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vgtu.lt (O. Kizinievič), l.feo@unisa.it (L. Feo).
a b s t r a c t

The present paper analyzes a stress–strain state of a composite timber–concrete T cross section under a
short-term pure bending. The behaviour of a bending moment in respect of a curvature of the cross sec-
tion was investigated as well. It is assumed that the plane section hypothesis is valid and layers do not
slip with respect to each other. The parabolic stress–strain diagram with a descending branch, according
to MC90, was applied to the compression concrete while a linear elastic relationship was applied to the
timber. The stress–strain state of the cross section was investigated from the beginning of the loading up
to the stage exceeding ultimate limit state. The analysis was conducted by applying control of the curva-
ture of the considered cross section. The influence of the tension fibre-reinforced polymer (FRP) and com-
pression steel reinforcements on the stress–strain state of the cross section was also considered. The
obtained analytical equations of the layered members were solved numerically. It was found out that
the bearing capacity of the cross section is restricted mainly due to low strength of the timber and the
tension reinforcement is more effective than the compression reinforcement.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Timber concrete composite (TCC) structures have been studied
intensively in recent years. Experimental, analytical and numerical
investigations include short-term and long-term behaviour of the
TCC structures with various connectors under thermal and mois-
ture actions, taking into account shrinkage of the concrete, nonlin-
ear behaviour of the materials of the layers as well as a nonlinear
slip between interfaces of the layers. The recent literature review
on TCC was made in [1]. The solid TCC floor system whose inter-
faces were with notches cut and with anchors, under a short-term
loading, experimentally and numerically with a finite-element
method was investigated by Gutkowski et al. [2,3]. Adhesive
bonded double T cross section timber-ultra-high-concrete compos-
ite beams with a glued joint under cyclic and static loads were
tested by Schäfers [4]. Thin-webbed TCC beams, with a wall made
out of oriented strand board, under a short-term loading were
tested by Gurkšnys [5]. TCC beams with various connectors under
short-term and long-term loadings were tested by Ceccoti et al. [6],
Lukaszewska et al. [7], Negrão et al. [8], Fragiacomo et al. [9,10],
Mueller et al. [11], Jorge et al. [12].

Along with experimental investigations, the analytical method-
ologies have also been developed to calculate the TCC beams and
ll rights reserved.
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plates. Perhaps, the earliest exact methodology of an elastic multi-
layered beam with an interlayer slip of each interface was devel-
oped by Rzhanicyn in 1948 [13]. The effect of the uplift of the
interlayer and the nonlinear behaviour of the interfaces were also
considered [14]. The methodology how to calculate build-up bars
according to the plastic limit state was also developed in [14]. Rzh-
anicyn also developed a theory for the build-up plates [14]. Some
methodologies for TCC taking into account the slip between inter-
faces of the layers are given in [15–19]. Theoretical analysis of
three layered timber–concrete beam and comparison with experi-
ment is given in [20].

When the plane section hypothesis is valid, then there are other
methodologies suitable for TCC structures. The majority of these
methodologies were developed for the reinforced concrete struc-
tures, for example [21,22].

The finite element method is also used to analyze the behaviour
of the TCC beams subject to short-term and long-term loading, tak-
ing into account the shrinkage of concrete, the moisture and ther-
mal expansions of concrete whether timber [2,7,10]. The creep of
the joint is also taken into account. The properties of the concrete
were taken according to MC90 [23].

It is evident that the behaviour of the cross section depends on
the stiffness of the connections of the layers. In general, bending of
TCC members shall be considered taking into account an interlayer
slip. However, the behaviour of the cross sections of the beam de-
pends not only on the stiffness of the interface but also on the
length of the beam, its support and loading conditions. Stiffness
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Nomenclature

Latin symbols
|�| absolute value
A and Ai areas of the whole cross section and ith layer respec-

tively
AFRP cross section of FRP
As cross section of reinforcement
as distance between the top of the cross section and the

centroid of reinforcement
bi width of ith layer
D discriminant
Eci initial tangent modulus of concrete
Ecm secant modulus of elasticity of concrete
EFRP modulus of elasticity of FRP
Es modulus of elasticity of steel
Ew modulus of elasticity of timber
fcm mean cylinder strength of concrete
fw strength of timber
fy yield point of steel
fr,c(e), fr,c,I(e) and fr,c,II(e) stress–strain relationships of concrete
fr,FRP(e) and fr,w(e) stress–strain relationships for FRP and timber

respectively
fr,i(e) stress–strain relationship for ith layer
G shear modulus
h and hi are heights of the whole cross section and ith layer

respectively
hjnt thickness of joint
J(�) stress–slip relationship of a joint
M bending moment
Mk characteristic bending moment of a cross section
Mmax local maximum of the bending moment
Mecu1 bending moment when the strain of concrete equals to

ecu1

Mew,lim bending moment when strain of timber equals to its
limit value ew,lim

N axial force
n number of the layers
s interlayer slip
Si first order moment of ith area
y and z coordinates

Greek symbols
ec,lim strain of the compressive concrete at 0.5 fcm

ecu1 limit strain of the compressive concrete for bending
members according to EC2

c shear angle
di distance between the neutral axis and top edge of the

ith layer
ds distance between the neutral axis and the centroid of

the steel reinforcement
e strain
e�max;c maximal strain of concrete corresponding to a local

maximum of the bending moment
e�min;w minimal strain of timber corresponding to a local max-

imum of the bending moment
ec1 compressive strain of concrete corresponding to its

maximum stress
emax and emin maximal and minimal strains at the top and bottom

of the cross section respectively
emax,c maximal strain of concrete
emin,w minimal strain of timber
ew,lim limit strain of timber
f position of the neutral axis
fel position of the neutral axis of the elastic cross section
g and g0 stiffness and initial stiffness of a joint respectively
j curvature
j⁄ curvature corresponding to the maximal bending mo-

ment
n coefficient
qs and qFRP reinforcement ratios for steel and FRP reinforcements
rc stresses of concrete
ri(�) function describing the distribution of the normal stres-

ses through the depth of the cross section
rw stresses of timber
s tangential stresses
ui,1(z) and ui,2(z) functions describing the region of the cross sec-

tion
W(z) function describing distribution of the strain through

the depth of the cross section
Xi domain of the ith layer
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of the interface depends on the type of connectors. Perhaps, the
stiffest connectors are glued joints, whose stiffness depends on
the thickness of the joint [1,8,24]. When the thickness of the joint
tends to zero, then its initial stiffness or its initial slip modulus
tends to infinity. Here, the initial stiffness of the joint is treated
as the value of the slip derivative of the stress–slip relationship
as the slip equals zero. That is, the initial stiffness of the joint
g0 ¼ ½dJðsÞ=ds�s¼0, where s and J(s) are the interlayer slip and
stress–slip relationship of a joint, respectively. Let us illustrate this
assertion by employing the linear elastic stress–slip relationship
for a joint, i.e. s = gs, where g and s are stiffness of the joint and
slip, respectively. According to the Hooke law s = cG, where c
and G are shear angle of the joint and shear modulus, respectively.
If assumption of the small displacement is valid, then c = tan(c) = s/
hjnt, where hjnt is thickness of the joint. By equating s = gs and
s = cG = (G s/hjnt) we get g = G/hjnt. Therefore, g ?1 as hjn ? 0. Gi-
ven explanation is also valid for nonlinear joint whose stress–slip
relationship is linear or very close to the linear relationship at
small slip, i.e. as s ? 0. The plane sections’ hypothesis may be ap-
plied practically to every cross section of such bending members.
This assumption was made in the research [8]. Notches cut in the
timber and continuous connectors glued to the timber are also very
stiff connectors [1,8,24]. When a joint is made with screws, nail
plates or dowels, the plane section hypothesis cannot be applied
to each cross section of the beam.

The stiffness of the joint can be characterized by the slip mod-
ulus. However, the characterization of the stiffness of the nonlinear
joint by the slip modulus is not comprehensive. Therefore, several
criteria were suggested how to evaluate the efficiency of the com-
posite beams and their joints [2,19]. The most popular evaluation is
as follows EFF = (wNC � wPC)/(wNC � wFC) � 100% , where wNC, wPC

and wFC denote the deflections of the midspan of the composite
beam with absolutely slender, partially stiff, and absolutely stiff
connections, respectively. Instead of the deflections the areas and
volumes between the positions of the cross section before loading
and after it were also applied to EFF [2]. The mentioned efficiency
involves not only the stiffness of the joint, but also the length of the
beam. Since wPC tends to wFC as the length of the beam tends to
infinity, then it is evident that the EFF increases up to 100% with
increasing the length of the beam. Therefore, it is possible to eval-
uate whether the plane section hypothesis is valid for certain cross
sections if EFF is big enough. As reported in [7], the efficiency of the
TCC beams can reach 98%. Thus, if both the length of the beam and
the stiffness of the joint are big enough, there are cross sections in
the beam for which the plane section hypothesis is valid. In the
case of a simple supported symmetrically loaded beam, these cross
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sections are in the middle of the beam with respect to its length.
Such cross sections can be calculated neglecting the interlayer
slip.

As is known, the bilinear stress–strain diagram shall be ap-
plied for bending members according to EC2 [25]. In [8], this dia-
gram was applied in order to investigate the influence of the
nonlinearity of the concrete behaviour in comparison with the
linear elastic constitutive law. On the other hand, according to
EC2 [25], a parabolic stress–strain diagram may be also adopted
for the analysis of the cross-section. This diagram and the bilinear
stress–strain diagram are restricted up to so-called ultimate com-
pressive strain. However, in some cases, it is important to deter-
mine the pure carrying capacity of the cross section, when
accidental actions affect structures. In this case, some restrictions
of the design codes can be violated. Therefore, according to MC90
[23], a full parabolic stress–strain diagram is adopted in the pres-
ent investigation.

2. Governing equations

Let us consider the cross section of a prismatic layered member
with the following assumptions:

1. the contact between layers is perfect, i.e. no slip occurs between
the interfaces of layers;

2. the prismatic element is in pure plane bending conditions; that
is, the stress–strain state is uniaxial;

3. the plane section hypothesis is valid;
4. the prismatic element is bent around the principical axis of the

cross section (Fig. 1);
5. the shape and size of the cross section remains unchanged dur-

ing the bending.

The second assumption was made in order to restrict the area of
our investigations. In pure bending condition the uniaxial stress
state occurs in the cross-section. Therefore, only normal stresses
should be calculated in order to examine the stress–strain state
and load-carrying capacity of the cross section. Otherwise, in case
of shear forces and bending moment the tangential stresses must
be calculated beside the normal stresses as well. It complicates
analysis, because it is more difficult to calculate tangential stresses
than normal stresses. O the other hand, in plane stress state more
sophisticated failure criteria should be applied for concrete as well.

Under the aforementioned assumptions, the following condi-
tions of static equilibrium can be written for the whole cross sec-
tion of the layered element:

N ¼
Xn

i¼1

ZZ
Ai

riðzÞdzdy ¼ 0 ð1Þ
Fig. 1. Cross-section of a prismatic layered member and distribution of strain
through its depth.
M ¼
Xn

i¼1

ZZ
Ai

ðz� z0ÞriðzÞdzdy ð2Þ

where ri(�) is a function describing the distribution of the normal
stresses through the depth of the cross section of the ith layer, ax-
ial force N and bending moment M are resultants of the internal
forces of the cross section, z0 is the coordinate of the neutral axis
of the cross section in an arbitrary frame of reference YOZ, Ai is
the area of the cross section of the ith layer, n is the number of
the layers (Fig. 1). The total area of the cross section is as follows
A ¼

Pn
i¼1Ai. It is also assumed that the compressive stresses and

strains are negative while the tensile stresses and strains are
positive.

It should be noted that beside bending load an axial force may
affect a TCC structure. In general, an analysis of such structures is
more complicated due to buckling. Axial forces affect the position
of the neutral axis and an arrangement of the stresses through the
depth of the cross section. However, if the resultants of the exter-
nal forces are known, taking into account second order effects
caused by structural deformations, then an analysis of the stress–
strain state and ultimate limit state of the cross-section can be con-
ducted by Eqs. (1) and (2) as well. In this case Eq. (2) remains un-
changed, however, the resultant of the axial force N, in Eq. (1), does
not equal zero.

The validity of the plane section hypothesis means that the
strain state through the depth of the cross section of the layered
element can be completely defined by two parameters: the posi-
tion of the neutral axis f and the strain e at a certain point of the
cross section or by the position of the neutral axis f and the curva-
ture j of the deformed axis. Let the distribution of the strains
through the depth of the cross section be described by a linear
function W(z) which may be defined as follows:

eðzÞ ¼ WðzÞ ¼ 1
b
ðz� z0Þ ð3Þ

where b is as follows: b = f/emax, b = (f � h)/emin, or b = 1/j. Where
emin and emax are minimal and maximal strain at the edges of the
cross section, f is the distance between the neutral axis and the out-
er top surface of the cross section (Fig. 1), j is the curvature and h is
the depth of the whole cross section.

Let the stress–strain relationship of the ith layer be fr,i(e). Then,
taking into account Eq. (3), the dependence of the stresses through
the depth of the cross section of the ith layer is ri(z) = fr,i(W(z)).
The integrals in (1) and (2) can be rewritten as repeated ones. If
we assume that the normal stresses r depend only on the coordi-
nate z, then the integrals (1) and (2) can be integrated one time
with respect to the y:

N ¼
Xn

i¼1

Z di

di�1

fr;iðWðzÞÞðui;2ðzÞ �ui;1ðzÞÞdz ¼ 0 ð4Þ

M ¼
Xn

i¼1

Z di

di�1

ðz� z0Þfr;iðWðzÞÞðui;2ðzÞ �ui;1ðzÞÞdz ð5Þ

where ui,2(z) and ui,1(z) are functions describing the region of the
cross section of the ith layer in the frame of reference YOZ, di is
the coordinate of the ith layer edge in the YOZ (Fig. 1) given by,

di ¼ ðfþ z0Þ � hþ
Xi

j¼1

hj ð6Þ

where hi is the thickness of the ith layer and h is the thickness of the
whole cross section i.e. h ¼

Pn
i¼1hi. In Eq. (7) it is assumed thatP0

j¼1hj ¼ 0.
If the cross sections of all layers are rectangular, then

ui,1(z) = �1/2 bi and ui,2(z) = 1/2 bi, where bi is the width of the



Fig. 2. Timber–concrete T cross section and distribution of the strain through its
depth.
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ith layer. Then Eqs. (4) and (5) can be expressed as follows:

N ¼
Xn

i¼1

bi

Z di

di¼1

fr;iðWðzÞÞdz ¼ 0

M ¼
Xn

i¼1

bi

Z di

di¼1

ðz� z0Þfr;iðWðzÞÞdz

ð7Þ

Let us substitute the strain e for coordinate z in integral (7),
where e is given in (3). Eq. (3) yields:

z ¼ ebþ z0 ð8Þ

Then substitution Eqs. (8) into (7) yields:

N ¼ b
Xn

i¼1

bi

Z ei

ei�1

fr;iðeÞde ¼ 0

M ¼ b2
Xn

i¼1

bi

Z ei

ei�1

efr;iðeÞde
ð9Þ

where the new integration limits ei�1 and ei are strain at the bottom
and top of the ith layer, respectively:

ei ¼
1
b
ðdi � z0Þ ¼ 1

b
f� hþ

Xi

j¼1

hj

 !
; i ¼ 0;1; . . . ;n ð10Þ

where di is given in (6) and
P0

j¼1hj ¼ 0. From (10) we get: when i = 0
then e0 = emin and when i = n then en = emax.

We should emphasize that Eqs. (9) and (10) are written for the
frame of reference Y0O0Z0 (Fig. 1). Eq. (9) may be more convenient
than Eq. (7) because the stress–strain relationships are integrand
in (9) and integration can be performed directly without any trans-
formation of the strain e. Moreover, if the integrals

R
fr(e)de andR

efr(e)de are known in advance then Eq. (9) can be applied directly.
It should be also emphasized that there are two equations and

two unknown quantities in Eqs. (7) or (9) �maximum strain emax

and the position of the neutral axis f if b = f/emax, the minimum
strain emin and f if b = (f � h)/emin, and the curvature j and f if
b = 1/j. Thus, system (7) is solvable.

The solution of Eqs. (7) or (9) depends on the choice of an inde-
pendent variable. If it is the bending moment M, then Eqs. (7) or (9)
should be solved simultaneously to obtain parameters f and emin, or
f and j. If the curvature j, or the extreme strain emax, or emin are
chosen as an independent variable, then to obtain an unknown f,
it is enough to solve only the first equation N = 0 in system (9). In
the last case, the bending moment M can be calculated indepen-
dently of the first Eq. N = 0 in (9).

If the stress–strain relationship of the layer, which contains a
neutral axis, is different in compression and in tension, then Eqs.
N and M in (9) may be expressed as follows:

N ¼ b
Xk�1

i¼1

bi

Z ei

ei�1

fr;iðeÞdeþ bk

Z 0

ek�1

fr;kðeÞdeþ bk

Z ek

0
fr;kðeÞdeþ

Xn

i¼kþ1

bi

Z ei

ei�1

fr;iðeÞde
 !

¼ 0

ð11Þ

M ¼ b2
Xk�1

i¼1

bi

Z ei

ei�1

efr;iðeÞdeþ bk

Z 0

ek�1

efr;kðeÞdeþ bk

Z ek

0
efr;kðeÞdeþ

Xn

i¼kþ1

bi

Z ei

ei�1

efr;iðeÞde
 !

ð12Þ

where k is the number of the layer which contains neutral axis
(Fig. 1).

3. Object of the study

Let us investigate the stress–strain state of the three-layered T-
shaped cross section (Fig. 2). Let the flange of the cross section be
made out of reinforced concrete and the web be made out of
timber. Additionally, let the wooden web be strengthened by an
FRP layer at the bottom of the cross section. The parabolic
stress–strain diagram with a descending branch for short-term
loading concrete, according to MC 90 [23], was used. The linear
elastic perfectly plastic stress–strain relationship was adopted for
steel reinforcement and linear elastic stress–strain relationship
was taken for the timber and the FRP, respectively.

According to MC 90 [23], the parabolic stress–strain relation-
ship for concrete in compression is as follows:

fr;cðeÞ ¼
fr;c;IðeÞ; if e 6 ec;lim

fr;c;IIðeÞ; if e > ec;lim

�
ð13Þ

where functions fr,c,I(e) and fr,c,II(e) are given in (14) and (17),
respectively.

When concrete strain varies within the range 0 6 e 6 ec,lim, then
fr,c,I(e) is as follows:

fr;c;IðeÞ ¼ fcm

Eci
Ec1

e
ec1
� e

ec1

� �2

1þ Eci
Ec1
� 2

� �
e

ec1

ð14Þ

where fcm is mean values of the concrete cylinder compressive
strength, e is the compressive strain of the concrete while ec1 is
its strain corresponding to the maximal stresses. According to
MC 90 [23], ec1 is the same for all classes of concrete and ec1 =
2.2 � 10�3. In Eq. (14) Ec1 is a secant modulus of the concrete,
Ec1 = fcm/ec1, and Eci is an initial tangent modulus of the concrete,
i.e. Eci ¼ dfr;c;IðeÞ=deje¼0. According to MC 90 [23], Eci is as follows:

Eci ¼ 2:15 � 1010ðfcm=107Þ1=3 ð15Þ

where the dimensions of the fcm and Eci are in Pa and GPa,
respectively.

The dependence (14) holds as long as e 6 ec,lim. The strain
ec,lim > ec1, and ec,lim corresponds to the stress 0.5 fcm. In MC 90
[23], there are given values of the ec,lim for the eight classes of the
concrete and a relationship for ec,lim is also given. The strains ec,lim

at the stress 0.5 fcm can be calculated by solving Eq. (14) with re-
spect to the strain e by equating fr,c,I(ec,lim) = 0.5 fcm. Eq. (14) can
be rearranged into quadratic equation, whose two solutions with
respect to the strain e are as follows:

e ¼ �b�
ffiffiffiffi
D
p

2a
ð16Þ

where the coefficients are following: a = fcm/ec1
2, b = Eci (rc/fcm

� 1) � 2rc/ec1, and D = b2 � 4arc is the discriminant, rc is the stres-
ses of concrete. The positive sign before

p
D corresponds to

descending part of the stress–strain diagram (when ec,1 < e 6 ec,lim),
while the negative sign corresponds to the rising part of the dia-
gram (when 0 6 e 6 ec,1). Thereby, to calculate the limit strain ec,lim
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the positive sign has to be applied in (16) before
p

D and concrete
stresses rc has to be equated to 0.5 fcm.

In the case when concrete strain e > ec,lim, the stress–strain rela-
tionship of compressive concrete can be described according to
MC 90 [23] as follows:

fr;c;IIðeÞ ¼
fcm

ec1n
ec;lim
� 2e2

c1
e2

c;lim

� �
e2

e2
c1
þ 4ec1

ec;lim
� n

h i
e

ec1

ð17Þ

where n is

n ¼
4 ec;lim

ec1

� �2
Eci
Ec1
� 2

� �
þ 2 ec;lim

ec1
� Eci

Ec1

� �
ec;lim
ec1

Eci
Ec1
� 2

� �
þ 1

h i2 ð18Þ

The full stress–strain diagram for compressive concrete, accord-
ing to the formulas (14), (17), and (18), is shown in Fig. 3.

We assume that the linear elastic stress–strain relationships for
timber and FRP are as follows:

fr;jðeÞ ¼ eEj; j 2 fw; FRPg ð19Þ

where e and Ei are the strain and the elastic modulus of the timber
and FRP, respectively.

It should be noted that, in general, the behaviour of timber is
different in compression and in tension. The stress–strain relation-
ship for timber under tension may be assumed as linear elastic
while the nonlinear relationship is preferable for the compression
timber [26,27]. However, some investigators also use the nonlinear
diagram for tension timber [18]. In the present article the proper-
ties of the layers are chosen in such a way that neutral axis would
be in the 2nd layer (timber web), that is h3 6 f 6 (h � h1). Conse-
quently, the concrete layer is fully in compression. Since the stiff-
ness of the 2nd layer is bigger than the stiffness of the 1st layer the
position of the neutral axis is near the connections of the layers.
Therefore, the tension strain of timber is not big and the assump-
tion about the linear elastic stress–strain relationship for compres-
sive timber is valid.

The linear elastic perfectly plastic relationship was assumed for
steel reinforcement:

fr;sðeÞ ¼
eEs; if eEs 6 fy

fy; if eEs > fy

�
ð20Þ

where Es and fy are elastic modulus of reinforcement and its yield
point.

Following the mentioned assumptions, Eqs. (11) and (12) are as
follows:
N ¼ b b1

Z e1

e0

fr;FRPðeÞdeþ b2

Z e2

e1

fr;wðeÞdeþ b3

Z e3

e2

fr;cðeÞde
� 	

þ Asfr;sðeÞ ¼ 0

ð21Þ

N ¼ b2 b1

Z e1

e0

efr;FRPðeÞdeþ b2

Z e2

e1

efr;wðeÞdeþ b3

Z e3

e2

efr;cðeÞde
� 	

þ Asfr;sðeÞds ¼ 0

ð22Þ

where As is the area of the cross section of the reinforcement, ds is
the distance from the neutral axis to the centroid of the reinforce-
ment (Fig. 2). The integration limits ei, i 2 {0,1,2,3}, in (21) and
(22) are as follows:

e0 ¼
1
b
ðf� hÞ ¼ emin; e1 ¼

1
b
ðf� h2 � h3Þ;

e2 ¼
1
b
ðf� h3Þ and e3 ¼

1
b

f ¼ emax ð23Þ

Since the stress–strain dependence of the concrete is a piecewise
function (13), then the integrand fr,c(e) in the integrals

R e3
e2

fr;cðeÞde
and

R e3
e2

efr;cðeÞde of Eqs. (21) and (22) equals fr,c,I(e) when e3 6 ec,lim

and fr,c,II(e) when e2 > ec,lim, respectively, here e3 = emax. When e2 6

ec,lim and e3 > ec,lim, then:Z e3

e2

fr;cðeÞde ¼
Z ec;lim

e2

fr;IðeÞdeþ
Z e3

ec;lim

fr;IðeÞde
Z e3

e2

efr;cðeÞde ¼
Z ec;lim

e2

efr;IðeÞdeþ
Z e3

ec;lim

efr;IIðeÞde
ð24Þ

For the FRP and the timber layers the integrals of Eqs. (21) and
(22) are following:Z b

a
fr;jðeÞde ¼

Z b

a
Ejede ¼ 1=2Ejðb2 � a2Þ ð25Þ

Z b

a
efr;jðeÞde ¼

Z b

a
Eje2de ¼ 1=3Ejðb3 � a3Þ ð26Þ

where j e {w, FRP}.
For concrete layer, the integrals of Eqs. (21) and (22) are

following:

Z b

a
fr;c;IðeÞde ¼ fcm

ðb� aÞv2
0

v2
1

� 1
2

fcmðb2 � a2Þ
ec1v1

 !
� f 2

cmec1v2
0

v3
1

� ln
v1bþ fcmec1

v1aþ fcmec1

� 	
ð27Þ

where v0 = 1.05Ecmec1 � fcm and v1 = 1.05Ecmec1 � 4fcm,Z b

a
fr;c;IIðeÞde ¼

fcmec;limec1

nec;lim � 4ec1
ln

aðv3bþ v2Þ
bðv3aþ v2Þ

� 	
ð28Þ

where v2 ¼ 4ec;limec1 � ne2
c;lim and v3 ¼ nec;lim � 2ec1,

Z b

a
efr;c;IðeÞde ¼

f 3
cme2

c1v2
0 ln fcmec1�v4b

fcmec1�v4a

� �
v4

4

þ fcmv2
0ðv4ec1ðb2 � a2Þ þ 2f cme2

c1ðb� aÞÞ
2v3

4ec1

þ f 2
cmðb

3 � a3Þ
3v4ec1

ð29Þ

where v4 ¼ 2f cm � 1:05Ecmec1,Z b

a
efr;c;IIðeÞde ¼

1
v3

fcme2
c;limec1 ln

v3bþ v2

v3aþ v2

� 	
ð30Þ

where v2 and v3 are given in Eq. (28). In Eqs. (27)–(30) the limits of
the integration a and b are strains and a 6 b.
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It should be noted that the stress–strain relationship for com-
pressive concrete (14) according to MC 90 [23] and EC2 [25] is
really the same. Only the notations are different. According to
EC2 [25] in (14) Ec1 = 1.05 Ecm. Also values of the strain ec1 are dif-
ferent for some classes of the concrete. Therefore, the obtained
integrals (27) and (29) can be used for calculation according to
the EC2 [25] requirements.
4. The solution of the equations system

Both Eqs. (21) and (22) together with (23), (25), (26), (27), (28),
(29), and (30) are nonlinear. They should be solved numerically.
These equations may have one, two and even three roots. It should
be emphasised that all three roots may be actual. For example, if fi,
i 6 3, is one of the roots of Eqs. (21) and (22) then the case is pos-
sible when h3 6 fi 6 (h � h1). Therefore, there can be difficulties in
distinguishing the required root among others. One way how to do
it is to solve Eqs. (21) and (22) at the beginning of the loading or
deformation, because there is only one actual root when emin, emax,
j, or M tend to zero. Gradual increasing one of these variables leads
to gradual variation of the actual solution. Then it is possible to
identify the required root according to its closeness to the previous
value. However, some difficulties still remain when the actual root
changes discontinuously. If at the jump Eqs. (21) and (22) have
only one actual root, then the given rule can be applied to the fur-
ther roots as well. In the present article Eqs. (21) and (22) were
solved with the program Maple.
5. Analysis of the results

In this chapter the results of the analysis of the behaviour of the
TCC cross section under the bending moment are given. The influ-
ence of the cross section geometrical parameters, materials param-
eters, steel reinforcement and FRP on the deformation parameters
was investigated. To illustrate this influence the analysis was per-
formed using five types of cross sections (Table 1): the first three
types are TCC cross sections without any steal and FRP reinforce-
ment, the fourth and the fifth types are cross sections only with
steal or only with FRP reinforcement.

The deformation of the cross section is characterized with four
parameters: the bending moment M, extreme strains emin and emax,
and the position of the neutral axis f. For more convenience the ex-
treme strains of the timber and concrete layers are referred to by
the symbols emin,w and emax,c, that is emin,w = e1 for the timber layer
and emax,w = e3 for the concrete layer. The extreme strains emin,w and
emax,c as well as the curvature j corresponding to the local maxi-
mum of the bending moment Mmax were also investigated. In this
case they are denoted as e�min, e�max and j�. For more clarity the
e�min and e�max are depicted in Fig. 6. In Fig. 4, Fig. 10 and Fig. 11,
the vertical dotted lines and diamond-like markers, on the abscis-
sa, denote the values of the curvature j�.

In order to model the behaviour of the cross section under the
load, three variables can be chosen as independent in Eqs. (21)
and (22): extreme strains emax, emin, and curvature j. It is evident
that deflection is related unambiguously to curvature; therefore,
there is natural reason to choose the curvature as an independent
variable to analyze the stress–strain state of the cross section. It
should be emphasized that the bending moment as an indepen-
dent variable is not as convenient as the curvature j because one
value of M may correspond to two values of each strain emin,w or
emax,c. Thus, in the present article the curvature j is taken as an
independent variable.

In the Table 1 the concrete properties are characterized only by
its mean strength fcm. The initial tangent modulus of elasticity Eci of
the concrete can be obtained by Eq. (15). It was also assumed that
the modulus of the elasticity EFRP of the FRP and its strength fFRP are
as follows: EFRP = 130 GPa and fFRP = 1750 MPa. These values were
taken for carbon FRP according to [28]. The class of the steel rein-
forcement was taken B500 whose yield point fs = 500 MPa. In the
present analysis the stresses and strains of timber were not re-
stricted, that is, the strength of the timber was always taken bigger
than the absolute value of the maximum stresses.

Due to a small diameter of the reinforcing steel bars and small
thickness of the FRP layer the amount of these reinforcements
were represented in terms of reinforcement ratios qs and qFRP for
steel and FRP reinforcement, respectively:

qj ¼
Aj

b3h3 þ ðb2h2ÞEw=Eci
; j 2 fFRP; sg ð31Þ

where As and AFRP are areas of the steel and FRP reinforcement,
respectively.

The width of the 1st FRP layer is the same as the width of the
2nd timber layer. The position of the reinforcement within 3rd
concrete layer was equal to as = 5 cm (Fig. 2).

5.1. Analysis of the timber–concrete cross section

Let us start the analysis from the TCC cross section without any
steel and FRP reinforcements. The cross section is I type (Table 1).
Fig. 4 shows that the dependences of the parameters of the defor-
mations f, M, emin and emax with respect to the curvature j may
have jump discontinuity when j P j⁄ (descending branch on
j�M graph). Where j⁄ is the curvature corresponding to the local
maximum of the bending moment Mmax. These dependences may
be continuous for the cross sections with low strength concrete
and low ratio of the thickness h3/h2 of the layers. The decrease of
the stresses of low strength concrete, when ec > ec1, is not as sharp
as of higher strength concrete. It indicates that the discontinuities
appear due to the sharp descending branch of the adopted stress–
strain diagram of the concrete. These discontinuities are indicated
clearly for high strength concrete in Fig. 4. Mathematically, the dis-
continuities can be treated as follows. If Eqs. (21) and (22) are
solved with respect to one of the variables f, M, emin, emax, then
the discontinuities in Fig. 4 point out that Eqs. (21) and (22) do
not have solution in certain interval. Consequently, the depen-
dence of the curvature j on f, M, emin or emax is not defined within
certain interval. Physically, these discontinuities should corre-
spond to abrupt redistribution of the strains state of the cross sec-
tion – abrupt decrease of the bending moment M and abrupt
increase of the curvature or deflection. In addition, this phenome-
non may be treated as sudden partial fracture of the whole
cross section or fracture of the concrete due to sudden increase
of the strain emax,c.

5.1.1. Position of the neutral axis
Fig. 4a shows that the position of the neutral axis f increases

monotonically with increasing the curvature j and tends to
(1/2 h2 + h3). At the beginning of the loading the concrete deforms
almost elastically. It should be noted that the experimental inves-
tigation conducted by Ceccoti [6] also showed a similar tendency of
the behaviour of the position of the neutral axis when the strength
of concrete fcm = 30.4 MPa. Therefore, at this stage the position of
the neutral axis can be calculated according to a well known
formula:

fel ¼
Xn

i¼1
EiSi

Xn

i¼1
EiAi

.
ð32Þ

where n is number of the layers, Ei is modulus of the elasticity of the
ith layer, Si and Ai are the first order moment and area of the ith
layer, respectively. In this case the Si shall be calculated with respect
to the top edge of the cross section.



Table 1
Types of the used cross sections and their properties.

Type of cross section 1st Layer (FRP) 2nd Layer (timber) Steel reinforcement 3rd Layer (concrete)

qFRP (%) EFRP (GPa) b2 (m) h2 (m) Ew (GPa) qs(%) Es (GPa) b3 (m) h3 (m) fcm (MPa)

I 0 � 0.2 0.4 10 0 � 0.6 0.1 Varies from 20 up to 80
II 0 � 0.2 0.4 10 0 � 0.6 0.1 40
III 0 � (b3 / b2) = 5,

0 6 (h3 /
h2) 6 0.8

10 or 20 0 � (b3 / b2) = 5,
0 6 (h3 /
h2) 6 0.8

Varies from 20 up to 80

IV Varies from 0 up to 3 130 0.2 0.4 10 0 � 0.6 0.1 40
V 0 � 0.2 0.4 10 Varies from 0 up to 3 200 0.6 0.1 40

154 D. Zabulionis et al. / Composites: Part B 45 (2013) 148–158
Let f = fel at the beginning of the deformation, i.e. when j ? 0.
The fel remains the same for the interval [0,j�] because fel by
(32) does not depend on the curvature j. Then, as can be seen from
this picture, f tends to fel with increasing strength of the concrete
as j2 [0,j�]. When the strength of concrete is 80 MPa the f
remains practically the same up to the discontinuity point j�.
Consequently, the f may be calculated by the formula (32) when
concrete strength is big enough.

5.2. Bending moment

The analysis shows that the dependence of the bending mo-
ment on the curvature j may not have local maximum when
strength of the concrete is low and (or) concrete layer thickness
is small enough. The picture Fig. 4b shows that j� at local maxi-
mum Mmax increase with increasing the concrete strength. Analysis
also showed that j� increases with increasing ratio h3/h2.

In Fig. 5, there are depicted two kinds of the bending moments
for the I type cross section: the characteristic bending moments
Mk, according to the linear elastic analysis of EN 1995-1-1 [15]
(Appendix B), depicted by open circles; and the bending moments
according to Eqs. (21) and (22), depicted by curves. The character-
istic bending moments Mk, Mk = j(EI)ef, where (EI)ef is effective
(a)

(c)

(

Fig. 4. The dependences of the parameters of the deformations on the curvature j when
M, c is maximum strain emax,c of the concrete and d is absolute values of minimum strai
bending stiffness according to [15], were calculated taking the po-
sition of the neutral axis according to Eq. (32) and assuming the
following parameters: the slip modulus of the joint equals infinity,
the strength class of the timber is C22 according to EN 338:2009
[29], then modulus of elasticity and characteristic strength of the
timber Ew = 10 GPa and fw = 22 MPa, respectively; the characteris-
tic strength and secant modulus of the concrete fck = fcm � 8 MP
and Ecm = 0.85Eci, respectively, according to recommendations of
MC90 [23], where Eci is given in (15). The moments Mk were calcu-
lated when either max{|rw|} = fw and max{rc} 6 fck or max{|rw|}
6 fw and max{rc} = fck, where rc, rw, fw and fck are stresses and
characteristic strengths of the concrete and timber, respectively.
As can be seen from Figs. 4 and 5 the values of Mk are much smaller
than Mmax. In addition, the dependency of Mk on concrete strength
fcm is weaker than the dependency of M on fcm according to nonlin-
ear analysis (Eqs. (21) and (22)). It is due to the fact that Mk is re-
stricted mainly to low strength of the timber (except the case when
fcm = 20 MPa).

5.3. Analysis of the extreme strains emax,c and |emin,w|

As can be seen from Fig. 4c the values of the maximum concrete
stains emax,c (at the top edge of the cross section) decrease with
(d)

b)

type of the cross section is I: a is position of the neutral axis f, b is bending moment
n |emin,w| of the wood.



Fig. 6. The parametric curves of the strains emax,c and |emin,w| and the bending
moments M of the II type of the cross section.

Fig. 5. The dependences of the bending moments on curvature (lines) and
characteristic values of the bending moment according to linear elastic analysis
of EN 1995-1-1 [15] (Appendix B) (open circles).

Fig. 7. The dependences of the maximum values of the strains at the local
maximum Mmax for III type cross section.

Fig. 8. The dependences of the minimum values of the minimal values of the strain
of the timber on concrete strength at the local maximum Mmax.

Fig. 9. The dependences of the maximal values of the strain of the concrete at the
local maximum Mmax.

Table 2
The values of the ratios of the bending moment.

fcm 20 30 40 60 80

Mew;lim
Mmax

0.55 0.43 0.36 0.29 0.26

Mecu1
Mmax

1 0.99 0.65 � 0.9
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increasing strength of concrete when j 2 {0,j�} and, on the con-
trary, the absolute minimum value of the strain |emin,w| of timber
(at the bottom edge of the cross section) increases with increasing
strength of concrete (Fig. 4). At the point of the discontinuity the
emax,c increases and |emin,w| decreases abruptly. The parametric
curves of the strains emax,c and |emin,w| and the bending moments
M are depicted in Fig. 6 when the type of the cross section, accord-
ing to Table 1, is II.

Fig. 4 also illustrates that due to the softening of the concrete
the deformation parameters f, M, emax,c, and emin,w tend to the
corresponding values of the deformation parameters of the wooden
cross section which is made out of only the 2nd layer (timber).

The dependences of the absolute minimum je�min;wj and maximum
je�max;cj values of the strain corresponding to the local maximum Mmax

of the bending moment M are given in Figs. 7 and 9. The type of the
cross section is III. It should be noted that the loading stage when
M = Mmax can be considered as the ultimate limit state of the cross
section under pure bending. The solid line depicts the strain when
Ew = 10 GPa, and the dotted line when Ew = 20 GPa. The numbers be-
side the lines indicate the mean strength fcm of concrete. The range of
the ratio h3/h2 was taken as [0,0.8]. However, the values of the je�max;cj
and je�min;wj are depicted for those values of the ratio h3/h2 for which
the local maximum Mmax exits and for which the neutral axis is in the
2nd wooden layer that is while f > h3.

Fig. 7 illustrates that the strain je�min;wj increases with increasing
ratio h3/h2 and the strength of concrete fcm; however, the je�min;wj de-
creases with increasing modulus of elasticity of the wood Ew. The
dependence of the je�min;wj on the ratio h3/h2 is not strictly increas-
ing for the low strength concrete, i.e. when fcm = 20 MPa. It is also
determined that je�min;wj increases monotonically with increasing
ratio b3/b2 of the widths of the layers.

Let us investigate minimum values of the je�min;wjðminfje�min;wjgÞ
as the following limits are assumed: (b3/b2) 2 [1,10], (h3/h2) 2
[0,0.8], Ew 2 {10,20} GPa, and fcm 2 [20,80] MPa. It should be noted
that these limits correspond to the set of the cross sections that are



(a) (b)

(c) (d)

Fig. 10. The dependences of the parameters of the deformations of the IV type cross section on the curvature j: . . . when qFRP = 0.0%, – – – when qFRP = 0.5%, – � – � when
qFRP = 1.0%, and – when qFRP = 3.0%.
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really used in civil engineering. Since je�min;wj decreases monotoni-
cally with decreasing of the ratio b3/b2, then the minfje�min;wjgwould
be obtained if the ratio b3/b2 was minimal. For real structures it
may be assumed that the minimal values of the b3/b2 equal to 1
and in our analysis it is also assumed that b3/b2 = 1. Then minimum
values minfje�min;wjg of the strain j e�min;w j under assumed limits are
depicted in Fig. 8.

Let us compare je�min;wj with the limit values of the wood’s strain
ew,lim = Ew/fw when materials properties are taken from code
EN 338:2009 [29]. The properties of the wood indicated in this
code are used to design wooden structures in civil engineering.
According to this document, the mean values of the modulus of
the elasticity of the wood varies within the interval (7 6 Ew

6 20) GPa, while characteristic bending strength of the wood
varies within the interval (14 6 fw 6 70) MPa, and characteristic
tensile strength along the grain of the wood varies within interval
(8 6 fw 6 42) MPa. Therefore the estimations of the minimal and
maximal values of the limits strain of the wood may be as follows:
ew,lim = Ew/fw is 2 � 10�3 when Ew = 7 GPa and 3.5 � 10�3 when
Ew = 20 GPa, respectively. If we take into account that the design
values of the strength of the solid timber are at least 1/3 smaller
than the characteristic values and that the ratio b2/b1 = 1 is a very
specific case for real structures, then it is possible to claim that the
strains je�min;wj of the TCC T cross section are much bigger than the
limit values of wood’s strain ew,lim = Ew/fw. Fig. 7 illustrates it obvi-
ously because the je�min;wj varies within the interval
[4.99 � 10�3, 6.17 � 10�3] when Ew = 20 GPa and fcm = 20 MPa,
respectively. And these values are minimum values over assumed
limits; (b3/b2), (h3/h2), Ew. The following conclusion can be formu-
lated in terms of stress: the stresses of the wood at local maximum
of the bending moment are much bigger than the strength of wood.

The given comparison could seem incorrect because the
strength of the concrete was taken as mean value and the limit
deformation of the timber were determined by taking the charac-
teristics or design values of the wood. That is, the quantiles of the
strength of the concrete and wood were different. However, the
proposed conclusion remains valid because the inequality
ew;lim � je�min;wj is also valid for low strength concrete, which may
be treated as the actual or the design strength of the concrete.

The dependences of the maximal strain of the concrete e�max;c on
the ratio h3/h2 at ultimate state for cross section of III type are de-
picted in Fig. 9. The picture shows that e�max;c decreases with
increasing concrete strength fcm. The e�max;c has an absolute mini-
mum within the interval h3/h2 in which e�max;c is defined and max-
imum at the maximum value of the ratio h3/h2 of the domain of
definition of the e�max;c.

According to the design codes the maximum absolute values of
the compressive strain of the concrete shall be limited. For exam-
ple, according to EC2 [25] for a parabola stress–strain diagram with
a descending branch the ultimate values of the compressive strain
ecu1 are as follows: 3.5 � 10�3 when fcm 6 58 MPa, 3.36 � 10�3

when fcm = 60 MPa and 2.82 � 10�3 when fcm = 80 MPa. According
to code ACI 318 [30] the ultimate values of compressive strain of
the concrete in bending members is 3.0 � 10�3. Fig. 9 shows that
for the given cross section ecu1 does not exceed only when fcm

P 60 MPa. If the strain of the timber is restricted by the limit
ew,lim = Ew/fw, then maximal strain of concrete emax,c is small enough
in comparison with the strain ec1 at the maximal stress r = fcm.
Therefore, it can be assumed that the behaviour of the concrete
is linear elastic in the considered interval of the concrete strain,
especially for higher classes of the concrete. The analysis of the
position f of the neutral axis confirms that assumption. Both
reasons allow us to think that linear elastic approach is suitable
enough for calculation of the TCC T cross sections.

Let us compare the maximum bending moment Mmax with
bending moments Mew,lim and Mecu1. Here Mew,lim is a bending mo-
ment when |emin,w| = ew,lim = Ew/fw and Mecu1 is a bending moment
when emax,c = ecu1, respectively. In this case it is assumed that the
strength class of the timber is C22 according to EN 338:2009
[29]. Then Ew = 10 GPa, fw = 22 MPa and ew,lim = 2.2 � 10�3. The val-
ues of the ecu1 are taken according to EC2 [25] and ecu1 = 3.5 � 10�3.
The cross section is I type. The ratios of the bending moments are
given in the Table 2. It should be noted that the ratio Mecu1=Mmax is
absent in the Table 2 for value fcm = 60 MPa, because the bending



Fig. 12. The dependences of emax,c, |emin,w| and j on the ratio of the reinforcement of
the compression or tension zones, respectively for IV and V types of the cross
sections when M = 0,7 MNm, —s— and ���s��� refer to the cross section with
compression steel or tension FRP reinforcement respectively.

(a)

(c) (d)

(b)

Fig. 11. The dependences of the parameters of the deformations of the V type cross section on the curvature j: . . . when qs = 0.0%, – – – when qs = 0.5%, – � – �when qs = 1.0%,
– when qs = 3.0%.
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moment at ecu1 is not defined, actually the concrete maximum
strains ec,max at Mmax are less than ecu1.

Table 2 indicates clearly that the bearing capacity of the TCC
T cross section is restricted mainly due to low strength of the
wood. Similar conclusion was made in analysis of characteristic
bending moment Mk (Section 5.2). The ratio Mew;lim=Mmax decreases
with increasing fcm. Therefore, it is not worth using the high
strength concrete for TCC T cross section. To increase bearing
capacity of the cross section the tension zone should be strength-
ened. There are many possibilities how to do it. One of them is
an externally bonded FRP. The concrete layer should be reinforced
with steel reinforcement as well.

5.4. Analysis of the reinforced timber–concrete cross section

In order to illustrate the influence of the steel reinforcements
and FRP on the stress–strain state of the cross-section, two types
of the reinforced cross sections were chosen: IV and V (Table 1,
Fig. 2). The dependences of the deformation parameters on the cur-
vature j are depicted in Figs. 10 and 11. The open circles in Fig. 11
denote the values of the curvature j at which yield point in the
compression reinforcement was reached.
It is evident that at the same bending moment the values
|emin,w|, emax,c, and j decrease with increasing amount of the com-
pression or tension reinforcement. However, as can be seen from
Fig. 10 and Fig. 11 the character of the dependences of the defor-
mations parameters on the curvature j depends on the reinforce-
ment kind. The FRP reinforcement of the tension zone increases f
and emax,c and decreases |emin,w| while steel reinforcement of the
compression zone decreases f and emax,c and increases |emin,w|
(Fig. 10) in respect to the curvature j. Moreover, the FRP reinforce-
ment of the tension zone reduces je�min;wj and j� and increases e�max;c

(Fig. 10) while steel reinforcement increases je�min;wj and j� and re-
duces e�max;c (Fig. 11). Consequently, at the maximal bending mo-
ment Mmax, the reinforcement of the tension zone reduces the
deflection of the beam, while reinforcement of the compression
zone increases one.

The analysis has also shown that j, emax,c and |emin,w| are bigger
for cross section with reinforcement of the compression concrete
zone than for cross section with reinforcement of a tension zone
at the same bending moment. This statement is valid even if the
amount and the type of the reinforcements of both zones are the
same. As a consequence, the deflection of the TCC T cross section
bending member with reinforcement of the tension zone is less
than deflections of the same member but with reinforcement of
the compression zone. Due to these observations, we can state that
reinforcement of the tension zone is more effective than reinforce-
ment of the compression zone for considered cross-sections.

The reason for the above given phenomenon is the difference
in the sizes of the compression and the tension zones. The com-
pression zone is smaller than the tension one, that is, f < |h � f|.
Therefore, the distance between the neutral axis and the resul-
tant of the compression reinforcement is smaller than the dis-
tance between the neutral axis and the resultant of the tension
reinforcement.

This statement may be illustrated using Fig. 10 and Fig. 11. Even
though the modulus of the elasticity of the steel was chosen higher
than FRP the deformation parameters j, emax,c and |emin,w| are big-
ger for the cross section with compression steel reinforcement
than with tension FRP reinforcement.
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The dependences of the emax,c, |emin,w|, and j on the ratio of the
reinforcement of the compression or tension zones are depicted in
Fig. 12 when bending moment M = 0.7 MNm. The cross sections are
IV and V types. The solid and dotted lines indicate the cases when
the cross section is reinforced only with compression (Vth type of
the cross section) or tension reinforcement (IVth type of the cross
section), respectively.

It should be noted that strengthening of the cross-sections with
externally bonded FRP is not convenient and desirable for new
structures due to more complicated technologies and additional
expenditures. FRP is still expensive material in comparison with
steel reinforcement, wood or concrete. However, externally
bonded FRP can be used to strengthen and retrofit the existing
structures. The present analysis showed this possibility.

As can be seen from Fig. 12, the emax,c, |emin,w| and j decrease
with increasing reinforcement ratios qs and qFRP. However, the de-
crease is more sudden for the cross section with tension reinforce-
ment than with the compression reinforcement.

Finally, we notice that due to the fact that the stress–strain rela-
tionship for compressive concrete, according to MC 90 [23] and
EC2 [25], is really the same; there are only small differences in
Eci and ec1. Then, the conducted analysis is also valid for TCC T cross
sections when the requirements for concrete are according to
EC2 [25].

6. Conclusions

The performed analysis showed that the bearing capacity of the
TCC T cross section is restricted mainly due to low strength of the
timber and the bearing capacity of the concrete layer is not utilized
fully. To improve the utilization of the bearing capacity of the con-
crete layer, the reinforcement of the tension zone of the timber is
necessary. The analysis showed that TCC T cross section may be
calculated as linear elastic neglecting the nonlinear behaviour of
the concrete. The maximal strain of the concrete of the cross sec-
tion at limit state are usually higher than the ultimate compressive
strain of the concrete according to the design codes EC2 and
ACI 318, especially for low strength concrete. The tension rein-
forcement is more effective than compression reinforcement. The
former reduces the curvature and the absolute values of the strains
of the tension and compression zones more than reinforcement of
the compression zone. Analysis showed that the tension reinforce-
ment reduces the curvature and the absolute value of the strain of
the tension zone and increases the absolute value of the strain of
the compression zone at the limit state. The compression rein-
forcement increases the curvature and the absolute value of the
strain of the tension zone and decreases the absolute value of the
strain of the compression zone at a limit state.
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