows:eE ¼ eE0 þ ð�eE0 þ eE1Þ þ eE2 ¼ eE0 þ eE� þ eE2: ð32Þ

The terms in Eq. (32) have the following meaning (Etz indicating the
half-angular sliding between the directions t and k along the mid-
line k):

eE1 ¼
0 0 0
0 0 Etz

0 Etz 0

264
375 eE2 ¼

0 0 0
0 0 hz~x
0 hz~x Ezz

264
375 ð33:a;bÞ

with

hz ¼ u0z �
1
2
uxu

0
y þ

1
2
u0xuy ð34Þ

and

eE0 ¼ Q TE0Q ¼

0 0 0
0 0 Eð0Þxz

dx
ds þ Eð0Þyz

dy
ds

� �
0 Eð0Þxz

dx
ds þ Eð0Þyz

dy
ds

� �
0

2664
3775 ð35Þ

being

E0 ¼
1
A

Z
A

E1dR ¼ 1
A

Z
A

0 0 Exz

0 0 Eyz

Exz Eyz 0

264
375dR ¼

0 0 Eð0Þxz

0 0 Eð0Þyz

Eð0Þxz Eð0Þyz 0

2664
3775
ð36Þ

E1 ¼ Q eE1Q T ¼
0 0 Exz

0 0 Eyz

Exz Eyz 0

264
375 ð37Þ

The final form of the term eE� in Eq. (32) is thereby:

eE� ¼ ð�eE0 þ eE1Þ ¼
0 0 0
0 0 E�tz
0 E�tz 0

264
375 ð38Þ

with

E�tz ¼ Etz � Eð0Þxz
dx
ds
� Eð0Þyz

dy
ds

ð39Þ
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It is worthwhile to note that tensor E� ¼ Q eE�Q T satisfies the follow-
ing condition:Z

A
E�dR ¼ 0: ð40Þ

Furthermore, it has also been suggested [7] to approximate the
term C�tz ¼ 2E�tz by separating the dependency on z and s as follows:

C�tzðs; zÞ ¼ CiðzÞfiðsÞ ði ¼ 1;2; . . . ;NsÞ ð41Þ

where fi are appropriate shape functions and Ns is an integer num-
ber. Here the discussion is limited to remarking that these terms
provide a more refined modeling of shear deformability along the
mid-line k as the parameter Ns increases. The relevance of shear
strains, which are absent in a large number of Vlasov-like theories,
is clearly understandable when taking into account the small values
of the shear moduli exhibited by pultruded composite beams,
which are substantially coincident with those of the resin. The
angular sliding thereby assumes the following form:

Ctzðs; zÞj~x¼0 ¼ CxðzÞ
dx
ds
þ CyðzÞ

dy
ds
þ CiðzÞfiðsÞ ð42:aÞ

Ctzð~x; s; zÞj~x–0 ¼ Ctzðs; zÞj~x¼0 þ 2hz~x ð42:bÞ

In Eq. (42) the symbols Cx ¼ 2Eð0Þxz ;Cy ¼ 2Eð0Þyz denote the classical
average shear strains while the terms Ci(i = 1,2, . . . ,Ns) act as addi-
tional kinematic unknowns.

By comparing Eq. (31), evaluated at ~x ¼ 0, with Eq. (42.a), it
results:

@f̂j~x¼0
@s ¼ Cx � n0c þuy � 1

2 uxuz �uzg0c
� �

dx
ds

þ Cy � g0c �ux �
1
2
uyuz þuzn

0
c

� 	
dy
ds

� u0z �
1
2
uxu

0
y þ

1
2
u0xuy

� 	
r þ Cifi ð43Þ

Furthermore, by integrating Eq. (43) with respect to s, we obtain the
final expression of the warping function along the mid-line k:

f̂j~x¼0 ¼ f̂m � u0z �
1
2
uxu

0
y þ

1
2
u0xuy

� 	
xðsÞ þ CixiðsÞ ð44Þ

where f̂m ¼ f̂j~x¼0;s¼0 denotes the warping function evaluated at the
origin M of the curvilinear abscissa (Fig. 2), while the terms x(s)
and xi(s) are defined as follows:

xðsÞ ¼
Z P

M
rðtÞdt xiðsÞ ¼

Z P

M
fiðtÞdt ð45:a;bÞ

The derivative of Eq. (44) with respect to z, leads to:

@f̂j~x¼0

@z
¼ f̂0m � u00z �

1
2
uxu

00
y þ

1
2
u00xuy

� 	
xðsÞ þ C0ixiðsÞ ð46Þ
3.5. Displacement and strain components

For technical applications it is usually possible to discard the
dependency of n, g and f on the local coordinate ~x (i.e. small thick-
ness), thus giving to the displacement field the following final
form:

n ffi nj~x¼0 ¼ nc �
1
2

u2
y þu2

z

� �
ðx� xcÞ

þ �uz þ
1
2
uxuy

� 	
ðy� ycÞ ð47:aÞ

g ffi gj~x¼0 ¼ gc þ uz þ
1
2
uxuy

� 	
ðx� xcÞ

� 1
2

u2
x þu2

z

� �
ðy� ycÞ ð47:bÞ
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f ffi fj~x¼0 ¼ fm þ �uy þ
1
2
uxuz

� 	
ðx� xmÞ

þ ux þ
1
2
uyuz

� 	
ðy� ymÞ

� u0z �
1
2
uxu

0
y þ

1
2
u0xuy

� 	
xðsÞ þ CixiðsÞ ð47:cÞ

where fm ¼ fj~x¼0;s¼0 denotes the axial displacement evaluated at the
origin M of the curvilinear abscissa (Fig. 2). Finally, from Eq. (42.b),
it is:

Ctz ¼ CxðzÞ
dx
ds
þ CyðzÞ

dy
ds
þ CiðzÞfiðsÞ

þ 2 u0z �
1
2
uxu

0
y þ

1
2
u0xuy

� 	
~x ð48:aÞ

while from Eq. (24.c) and Eq. (46) it descends:

E33ffiE33j~x¼0¼ f0m� u0y�
1
2
uxu

0
z�

1
2
u0xuz

� 	
ðx�xmÞ

þ u0xþ
1
2
uyu

0
zþ

1
2
u0yuz

� 	
ðy�ymÞþu0zg

0
cðx�xcÞ

�u0zn
0
cðy�ycÞ� u00z �

1
2
uxu

00
yþ

1
2
u00xuy

� 	
xþC0ixi

þ1
2

n0c
� �2þ1

2
g0c
� �2þ1

2
u0y
� �2

þ u0z
� �2


 �
ðx�xcÞ2

þ1
2

u0x
� �2þ u0z

� �2
h i

ðy�ycÞ
2�u0xu

0
yðx�xcÞðy�ycÞ ð48:bÞ

It is useful to rewrite Eq. (48) as follows:

Ctz ¼Cx
dx
ds
þCy

dy
ds
þCi fiþ2hz~x ð49:aÞ

E33 ffi aþhxy�hyxþh0xþwxxy2þwyyx2þwxyxyþwzzðx2þy2ÞþC0ixi ð49:bÞ

The following generalized strains can be, in fact, identified in addi-
tion to Cx; Cy; Ci=C

0
i and hz:

a¼ f0mþ u0y�
1
2
uxu

0
z�

1
2
u0xuz

� 	
xm� u0xþ

1
2
uyu

0
zþ

1
2
u0yuz

� 	
ym

�u0zg
0
cxcþu0zn

0
cycþ

1
2

n0c
� �2þ1

2
g0c
� �2þ1

2
u0y
� �2

þ u0z
� �2


 �
x2

c

þ1
2

u0x
� �2þ u0z

� �2
h i

y2
c �u0xu

0
yxcyc ð50:aÞ

hx¼u0xþ
1
2
uyu

0
zþ

1
2
u0yuz�u0zn

0
c� u0x

� �2þ u0z
� �2

h i
ycþu0xu

0
yxc ð50:bÞ

hy¼u0y�
1
2
uxu

0
z�

1
2
u0xuz�u0zg

0
cþ u0y

� �2
þ u0z
� �2


 �
xc�u0xu

0
yyc ð50:cÞ

h0¼�u00z þ
1
2
uxu

00
y�

1
2
u00xuy ð50:dÞ

wxx¼
1
2

u0x
� �2 ð50:eÞ

wyy¼
1
2

u0y
� �2

ð50:fÞ

wxy¼�u0xu
0
y ð50:gÞ

wzz¼
1
2

u0z
� �2 ð50:hÞ
3.6. Stress tensor

The second Piola–Kirchhoff symmetric stress tensor can be ex-
pressed in the following form:

eS ¼ Snn Snt Snz

Snt Stt Stz

Snz Stz Szz

264
375 ð51Þ

Due to the assumptions introduced above, it results that Stz and Szz

are conjugated with the non-trivial strains Etz and Ezz, respectively.
Please cite this article in press as: Mancusi G, Feo L. Non-linear pre-buckling be
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A general form of the stress–strain relationship has been previ-
ously provided [27], which accounts for an arbitrary orientation of
the fibers, allowing to analyze the behavior of a generic laminated
beam. Examples relative to the application of a reduced linear form
of the present model, which accounts for a generic orientation of
the fibers, are given in [28,29].

As indicated in Section 4, however, in view of investigating the
behavior of pultruded beams (which are more sensitive to shear
deformations), a simplified stress–strain relationship can be
assumed.

The appropriate choice of the stress–strain relationship should
also account for possible influence of creep strains over time. Creep
strains, which can be very relevant [30–32], can be seen, in fact, as
an evolving geometric not-negligible defect, which provokes a time
evolution of the non-linear response of the composite beam. The
mechanical model, however, in its version here presented does
not account yet for this.

3.7. Variational formulation

In view of a variational formulation of the equilibrium for the
beam under consideration, the virtual work done by the internal
stresses can be proposed in the following form:

dLi¼
Z L

0
TxdCxþTydCyþKidCiþMzdhzþNdaþMxdhxþMydhy
�

þW0dh0þPxxdwxxþPyydwyyþPxydwxyþPzzdwzzþWidC
0
i

�
dz ð52Þ

where d indicates the variational operator.
In Eq. (52) the following positions have been considered:

Tx ¼
Z

A
Stz

dx
ds

dR Ty ¼
Z

A
Stz

dy
ds

dR ð53:a;bÞ

Ki ¼
Z

A
StzfidR Mz ¼ 2

Z
A

Stz~xdR ð53:c;dÞ

and

N ¼
Z

A
SzzdR Mx ¼

Z
A

SzzydR My ¼ �
Z

A
SzzxdR ð54:a-cÞ

W0 ¼
Z

A
SzzxdR Pxx ¼

Z
A

Szzy2dR Pyy ¼
Z

A
Szzx2dR ð54:d-fÞ

Pxy ¼
Z

A
SzzxydR Pzz ¼

Z
A

Szzðx2 þ y2ÞdR ð54:g;hÞ

Wi ¼
Z

A
SzzxidR ð54:iÞ

On the other hand, the virtual work done by the external loads
can be represented as:

dLe ¼
Z L

0
dz
Z

A
ðbduÞdRþ

Z L

0
dz
Z
@A
ðpduÞdRþ

Z
RðaÞ

ðpduÞdR ð55Þ

where

– b = [bx,by,bz]T is the external force for unit volume;
– p = [px,py,pz]T is the external force for unit surface acting on the

boundary of the beam;
– u = [n,g,f]T is the displacement field vector given by Eq. (47);
– a = 1,2 is a parameter indicating the ends of the beam (R(1) or

R(2)).

It results:
havior of shear deformable thin-walled composite beams with open cross-
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dLe ¼
Z L

0
qxdnc þ qydgc þ qzdfm �w0du0z þwidCi �

1
2

w0uydu
0
x



þ1

2
w0uxdu

0
y þ mx �

1
2

myuz þ
1
2

w0u0y þ
1
2

nzuy � nyux

� 	
dux

þ my þ
1
2

mxuz �
1
2

w0u0x þ
1
2

nzux � nxuy

� 	
duy

þ mz þ
1
2

mxuy �
1
2

myux � ðnx þ nyÞuz

� 	
duz

�
dzQ ðaÞx dnðaÞc

þ Q ðaÞy dgðaÞc þ Q ðaÞz dfðaÞm �W ðaÞ
0 du0ðaÞz þW ðaÞ

i dCðaÞi

� 1
2

W ðaÞ
0 uðaÞy du0ðaÞx þ 1

2
W ðaÞ

0 uðaÞx du0ðaÞy

þ CðaÞx �
1
2

CðaÞy uðaÞz þ
1
2

W ðaÞ
0 u0ðaÞy þ 1

2
NðaÞz uðaÞy � NðaÞy uðaÞx

� 	
duðaÞx

þ CðaÞy þ
1
2

CðaÞx uðaÞz �
1
2

W ðaÞ
0 u0ðaÞx þ 1

2
NðaÞz uðaÞx � NðaÞx uðaÞy

� 	
duðaÞy

þ CðaÞz þ
1
2

CðaÞx uðaÞy �
1
2

CðaÞy uðaÞx � NðaÞx þ NðaÞy

� �
uðaÞz

� 	
duðaÞz

ð56Þ

where

qx ¼
Z

A
bxdRþ

Z
@A

pxdsqy ¼
Z

A
bydRþ

Z
@A

pyds ð57:a;bÞ

qz ¼
Z

A
bzdRþ

Z
@A

pzds ð57:cÞ

mx ¼
Z

A
bzðy� ymÞdRþ

Z
@A

pzðy� ymÞds ð57:dÞ

my ¼ �
Z

A
bzðx� xmÞdR�

Z
@A

pzðx� xmÞds ð57:eÞ

mz ¼
Z

A
½�bxðy� ycÞ þ byðx� xcÞ�dR

þ
Z
@A
½�pxðy� ycÞ þ pyðx� xcÞ�ds ð57:fÞ

w0 ¼
Z

A
bzxdRþ

Z
@A

pzxds ð57:gÞ

wi ¼
Z

A
bzxidRþ

Z
@A

pzxids ð57:hÞ

nx ¼
Z

A
bxðx� xcÞdRþ

Z
@A

pxðx� xcÞds ð57:iÞ

ny ¼
Z

A
byðy� ycÞdRþ

Z
@A

pyðy� ycÞds ð57:jÞ

nz ¼
Z

A
½bxðy� ycÞ þ byðx� xcÞ�dR

þ
Z
@A
½pxðy� ycÞ þ pyðx� xcÞ�ds ð57:kÞ

and

Q ðaÞx ¼
Z

RðaÞ

pxdR Q ðaÞy ¼
Z

RðaÞ

pydR Q ðaÞz ¼
Z

RðaÞ

pzdR ð58:a-cÞ

CðaÞx ¼
Z

RðaÞ

pzðy� ymÞdR CðaÞy ¼ �
Z

RðaÞ

pzðx� xmÞdR ð58:d; eÞ

CðaÞz ¼
Z

RðaÞ

½�pxðy� ycÞ þ pyðx� xcÞ�dR ð58:fÞ
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W ðaÞ
0 ¼

Z
RðaÞ

pzxdR W ðaÞ
i ¼

Z
RðaÞ

pzxidR ð58:g;hÞ

NðaÞx ¼
Z

RðaÞ

pxðx� xcÞdR NðaÞy ¼
Z

RðaÞ

pyðx� xcÞdR ð58:i; jÞ

NðaÞz ¼
Z

RðaÞ

½pxðy� ycÞ þ pyðx� xcÞ�dR ð58:kÞ

Finally, the principle of virtual displacements implies:Z L

0
s � dedz ¼

Z L

0
ðqþHvÞdvdzþ ðQ ðaÞ þHðaÞvðaÞÞdvðaÞ ð59Þ

where

s¼½Tx ;Ty;K1; � �� ;Ki; � � �;KNs ;Mz;N;Mx;My;W0;Pxx;Pyy ;Pxy ;Pzz;W1; � �� ;Wi; �� � ;WNs �
T ð60:aÞ

e¼ Cx ;Cy;C1; � �� ;Ci ;� � �;CNs ;hz;a;hx ;hy;h0;wxx;wyy ;wxy;wzz;C
0
1; � �� ;C

0
i;� � � ;C

0
Ns

� 
T ð60:bÞ
q¼½qx ;qy;qz;mx;0;my;0;mz;�w0 ;w1;� � � ;wi; �� � ;wNs �

T ð60:cÞ

H¼

0 0 0 0 0 0 0 0 0 0 � � � 0 � � � 0

0 0 0 0 0 0 0 0 0 0 � � � 0 � � � 0

0 0 0 0 0 0 0 0 0 0 � � � 0 � � � 0

0 0 0 �ny 0 1
2nz

1
2w0 �1

2my 0 0 � � � 0 � � � 0

0 0 0 0 0 �1
2w0 0 0 0 0 � � � 0 � � � 0

0 0 0 1
2nz �1

2w0 �nx 0 1
2mx 0 0 � � � 0 � � � 0

0 0 0 1
2w0 0 0 0 0 0 0 � � � 0 � � � 0

0 0 0 �1
2my 0 1

2mx 0 �ðnxþnyÞ 0 0 � � � 0 � � � 0

0 0 0 0 0 0 0 0 0 0 � � � 0 � � � 0

0 0 0 0 0 0 0 0 0 0 � � � 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 0 0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 0 0 0 0 0 � � � 0 � � � 0

266666666666666666666666666666666664

377777777777777777777777777777777775
ð60:dÞ

v¼ nc;gc;fm;ux;u
0
x;uy;u

0
y;uz;u

0
z;C1; � �� ;Ci; �� � ;CNs

h iT
ð60:eÞ

Q ðaÞ ¼ Q ðaÞx ;Q ðaÞy ;Q ðaÞz ;CðaÞx ;0;CðaÞy ;0;CðaÞz ;�W ðaÞ
0 ;W ðaÞ

1 ; � �� ;W ðaÞ
i ; � �� ;W ðaÞ

Ns

h iT
ð60:fÞ

HðaÞ ¼

0 0 0 0 0 0 0 0 0 0 ��� 0 ��� 0
0 0 0 0 0 0 0 0 0 0 ��� 0 ��� 0
0 0 0 0 0 0 0 0 0 0 ��� 0 ��� 0
0 0 0 �NðaÞy 0 1

2NðaÞz
1
2W ðaÞ

0 �1
2CðaÞy 0 0 ��� 0 ��� 0

0 0 0 0 0 �1
2W ðaÞ

0 0 0 0 0 ��� 0 ��� 0

0 0 0 1
2NðaÞz �1

2W ðaÞ
0 �NðaÞx 0 1

2CðaÞx 0 0 ��� 0 ��� 0

0 0 0 1
2W ðaÞ

0 0 0 0 0 0 0 ��� 0 ��� 0

0 0 0 �1
2CðaÞy 0 1

2CðaÞx 0 �ðNðaÞx þNðaÞy Þ 0 0 ��� 0 ��� 0
0 0 0 0 0 0 0 0 0 0 ��� 0 ��� 0
0 0 0 0 0 0 0 0 0 0 ��� 0 ��� 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 0 0 0 0 0 0 0 0 0 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 0 0 0 0 0 0 0 0 ��� 0 ��� 0

266666666666666666666666666666664

377777777777777777777777777777775
ð60:gÞ

vðaÞ ¼ nðaÞc ;gðaÞc ; fðaÞm ;uðaÞx ;u0ðaÞx ;uðaÞy ;u0ðaÞy ;uðaÞz ;u0ðaÞz ;CðaÞ1 ; � � � ;CðaÞi ; � � � ;CðaÞNs

h iT

ð60:hÞ
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3.8. Cross-section made of interconnected thin rectangles

When dealing with common structural shapes, the open cross-
sections can be seen as made of interconnected thin-rectangles. As
a consequence, the mid-line k can be represented as follows:

k ¼
[

p¼1;Nseg

kp ð61Þ

where kp denotes the intersection between k and the generic pth
rectangle, while Nseg indicates the overall number of rectangles.

As already indicated, it has been suggested to separate the
dependency of C�tz on the curvilinear abscissa s from the one on
the axial coordinate z, according to the general form given in Eq.
(41).

With this aim the following positions can be introduced:

hðqÞp ðsÞ ¼
ðqþ 1Þðs� spÞq s 2 kp

0 elsewhere

(
ðp ¼ 1;2; . . . ;NsegÞ
ðq ¼ 0;1; . . . ;NoÞ

ð62Þ

where sp is the curvilinear abscissa evaluated at the first end of the
pth rectangle and No (No P 1) is a fixed integer denoting the maxi-
mum order of the polynomial approximation of C�tz.

By means of Eq. (62), it is possible to rewrite Eq. (41) as follows:

C�tzðs; zÞ ¼ CðqÞp ðzÞh
ðqÞ
p ðsÞ

ðp ¼ 1;2; . . . ;NsegÞ
ðq ¼ 0;1; . . . ;NoÞ

ð63Þ

Furthermore, the following linear equations must be introduced
in order to satisfy Eq. (40):

CðqÞp xðxzÞ
p;q ¼ 0 CðqÞp xðyzÞ

p;q ¼ 0 ð64:a;bÞ

where

xðxzÞ
p;q ¼

Z
k

hðqÞp ðsÞ
dx
ds

bds xðyzÞ
p;q ¼

Z
k

hðqÞp ðsÞ
dy
ds

bds ð65:a;bÞ

It is generally possible to find four integer numbers:

p1;p2 2 f1;2; . . . ;Nsegg q1; q2 2 f0;1; . . . ;Nog ð66:a;bÞ

ensuring that

D ¼ xðxzÞ
p1 ;q1

xðyzÞ
p2 ;q2
�xðxzÞ

p2 ;q2
xðyzÞ

p1 ;q1
– 0 ð67Þ
i
M  C  O

j
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Fig. 3. I-section (Nseg = 6).
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If Eq. (67) is satisfied, then the two unknowns Cðq1Þ
p1
ðzÞ and Cðq2Þ

p2
ðzÞ

can be expressed via the following two linear combinations:

Cðq1Þ
p1
¼ amnC

ðnÞ
m Cðq2Þ

p2
¼ bmnC

ðnÞ
m ð68:a;bÞ

where

ðm;nÞ 2 f1;2; . . . ;Nsegg 	 f0;1; . . . ;Nog � fðp1; q1Þ; ðp2; q2Þg ð69Þ

Finally, C�tz can be expressed in the following form:

C�tzðs; zÞ ¼ CðqÞp ðzÞh
ðqÞ
p ðsÞ

¼ Cðq1Þ
p1
ðzÞhðq1Þ

p1
ðsÞ þ Cðq2Þ

p2
ðzÞhðq2Þ

p2
ðsÞ þ CðnÞm ðzÞh

ðnÞ
m ðsÞ

¼ CðnÞm ðamnhðq1Þ
p1
þ bmnhðq2Þ

p2
þ hðnÞm Þ ¼ CðnÞm f ðnÞm ð70Þ

It should be noted that the required shape functions fi with
i 2 {1,2, . . . ,Ns} and Ns = Nseg 	 (No + 1) � 2), correspond to simply
renumbering of the functions f ðnÞm , generated as above.

An example concerning a symmetric I-section is presented in
Fig. 3.

The functions hðqÞp obtained for the generic symmetric I-section
in Fig. 3 are presented in Table 1. As expected, the p index varies
within the set {1,2, . . . ,6} while the q index, which denotes the
exponent of the current polynomial, is still indeterminate. If, for
examples, it is assumed No = 2, then Ns is equal to 16. It is impor-
tant to remark that within this theory the accuracy of predicted
shear deformations depends on the maximum order No of polyno-
mials hðqÞp .

It easy to verify that the following choice:

p1 ¼ 1 p2 ¼ 2 q1 ¼ 0 q2 ¼ 0 ð71:a-dÞ

leads to

D ¼ xðxzÞ
1;0 xðyzÞ

2;0 �xðxzÞ
2;0 xðyzÞ

1;0 ¼ �
1
4

bf bwBH – 0 ð72Þ

thus ensuring the possibility to express Cð0Þ1 and Cð0Þ2 by virtue of Eq.
(68.a,b).

Finally, the resulting functions for No = 2(i = 1,2, . . . ,16) are pre-
sented in Table 2.

3.9. Finite element approximation

The variational equilibrium equation Eq. (59) has been formu-
lated via a numerical model based on a finite element approxima-
tion. The mesh proposed is composed of finite elements
characterized by 2 	 (12 + 2Ns) degrees of freedom, including
(12 + 2Ns) d.o.f. per each node i (i = 1,2). (see Table 3).

Let u be the generic kinematic un-known. The approximation of
u is obtained by cubic interpolating polynomials as follows:

uðnÞ ¼ h10ðnÞu1 þ h11ðnÞu01 þ h20ðnÞu2 þ h21ðnÞu02 ð73Þ

where

h10 ¼
1
4
ð2� 3nþ n3Þ h11 ¼

le

8
ð1� n� n2 þ n3Þ ð74:a;bÞ

h20 ¼
1
4
ð2þ 3n� n3Þ h21 ¼

le

8
ð�1� nþ n2 þ n3Þ ð74:c;dÞ

being le the length of the finite element; u1 and u2 the nodal values
of the kinematic un-known under consideration while u01 and u02 the
nodal values of the derivative of u with respect to the axial coordi-
nate z (see Fig. 4).

4. Numerical comparisons

The kinematic model discussed in previous Section 3 has been
applied to the study of a composite pultruded cantilever beam
havior of shear deformable thin-walled composite beams with open cross-
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Table 1
Functions hðqÞp for the generic symmetric I-section shown in Fig. 3 (q = 0,1, . . . ,No).

s 2 k1 s 2 k2 s 2 k3 s 2 k4 s 2 k5 s 2 k6

hðqÞ1 ðqþ 1Þ sþ B
2þ H

2

� �q 0 0 0 0 0

hðqÞ2
0 ðqþ 1Þ sþ H

2

� �q 0 0 0 0

hðqÞ3
0 0 (q + 1)sq 0 0 0

hðqÞ4
0 0 0 ðqþ 1Þ s� H

2

� �q 0 0

hðqÞ5
0 0 0 0 ðqþ 1Þ s� H

2

� �q 0

hðqÞ6
0 0 0 0 0 ðqþ 1Þ sþ B

2þ H
2

� �q

Table 2
Functions fi for the generic symmetric I-section shown in Fig. 3 (No = 2).

fi m n f ðnÞm
fi m n f ðnÞm

f1 1 1 hð1Þ1 � B
2 hð0Þ1

f9 4 1 hð1Þ4 þ B
2 hð0Þ1

f2 1 2 hð2Þ1 � B2

4 hð0Þ1
f10 4 2 hð2Þ4 þ B2

4 hð0Þ1

f3 2 1 hð1Þ2 � H
2 hð0Þ2

f11 5 0 hð0Þ5 � hð0Þ1

f4 2 2 hð2Þ2 � H2

4 hð0Þ2
f12 5 1 hð1Þ5 � B

2 hð0Þ1

f5 3 0 hð0Þ3 � hð0Þ2
f13 5 2 hð2Þ5 � B2

4 hð0Þ1

f6 3 1 hð1Þ3 � H
2 hð0Þ2

f14 6 0 hð0Þ6 þ hð0Þ1

f7 3 2 hð2Þ3 � H2

4 hð0Þ2
f15 6 1 hð1Þ6 þ B

2 hð0Þ1

f8 4 0 hð0Þ4 þ hð0Þ1
f16 6 2 hð2Þ6 þ B2

4 hð0Þ1

Table 3
Degrees of freedom.

‘‘a’’ ‘‘b’’ ‘‘c’’

Ns 0 0 16
Nodal d.o.f. 12 12 44
Overall d.o.f. 1212 1212 4444

Fig. 4. Finite element.

L
y

F

P
zBA

Fig. 5. Examined cantilever beam.

Table 4
Load multiplier kF versus normalized axial force m.

m a = 1 a = 5

‘‘a’’ ‘‘b’’ ‘‘c’’ ‘‘a’’ ‘‘b’’ ‘‘c’’

0.3 15.56 14.67 13.14 8.88 8.77 8.57
0.6 15.22 14.36 12.96 8.16 8.05 7.99
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made of Carbon Fiber-Reinforced Polymer (CFRP) under the com-
bined action of a fixed compressive axial force P and an increasing
transverse force F acting at the centroid of the free end (Fig. 5).

The cross section shown in Fig. 3 has been considered, with the
geometric parameters assuming the following values: B = 50 mm,
H = 47 mm, bf = bw = 3 mm. It is worth noting that the cross-section
is the same considered in [27].

In relation to the constitutive behavior of the composite, a lin-
ear elastic stress–strain relationship has been assumed according
to the following simplified law:

Stz

Szz


 �
¼

Gtz 0
0 Dzz


 �
Ctz

Ezz


 �
ð75Þ

being Dzz the longitudinal normal modulus while Gtz the shear
modulus relative to the directions t and k. Due to the considered
Please cite this article in press as: Mancusi G, Feo L. Non-linear pre-buckling be
section. Composites: Part B (2012), http://dx.doi.org/10.1016/j.compositesb.20
orientation of the fibers, which are aligned to the k unit vector,
the out of diagonal terms are not present. Moreover, it has been as-
sumed Dzz = 138000 N/mm2 and Gtz = 5170 N/mm2, which corre-
spond to the material denoted by ‘‘M2’’ in [27].

The flexural, torsional and warping rigidity constants of the
cross-section are:

DzzIxx ¼ 2:648	 1010 N mm2 ð76:aÞ

DzzIyy ¼ 8:640	 109 N mm2 ð76:bÞ

GtzJt ¼ 6:840	 106 N mm2 ð76:cÞ

DzzPx ¼ 4:763	 1012 N mm4 ð76:dÞ
havior of shear deformable thin-walled composite beams with open cross-
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Table 5a
dimensionless deflection d at z = L (a = 1).

m kF Linear analysis Non-linear analysis

‘‘a’’ ‘‘b’’ ‘‘c’’ ‘‘a’’ ‘‘b’’ ‘‘c’’

0.3 13.14 1.000 1.158 1.178 1.107 1.297 1.322
0.6 12.96 1.000 1.158 1.178 1.240 1.475 1.507

Table 5b
dimensionless flexural rotation c at z = L (a = 1).

m kF Linear analysis Non-linear analysis

‘‘a’’ ‘‘b’’ ‘‘c’’ ‘‘a’’ ‘‘b’’ ‘‘c’’

0.3 13.14 1.000 1.001 1.015 1.111 1.128 1.147
0.6 12.96 1.000 1.001 1.015 1.250 1.292 1.317
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Furthermore, the following slenderness parameter is
introduced:
a ¼ GtzJtL
2

DzzPx
ð77Þ
which, within the analyses carried out, has been assumed equal to
a = 1 or a = 5.

The results have been presented with the aim of analyzing the
critical values of the external loads and the coupling effect be-
tween deformability in shear and geometric non-linearity.

Despite of the model proposed in [27], the present analysis ac-
counts, in fact, for the shear deformability of the mid-surface of the
thin-walled beam by means at least of the average shear strains Cx

and Cy; if a better refinement is required, a linear combination of
the polynomials fi can be considered in addition.

In view of a better understanding of this behavior, the examples
developed by the authors relate to the hypotheses of shear un-
deformability of the mid-surface (‘‘a’’), basic shear deformability
(‘‘b’’ – only the average shear strains Cx and Cy are present), and
refined shear deformability (‘‘c’’ – further terms Cifi are present
in addition to Cx and Cy). In this last case the approximation has
been truncated at the second order (No = 2), thus allowing to use
the polynomials indicated in Table 2.
model

model "c" (L

δ (
z)

z / 

Fig. 6a. Diagram of d(z) ve
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The numerical results have been obtained by using a mesh of
100 two-node finite elements over the beam length. Depending
on what approximation is considered (‘‘a’’, ‘‘b’’ or ‘‘c’’), the overall
degrees of freedom are as indicated in Table 3.

A convergence check has been carried out indicating the high
accuracy of the mesh size.

In Table 4 the critical values of the dimensionless transverse
force kF are presented for different values of the normalized axial
compressive force m:

kF ¼
FL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GtzJt � DzzIyy

p ð78:aÞ

m ¼ P

p2DzzIyy=4L2 ð78:bÞ

As a second goal, the coupling effect between deformability in
shear and geometric non-linearity has been investigated. The two
following dimensionless quantities are introduced for this scope:

dðzÞ ¼ gcðzÞ
g�c
��
z¼L

cðzÞ ¼ uxðzÞ
u�x
��
z¼L

ð79:a;bÞ

where the symbols g�c
��
z¼L

and u�x
��
z¼L

denote, respectively, the deflec-
tion gc and the rotation ux predicted via a linear analysis without
accounting for the shear deformability on the mid-surface.

In Tables 5a and b the numerical predictions in terms of the free
end dimensionless deflection and flexural rotation are presented.
The results dealing with the models ‘‘a’’, ‘‘b’’ and ‘‘c’’, as well as
the different values of the normalized axial force are compared.
Both the linear (L) and the non-linear (NL) analysis are considered.
It has been also assumed that the external transverse force F corre-
sponds to the lowest value indicated in Table 4 (i.e. model ‘‘c’’).

The investigation is limited to a = 1.
Furthermore, the functions d(z) and c(z) are plotted in Figs. 6a

and b, 7a and b versus the normalized axial coordinate z/L.
As it can be argued from the values presented in Table 4, the re-

fined approach proposed by the authors for modeling the shear
deformability (model ‘‘c’’) allows to capture a not negligible reduc-
tion of the critical load in respect to the hypothesis of considering
zero shear strains along k (‘‘model ‘‘a’’) or the classical average
shear strains (‘‘model ‘‘b’’). For the less slender beam (a = 1) this
decrease is found equal to about �15% with respect to model ‘‘a’’
model "a" (L)

model "a" (NL)

model "b" (L)

 "b" (NL)

)

model "c" (NL)

L

rsus z/L(a = 1, m = 0.3).
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δ (
z)

z / L

model "a" (L)
model "a" (NL)

model "b" (L)

model "b" (NL)

model "c" (NL) model "c" (L)

Fig. 6b. Diagram of d(z) versus z/L(a = 1, m = 0.6).

z / L

γ (
z)

model "a" (NL)

model "b" (NL)

model "c" (NL)

model "a" (L)

model "b" (L)

model "c" (L)

Fig. 7a. Diagram of c(z) versus z/L(a = 1, m = 0.3).

z / L

γ(
z)

model "a" (NL)

model "b" (NL)

model "c" (NL)

model "a" (L)

model "b" (L)

model "c" (L)

Fig. 7b. Diagram of c(z) versus z/L(a = 1, m = 0.6).
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or equal to about �10% with respect to model ‘‘b’’. On the contrary,
no relevant differences are found for the analysis relating to the
other beam (a = 5).

Moreover, in the case a = 1, a coupling effect between non line-
arity and deformability in shear also emerges in terms of free end
deflection (Table 5a). Despite the fact that only +17.8% is found via
a linear analysis (model ‘‘c’’ with respect to model ‘‘a’’), the end
deflection increases up to +21.5% (model ‘‘c’’ in respect to model
‘‘a’’ – m = 0.6) if a non-linear analysis is carried out.

For what concern the analogous effect relating to the free end
rotation (Table 5b), the differences are less relevant between a
model and another.
5. Conclusions

In this paper the authors have presented a mechanical model
for the study of the non-linear pre-buckling behavior of composite
beams with open cross-section.

The model accounts for a refined approximation of the shear
deformability on the mid-surface of the walled beam. Geometric
non linearity is considered according to the hypotheses of small
strains and moderate rotations.

The numerical results have shown a relevant dependency of the
mechanical behavior on the shear deformability, both within the
linear and the non-linear field. Comparisons in terms of load mul-
tipliers indicate that for low slenderness ratios the shear strains
can highly affect the buckling load of the pultruded beam.

Flexural deflections and rotations are also influenced in a com-
bined manner by shear deformability and moderate rotations, indi-
cating the need to improve the knowledge and understanding of
such an interaction in the perspective of a safe use of composite
profiles for civil engineering applications.
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