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In this paper an analytical model to evaluate the structural behavior of masonry arches and vaults
strengthened with composite unbonded tendons placed at the extrados is presented. The tendons are
fixed at the imposts. The model is formulated under the assumption of finite displacements. The dis-
placed equilibrium configurations are identified by the stationarity of the potential of the acting forces.
It is shown that when the tendon is not pretensioned an increase of the arch collapse load can be achieved
only if the axial stiffness of the tendon is sufficiently large. Instead if the tendon is pretensioned an
increase of the load that induces the first displacement of the arch is always achieved. If the stiffness
of the tendon is sufficiently large the collapse load will be greater than the load that produces the first
displacement of the arch.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The load carrying capacity of masonry arches and vaults (Fig. 1)
can be increased following two different strengthening strategies.

The first one consists in modifying the collapse mechanism of
the structure using strengthening materials externally bonded at
the intrados or the extrados surfaces. The strengthening material
at the intrados (extrados) surface avoids the formation of hinges
at the extrados (intrados) surface [1–3]. The modification of the
collapse mechanism, that is related to the modification of the
hinges positions, produces a consequent increase of the collapse
load (Fig. 1b). Externally bonded fiber reinforced polymers (FRP)
and fiber reinforced cementitious matrix (FRCM) are commonly
used as strengthening materials within this context. In this case
the key issue is the bond between the strengthening material
and the support. The definition of the bond-slip relation is essential
in the structural modeling of historical masonry constructions
strengthened with composite materials, particularly when their
seismic capacity is evaluated through nonlinear analyses [4,5]. This
topic has been extensively investigated in the case of the FRP mate-
rials in many papers (e.g. [6,7]) while in the case of FRCM strength-
ening materials only a few research works have been performed
[8–14].

The second strengthening strategy consists in the increase of
the collapse load of the structure obtained contrasting the evolu-
tion of the collapse mechanism with an unbonded tendon placed
at the extrados. In this case the evolution of the mechanism causes
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a tendon elongation and consequently an increase of the tendon
tensile force which in turn contrasts the mechanism itself (Fig. 1c).

Experimental investigations relative to this strengthening strat-
egy are presented in [15,16]. In these studies steel tendons were
adopted. A strengthening of this type can be alternatively attained
using tendons made of composite materials that can slip without
friction inside a sheath. Rebars and tendon made of composite
materials, although widely used in the cases of reinforcing and pre-
stressing of concrete structures [17–19], have not yet been tested
for the case analyzed in the present study.

An analytical model relative to a semicircular arch made of no
tension material strengthened with an unbonded elastic tendon
placed at the extrados is presented. The tendon is fixed at the arch
imposts and it is supposed to slip without friction upon the extra-
dos surface.
2. Analytical model

The mechanical model is formulated according to the following
assumptions:

� the arch is made of no tension material [20–23], having an
infinite compressive strength and stiffness; consequently a
collapse mechanism is achieved both in the unstrength-
ened and strengthened configurations; this assumption
results consistent with the actual structural behavior of
unstrengthened masonry arches [24];

� the imposts are fixed for the presence of chains or massive
abutments;
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(a) (b) (c)

Fig. 1. Collapse of an (a) unstrengthened, (b) strengthened with externally bonded material and (c) strengthened with an unbonded tendon masonry arch.

Fig. 2. Initial and generic configurations of the structure.

Fig. 3. Definition of geometric parameters.
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� the tendon slips without friction at the extrados of the arch
and it is fixed at the imposts;

� the tendon is made of a linear elastic composite material;
� the load configuration is constituted by the dead load (self

weight and infill) and by an increasing vertical force;
� the unstrengthened arch does not collapse under the dead

loads only;
� the collapse mechanism of the unstrengthened arch is

characterized by four hinges placed as represented in Fig. 2;
� the hinges position minimizes the load producing the first

displacement of the structure and does not change during
its further displacements; this assumption is consistent
with the fact that in a masonry arch the hinges can take
place only at the mortar joints; this assumption could be
removed in future studies on this topic.

The presented analytical model can be easily extended to a gen-
eric load configuration in which all the live loads are proportional
to a load multiplier.

2.1. Geometry

A semicircular masonry arch (Fig. 2) with extrados and intrados
radii Re and Ri, respectively, a span La = Re + Ri and a thickness
s = Re � Ri is considered. Four hinges having coordinates (xj,yj),
j = 1, . . . ,4 in the system represented in Fig. 2 are considered.

The hinges positions are identified by the angles cj, j = 1, . . . ,4.
The hinges position is such that if the hinge j is placed at the extra-
dos, the hinges j � 1 and j + 1 are placed at the intrados and the
quadrilateral having vertexes at the hinges is convex (Fig. 3).

Due to the presence of the hinges, the arch is divided into five
rigid blocks. The three rigid blocks that can rotate are numbered
so that the jth rigid block is delimited by the cross sections where
the jth and (j + 1)th hinges are located. In this configuration the
arch is a system with one degree of freedom. The rotation of the
first rigid block h1 is assumed as degree of freedom that identifies
the generic configuration of the system. The rotation of the second
Please cite this article in press as: D’Ambrisi A et al. Masonry arches strehgt
dx.doi.org/10.1016/j.compstruct.2012.10.040
and the third rigid blocks are h2 and h3. Counterclockwise rotations
are considered positive. With reference to Figs. 2 and 3, the func-
tions h2 = h2(h1) and h3 = h3(h1) are first determined, than the dis-
placements of some points of interest are determined as a
function of these rotations. l1, l2, l3, l4 are the sides of the quadrilat-
eral having the vertex at the hinges. The lengths l1, l2, l3, l4 and the
angles a1, a2, a3, c (Fig. 3) have to be preliminarily determined. If in
the displaced configuration identified by h1 – 0 the quadrilateral
with the vertex at the hinges is still convex, it results

h2ðh1Þ ¼ a1 þ h1 þ aðh1Þ þ bðh1Þ � a2 � p ð1Þ

where the angles a(h1) and b(h1) are obtained as follows:

aðh1Þ ¼ a cos
l2
2 þ l2

5 � l2
3

2l2l5
bðh1Þ ¼ a cos

l2
1 þ l2

5 � l2
4

2l1l5
ð2Þ

where the length l5 (Fig. 3) is

l5ðh1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1þ2

4 � 2l1l4 cos d
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1þ2

4 � 2l1l4 cosða1 þ h1 � cÞ
q

ð3Þ

The rotation of the second rigid block h2 = h2(h1) can be then ex-
pressed as

h2ðh1Þ ¼ a1 þ a cos
l2
1 þ l2

2 � l2
3 þ l2

4 � 2l1l4a cosða1 þ h1 � cÞ

2l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l2

4 � 2l1l4 cosða1 þ h1 � cÞ
q

þ a cos
2l2

1 � 2l1l4 cosða1 þ h1 � cÞ

2l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l2

4 � 2l1l4 cosða1 þ h1 � cÞ
q � a2 � p ð4Þ

As concerns h3 = h3(h1), it results

h3ðh1Þ ¼ eðh1Þ þ a2 þ h2ðh1Þ � a3 � p ð5Þ

where
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eðh1Þ ¼ a cos
l22 þ l23 � l25

2l2l3

¼ a cos
l22 þ l23 � l2

1 þ l2
4 � 2l1l4 cosða1 þ h1 � cÞ

� �
2l2l3

ð6Þ

therefore

h3ðh1Þ ¼ a cos
l2
2 þ l2

3 � l2
1 � l2

4 þ 2l1l4 cosða1 þ h1 � cÞ
2l2l3

þ a2

� a3 þ h2ðh1Þ � p ð7Þ

where h2 = h2(h1) is expressed by Eq. (4).
The horizontal and vertical displacements n and g (Fig. 2) of the

point (x,y) of the jth rigid block are

njðh1Þ ¼ nhjðh1Þ � ðx� xjÞ þ ðx� xjÞ cos hj � ðy� yjÞ sin hj

gjðh1Þ ¼ ghjðh1Þ þ ðy� yjÞ � ðy� yjÞ cos hj � ðx� xjÞ sin hj ð8Þ

where nhj(h1) and ghj(h1) are the horizontal and vertical displace-
ments of the jth hinge

nh1ðh1Þ¼gh1ðh1Þ¼0
nhjðh1Þ¼ nhj�1ðh1Þ�ðxj�xj�1Þþðxj�xj�1Þcoshj�1�ðyj�yj�1Þsinhj�1 ð9Þ
ghjðh1Þ¼ghj�1ðh1Þþðyj�yj�1Þ�ðyj�yj�1Þcoshj�1�ðxj�xj�1Þsinhj�1
2.2. Equilibrium configurations

The equilibrium configurations of the strengthened arch are
identified by the stationarity condition of the potential U = U(h1) gi-
ven by

Uðh1Þ ¼ USWðh1Þ þ UDLðh1Þ þ ULLðh1Þ þ UCðh1Þ ð10Þ

where USW(h1) is the potential of the arch self weight, UDL(h1) is the
potential of the applied permanent loads, ULL(h1) is the potential of
the live loads and UC (h1) is the elastic potential of the tendon. In the
following, for the sake of simplicity, only the terms USW(h1), UC(h1)
and ULL(h1) are considered. Moreover the live load is represented
through a vertical force F applied at the extrados of the arch at
the point identified by the angle cF (Fig. 4). More general cases,
i.e. presence of infill or distributed live loads, can be easily solved
in the same way.

2.2.1. Potential of the self weight
The vertical displacements gGj (j = 1,2,3) of the centers of mass

of the three rigid blocks can be evaluated with Eq. (8)

gGjðh1Þ ¼ ghjðh1Þ þ ðyGj � yjÞ � ðyGj � yjÞ cos hj � ðxGj � xjÞ sin hj

ð11Þ

where the coordinates (xGj,yGj) of the centers of mass of the rigid
blocks in the initial configuration are
Fig. 4. Generic configuration of the arch.
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xGj ¼ �
4

3ðcjþ1 � cjÞ
R3

e � R3
i

R2
e � R2

i

sin
cjþ1 � cj

2
cos

cj þ cjþ1

2

yGj ¼
4

3ðcjþ1 � cjÞ
R3

e � R3
i

R2
e � R2

i

sin
cjþ1 � cj

2
sin

cj þ cjþ1

2

ð12Þ

Then the potential of the self weight is

USWðh1Þ ¼
X3

j¼1

WjgGjðh1Þ ð13Þ

where Wj is the weight of the jth rigid block.

2.2.2. Potential of the live load
The potential of the force F applied at the coordinates xF = �Re -

coscF, yF = Re sincF is

ULLðh1Þ ¼ FgFðh1Þ ð14Þ

where gF(h1) is the vertical displacement o the point of application
of the force. This displacement can be determined with Eq. (8).

2.2.3. Elastic potential of the tendon
A linear elastic tendon placed along the whole arch extrados

and fixed at the imposts is considered (Fig. 4). The tendon has
the elastic modulus E and the cross sectional area A. The tendon
can be pretensioned by the force N0 in the initial configuration
h1 = 0. The initial length of the tendon is Li = p � Re. As the arch
moves the tendon assumes the configuration that envelops the
extrados the arch (Fig. 4) and therefore the length

Lðh1Þ ¼ Li þ DL ¼ Li þ DL1 þ DL3 � DL2 � DL4 ð15Þ

where DL1 and DL3 are the elongations at the intrados hinges 1 and
3, while DL2 and DL4 are the length decreases due to the detach-
ment of the tendon at the extrados, close to the hinges 2 and 4
(Fig. 4). The elastic potential is

UCðh1Þ ¼ �
EA

2pRe
½DLðh1Þ�2 þ N0DLðh1Þ

� �
ð16Þ

The elongations DL1 and DL3 are given by (Fig. 5)

DL1 ¼ �2s sin
h1

2
DL3 ¼ 2s sin

h2 � h3

2
ð17Þ

while the length decreases DL2 and DL4 are given by (Fig. 5)

DL2 ¼ Re h2 � h1 � 2 sin
h2 � h1

2

� �
DL4 ¼ Re �h3 � 2 sin

�h3

2

� �

ð18Þ

In Fig. 5 Cj is the center of the extrados arc of the jth rigid block
(j = 1,2,3) in the generic configuration of the arch.

Eq. (18) are valid if the rotations are such that the tendon re-
mains tangent to each rigid block, i.e. if the rotation h1 is not en-
ough large to reach the configurations represented in Fig. 6.
When the fourth hinge is at the impost the length decrease DL4
Fig. 5. Tendon deformation.
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Fig. 6. Displaced configurations.

Fig. 7. Evaluation of DL4 in the case c4 < p; nc3 > 0.
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is instead null. The configuration in which the tendon is not tan-
gent to the first rigid block (Fig. 6a) is reached for very large dis-
placements, that are not of interest and therefore they are not
considered. The configuration in which the tendon is not tangent
to the fourth rigid block (Fig. 6b) is reached when the horizontal
displacement nC3 (h1) of the center of the third rigid block is posi-
tive, that is when

nC3ðh1Þ ¼ nh3ðh1Þ þ x3 � x3 cos h3 þ y3 sin h3 P 0 ð19Þ

In this case, with reference to Fig. 7, the length decrease DL4 is given
by

DL4 ¼ Reðp� c4 þ aD3Þ � d34 ð20Þ

where

aD3 ¼ 2a sin
D3

2Re
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx4 � xt3Þ2 þ ðy4 � yt3Þ

2
q

2Re
ð21Þ

while (xt3,yt3) are the coordinates of the point of tangency between
the tendon and the third rigid block

xt3 ¼ Re þ d34 cosðp� a34 � b34Þ yt3

¼ d34 sinðp� a34 � b34Þ ð22Þ

and (Fig. 7)

a34 ¼ a sin
Re

I34
¼ a sin

Reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe � nc3Þ2 þ g2

C3

q b34 ¼ a tan
�gC3

Re � nC3
ð23Þ

d34 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2

34 � R2
e

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe � nC3Þ2 þ g2

C3 � R2
e

q
ð24Þ
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in which gC3 is the vertical displacement of the center of the third
rigid block

gC3ðh1Þ ¼ gh3ðh1Þ � y3 þ y3 cos h3 þ x3 sin h3 ð25Þ

Finally the length decrease DL4 is given by

DL4

Reðp� c4 þ Da3Þ � d34 if c4 < p and nC3ðh1ÞP 0

Re �#3 þ 2 sin
h3

2

� �
if c4 < p and nC3ðh1Þ < 0

0 if c4 ¼ p

8>>><
>>>:

ð26Þ
2.2.4. Equilibrium conditions
The total potential is then given by

Uðh1Þ ¼
X3

j¼1

WjgGjðh1Þ þ FdFðh1Þ

� EA
2pRe

½DLðh1Þ�2 þ N0DLðh1Þ
� �

ð27Þ

The condition

dU
dh1
¼ 0 ð28Þ

allows to determine for each displaced configuration identified by
h1 the corresponding equilibrium force

F ¼

EA
pRe
� DLðh1Þ

dDLðh1Þ
dh1

þ N0
dDLðh1Þ

dh1
�
X3

j¼1

Wj
dgGjðh1Þ

dh1

ddFðh1Þ
dh1

ð29Þ

For h1 = 0 Eq. (29) gives the force F�N that causes the first dis-
placement of the arch (first displacement force). This force in the
case of an unstrengthened arch is the collapse load. Eq. (29) evi-
dences that this force is independent of the tendon stiffness since
DL(0) = 0. The first displacement force F�N and the corresponding
hinges positions �c ¼ fc1; c2; c3; c4g are determined minimizing Eq.
(29) with respect the variables �c ¼ fc1; c2; c3; c4g for #1 = 0

Fð�cÞ ¼
N0

dDL
dh1

			
0
�
X3

j¼1

Wj
dgGj

dh1

			
0

ddF
dh1

			
0

;

F�N ¼minfFð�cÞ; �c ¼ ðc1c2; c3; c4Þ 2 S � R4g ð30Þ

Eq. (30) shows that the hinges position is affected by the
presence of the tendon only in the case N0 – 0. The minimum of
this function has to be searched in a suitable subset S of R4 [1,24].
3. Analytical results

3.1. Strengthened arch with un-pretensioned tendon

Fig. 8 reports the F � h1 curves obtained with Eq. (29) and the
hinges positions obtained from Eq. (30) in the case cF = p/4 and
La/s = 16 for an arch strengthened with an un-pretensioned tendon
(N0 = 0). The force is normalized with respect to the arch weight P.

Fig. 8 evidences that two different structural behaviors are pos-
sible depending on the tendon stiffness: large tendon stiffnesses
lead to an increase of the collapse load with respect to the
unstrengthened configuration (ascending branches of the F � h1

curves), while small tendon stiffnesses do not affect the arch col-
lapse load (descending branches of the F � h1 curves). Therefore a
limit stiffness (EA)0�lim can be defined such that tendon stiffnesses
lower than (EA)0�lim do not produce increases of the collapse load,
while tendon stiffnesses larger than (EA)0�lim lead to an increase of
hened with composite unbonded tendons. Compos Struct (2012), http://

http://dx.doi.org/10.1016/j.compstruct.2012.10.040
http://dx.doi.org/10.1016/j.compstruct.2012.10.040


20°15°10°5°0°

0.8

0.7

0.6

0.5

0.2

0.1

0

F/P

-θ1

(EA)

1.25(EA)

1.5(EA)0-lim

0-lim

0-lim

0-lim

0-lim

0.75(EA)

0.5(EA)

La/s = 16
γF = π /4
N0 = 0

P

*F

Fu

Fu

Fig. 8. F � #1 curves in the case N0 = 0.

1816141210

28

24

20

16

12

(EA)0-lim/P

γ F = 45°

La/s

N0 = 0

γ F = 45°

55° 60° γ F = 80°

γ F = 50° 

50°

Fig. 9. (EA)0�lim/Pversus La/s curves for different force positions.

1816141210

2.5

2.0

1.5

1.0

0.5

0

Fu /P

(EA)<(EA)0lim

γ F =π /4
N0 = 0

La/s30

35

40

45

50

55

60

(EA)/P = 60

(EA)/P = 30

(EA)/P

Fig. 10. Fu/P versus La/s in the case cF = p/4 and N0 = 0.

1816141210

2.0

1.5

1.0

0

Fu /P

(EA)<(EA)0lim

γ F =π /3
N0 = 0

La/s35

45
50
55
60

20

(EA)/P

0.5

40

Fig. 11. Fu/P versus La/s in the case cF = p/3 and N0 = 0.

1816141210

25°

15°

10°

5°

γ F =π /4
N0 = 0

La/s

γ1

20°

30°

N0 = 0.05⋅P

0.10
0.20

N0 = 0.50⋅P

N0 = 0.30⋅P
N0 = 0.40⋅P

Fig. 12. Position c1 of the first hinge versus the ratio La/s.

1816141210

80°

70°

60°

50°

45°

40°

N0 = 0

La/s

γ 2

55°

65°

75°

85°
N0 = 0.05⋅P

N0 = 0.10⋅P

N0 ≥ 0.2⋅P

γ F =π /4

Fig. 13. Position c2 of the second hinge versus the ratio La/s.

A. D’Ambrisi et al. / Composite Structures xxx (2012) xxx–xxx 5
the collapse load in the displaced configuration. The ratio between
this stiffness and the arch weight P depends on the position cF of
the force and on the ratio La/s as shown in Fig. 9.

Figs. 10 and 11 show the normalized collapse load Fu/P versus
the ratio La/s curves for different tendon stiffenesses for the cases
cF = p/4 and cF = p/3, respectively.

Figs. 12–14 show the dependence of the hinges positions on the
ratio La/s and on the tendon pretension force N0 for the case cF = p/
4. The position of the fourth hinge does not depend on N0 for the
considered load condition. The discontinuity in Fig. 9 in the case
cF = p/4 is due to the discontinuity of the hinges position as a func-
tion of the ratio La/s, as shown in Fig. 13.
Please cite this article in press as: D’Ambrisi A et al. Masonry arches strehgt
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3.2. Strengthened arch with pretensioned tendon

Fig. 15 reports the F � h1 curves obtained with Eq. (29) and the
hinges positions obtained from Eq. (30) in the case cF = p/4 and La/
s = 16 for an arch strengthened with a pretensioned tendon with
N0=0.2 � P.

The force is normalized with respect to the arch weight P. As it
can be noticed the pretension increases the first displacement force
from the value F⁄ to the value F�N . This force depends on N0 and
does not depend on the tendon stiffness as it is also evident from
the Eq. (29). Also in this case a limit stiffness (EA)lim can be defined
such that tendon stiffnesses lower than (EA)lim do not produce a
hened with composite unbonded tendons. Compos Struct (2012), http://
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collapse load larger than the first displacement load, while tendon
stiffnesses larger than (EA)lim lead to a collapse Fu load larger than
the first displacement load in the displaced configuration. The limit
stiffness (EA)lim depends on the ratio N0/P besides that on the ratio
La/s. Figs. 16 and 17 show the normalized collapse load versus the
ratio La/s for different tendon stiffnesses and for N0 = 0.2 � P, while
Figs. 18 and 19 show the normalized collapse load versus the ratio
La/s for different tendon stiffnesses and for N0 = 0.5 � P.
Please cite this article in press as: D’Ambrisi A et al. Masonry arches strehgt
dx.doi.org/10.1016/j.compstruct.2012.10.040
4. Conclusions

The proposed model allows to evaluate the effect of the
strengthening of masonry arches and vaults with unbonded com-
posite tendons placed at the extrados and fixed at the imposts.
An increase of the load that produces the first displacement of
the structure is obtained in the case of pretensioned tendons
regardless of the tendon axial stiffness. A collapse load larger than
the first displacement load is then obtained in the displaced config-
uration if the tendon is stiff enough. In the case of un-pretensioned
tendons a collapse load larger than the first displacement load is
obtained in the displaced configuration if the tendon is stiff
hened with composite unbonded tendons. Compos Struct (2012), http://
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enough. In particular for an arch with a span/thickness ratio of 16
strengthened with a tendon having a pretension force of 20% of the
arch weight an increase of the first displacement load of about
300% is obtained.

Consistently with the last of the assumptions introduced in Sec-
tion 2 the hinges position minimizes the load producing the first
displacement of the structure and does not change during its fur-
ther displacements. To remove this hypothesis and to include in
the model the possibility that the arch collapse due to the masonry
crushing or shear failure further studies are needed. The strength-
ening technique with extrados unbonded composite tendons fixed
at the imposts confirms its effectiveness. It can be therefore consid-
ered in design applications of structural upgrading of masonry ar-
ches and vaults.
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