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Abstract. The explosion of “omics” data over the past few decades has
generated an increasing need of efficiently analyzing high-dimensional
gene expression data in several different and heterogenous contexts, such
as for example in information retrieval, knowledge discovery, and data
mining. For this reason, biclustering, or simultaneous clustering of both
genes and conditions has generated considerable interest over the past
few decades. Unfortunately, the problem of locating the most signifi-
cant bicluster has been shown to be NP-complete. We have designed
and implemented a GRASP-like heuristic algorithm to efficiently find
good solutions in reasonable running times, and to overcome the inner
intractability of the problem from a computational point of view.

Experimental results on two datasets of expression data are promis-
ing indicating that this algorithm is able to find significant biclusters,
especially from a biological point of view.

Keywords: Biclustering, gene expression analysis, GRASP, combinato-
rial optimization, approximate solutions.

1 Introduction

Traditional clustering tasks take as input a data set and a similarity (or distance)
function over the domain, with the aim of finding a partition of the data into
groups of mutually similar elements. Biclustering (term coined by Hartigan [1])
is a variant of this task that is needed when the input data comes from two
domain sets and some relation over the Cartesian product of these two sets is
given. In this case, one could be interested in partitioning each of the sets, such
that the subsets from one domain exhibit similar behavior across the subsets of
the other domain. Roughly speaking, bi-clustering can be viewed as simultaneous
data clustering and feature selection, i.e., detection of significant clusters and the
features that are uniquely associated with them, given that not all features are
relevant to certain clusters.
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In the pioneering work by Cheng and Church [2] biclustering was first in-
troduced for the purpose of gene expression analysis. In the scientific literature
devoted to biclustering [3], several classes of biclusters have been identified, de-
pending on the chosen definition of homogeneity.

The state-of-the-art methods proposed for approaching the problem can be
divided into five main classes: 1) exhaustive enumeration algorithms, that ex-
haustively search in the input matrix the best biclusters with very high computa-
tional running times [4, 5]; 2) iterative row and column clustering combination
algorithms, that first apply separately clustering algorithms to the rows and
columns of the data matrix and then combine the results using some sort of iter-
ative procedure [6, 7]; 3) divide and conquer algorithms, that divide the problem
in subproblems and are potentially very fast but usually split good biclusters be-
fore they can be identified [1, 8]; 4) greedy iterative search algorithms, that, based
on the steepest descent idea, create biclusters by adding and/or removing rows
and columns optimizing a local gain criterion [9–11], and 5) distribution param-
eter identification algorithms, that try to identify the distribution parameters
used to generate the data [12–14]. Very recently, Aradhya et al. [15] proposed
an approach based on Modular Singular Value Decomposition (Mod-SVD), that
first partitions the input data matrix into a set of equally sized submatrices
and applies a SVD to each of the submatrices to be then concatenated. It is
only in the past few years that the biclustering task has been approached via
metaheuristic algorithms, especially in the presence of large scale problem in-
stances. They include a Simulated Annealing [16], a Genetic Algorithm [17], and
a Reactive GRASP [18]. The reader can refer to [3] and [19] for recent surveys.

We have implemented Dharan and Nair’s proposal and in our experience we
observed that, even if robust and elegant, the local search applied at each itera-
tion is time consuming and very rarely improves the constructed solution. In this
paper, we propose a novel Reactive GRASP-like that overcomes the drawback
of the Reactive GRASP proposed by Dharan and Nair in [18].

The paper is organized as follows. In Section 2 biclustering tasks are formally
stated. Section 3 introduces the main issues in designing a GRASP method
and Section 4 describes our Reactive GRASP-like proposal. In Section 5 we
synthesize the whole analysis process and report and discuss the experimental
results obtained on two case studies of gene expression experiments. We also
report some consideration on future work in this challenging research area.

2 Problem Formulation

The goal of biclustering techniques is to identify subgroups of genes and sub-
groups of conditions, by performing simultaneous clustering of both n rows and
m columns of a given gene expression matrix A ∈ R

n×m, where each element
aij represents the expression level of gene i under condition j. As in [3], in order
to coherently represent all possible scenarios of biclustering real–world appli-
cations we will consider the general case of a data matrix A = (X,Y ), where
X = {x1, . . . , xn} is its set of rows, Y is its set of columns Y = {y1, . . . , ym},
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and the element aij , (i ∈ X , j ∈ Y ), corresponds to a value representing the
relation between row i and column j.

Let I ⊆ X and J ⊆ Y be subsets of the rows and columns, respectively.
Then, AIJ denotes the submatrix of A that contains all the elements aij of A
such that i ∈ I and j ∈ J and a bicluster B = AIJ is a k × s submatrix of A,
where I = {xi1 , . . . , xik} ⊆ X and J = {yj1 , . . . , yjs} ⊆ Y , i.e. it is a subset of
k ≤ n rows defined over a subset of s ≤ m columns or, equivalently, a subset of
s ≤ m columns defined over a subset of k ≤ n rows.

A natural representation of data matrices in clustering/biclustering problems
is by means of a complete weighted bipartite graph G = (V,E)1, where V = X∪Y
(clearly, X ∩ Y = ∅) and E = {[xi, yj ] | xi ∈ X, yj ∈ Y }. Moreover, a weight
function w : E �→ R is defined that to each edge [xi, yj] ∈ E assigns a weight
wij = aij ∈ R.

This graph theoretical representation helped in understanding the inner
intractability of the problem of finding a maximum size bicluster in a data ma-
trix A. In fact, even in its simplest form where A ∈ {0, 1}n×m the problem is
NP-complete, since it reduces to finding the maximum edge biclique in the cor-
responding bipartite graphG [20]. Generally speaking, given a data matrixA, bi-
clustering aims at identifying a set of biclusters {B1 = (I1, J1), . . . ,Bk = (Ik, Jk)}
such that each bicluster Bq, q = 1, . . . , k, satisfies some specific characteristics of
“homogeneity”, whose definition varies from approach to approach and plays an
important role to evaluate a biclustering algorithm and the quality of the type
of biclusters that it is able to find. In this paper, we want to identify “biclusters
with coherent values”. Therefore, we want to analyze directly the numeric values
in the data matrix A and try to find subsets of rows and subsets of columns with
similar behaviors. For this class, biclusters cannot be found simply by consider-
ing that the values within the bicluster are given by additive or multiplicative
models that consider an adjustment for either the rows or the columns. More
sophisticated statistical approaches are needed to evaluate the quality of the
resulting bicluster or set of biclusters. According to Cheng and Church [2], we
have used as a measure of the coherence of the rows and columns in the bicluster
the mean squared residue score to be minimized and defined as the sum of the
squared residues, where the residue of an element aij in B is the difference be-
tween its actual value and its expected value predicted from the corresponding
row mean, column mean, and bicluster mean.

3 GRASP

GRASP (Greedy Randomized Adaptive Search Procedures) [21, 22] is a multi-
start metaheuristic for producing good-quality solutions of hard combinatorial
optimization problems and it has been efficiently applied to many problems.
Each GRASP iteration is usually made up of a construction phase, where a

1 A graph G = (V,E) is said a bipartite graph if V = V1 ∪ V2, V1 ∩ V2 = ∅, and for
each [i, j] ∈ E, i ∈ V1 and j ∈ V2. Moreover, G is complete, if for each v1 ∈ V1 and
for each v2 ∈ V2, [v1, v2] ∈ E.
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feasible solution is constructed in a greedy, randomized, and adaptive manner,
and a local search phase which starts at the constructed solution and applies
iterative improvement until a locally optimal solution is found. The reader can
refer to [23–25] for a study of a generic GRASP metaheuristic framework and
its applications.

Stopping criteria could be maximum number of iterations, maximum number
of iterations without improvement of the incumbent solution, maximum running
time, or solution quality at least as good as a given target value. A complete
solution is iteratively constructed in the construction phase, one element at a
time. At each construction iteration, the choice of the next element to be added is
determined by ordering all candidate elements (i.e. those that can be added to the
solution) in a candidate list C with respect to a greedy function g : C → R. This
function measures the (myopic) benefit of selecting each element. The heuristic
is adaptive because the benefits associated with every element are updated at
each iteration of the construction phase to reflect the changes brought on by
the selection of the previous element. The probabilistic component of a GRASP
is characterized by randomly choosing one of the best candidates in the list,
but not necessarily the top candidate. The list of best candidates is called the
restricted candidate list (RCL).

As is the case for many deterministic methods, it is almost always beneficial
to apply a local search to attempt to improve each constructed solution. A
local search algorithm replaces the current solution by a better solution in the
neighborhood of the current solution, until a locally optimal solution is found.

In the next section, we describe the details of the Reactive GRASP-like algo-
rithm that we have designed and implemented for the biclustering task.

4 A Reactive GRASP-Like Algorithm for Biclustering

GRASP is a multi-start high-level procedure that coordinates simple heuris-
tics and rules (i.e., construction and local search) to find good (often opti-
mal) approximate solutions of computationally hard combinatorial optimization
problems.

In our GRASP-like proposal for biclustering, we adopted the stopping crite-
rion that counts a maximum number of iterations without improvement of the
incumbent solution (MaxNoImpr) and we implemented the reactive version of the
metaheuristic framework. The pseudo-code is reported in Figure 1.

Our novel Reactive GRASP-like overcomes the drawback of the Reactive
GRASP proposed by Dharan and Nair in [18]. We have implemented Dharan
and Nair’s proposal and in our experience we observed that, even if robust and
elegant, the local search applied at each iteration is time consuming and very
rarely improves the constructed solution, since it decides if to add or not a new
element in the current solution on the only merit function basis. To overcome
this drawback, we have designed a completely different local search strategy that
uses two local improvement procedures that successively replace a bicluster in
the current solution by a better bicluster in its neighborhood made of all bi-
clusters that differ either because they have one more element (row or column)
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algorithm GRASP-like-bicluster(A,MaxNoImpr,MaxDist,δ)
1 Δ := {α1, . . . , α�}; /* αi ∈ [0, 1], i = 1, . . . , � */
2 for i = 1 to � do
3 pαi := 1

�
;

4 endfor
5 B = {B1, . . . ,Bk} :=filtered-Kmeans(A); /* H(Bq) ≤ δ, q = 1, . . . , k */
6 for q = 1 to k do

7 B̂q :=grasp(Bq ,Δ,A,MaxNoImpr,MaxDist);
8 endfor

9 return (B̂ = {B̂1, . . . , B̂k});
end

Fig. 1. Pseudo-code of our GRASP-like algorithm for biclustering

procedure grasp(Bq ,Δ,A,MaxNoImpr,MaxDist)
1 count := 0;
2 repeat
3 (c,B̄q):=build-columns(Bq ,Δ,A);
3 (bool,B′

q):=local-improvement-columns(c,Δ,B̄q ,A,MaxDist);
4 if (bool) then count := 0;
5 else count := count+ 1;
6 endif
7 until (count =MaxNoImpr)
8 count := 0;
9 repeat
10 (c,B̄q):=build-rows(B′

q,Δ,A);
11 (bool,B′

q):=local-improvement-rows(c,Δ,B̄q ,A,MaxDist);
12 if (bool) then count := 0;
13 else count := count+ 1;
14 endif
15 until (count =MaxNoImpr)
16 return (B′);
end

Fig. 2. Pseudo-code of grasp procedure invoked in our GRASP-like algorithm

and/or one less element. The specific element to be removed and/or added is
chosen on the basis either of the diversity or of the improvement in terms of
objective function value given by the mean squared residue.

In more detail, our algorithm starts from a partial solution made of a set
B = {B1, . . . ,Bk} of k biclusters found by applying a k-means procedure and
retaining only biclusters with small mean squared residue, i.e. those biclusters
Bq = (Iq, Jq) such that H(Bq) ≤ δ, where δ is a given input parameter.

As shown in Figure 2, the method proceeds in the attempt of finding a larger
and locally better solution iteratively considering first the columns in Y (lines 1–
7) and then the rows in X (lines 8–15), until MaxNoImpr iterations are performed
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procedure build-columns(Bq ,Δ,A)
1 C := ∅; gmin := large; gmax := 0; /* Bq = (Iq, Jq), A = (X,Y ) */
2 for each y ∈ Y \ Jq do
3 C := C ∪ {y};
4 g(y) := H(Iq, Jq ∪ {y}); /* mean squared residue */
5 if (gmin > g(y)) then gmin := g(y);
6 if (gmax < g(y)) then gmax := g(y);
7 endfor
8 α :=select(Δ);
9 μ := gmin + α(gmax − gmin);
10 RCL:= {c ∈ C | g(c) ≤ μ};
11 c :=select(RCL); Jq := Jq ∪ {c};
12 return (c,Bq = (Iq, Jq));
end

Fig. 3. Pseudo-code of build-columns procedure invoked in our GRASP-like algorithm

procedure build-rows(Bq ,Δ,A)
1 C := ∅; gmin := large; gmax := 0; /* Bq = (Iq, Jq), A = (X,Y ) */
2 for each x ∈ X \ Iq do
3 C := C ∪ {x};
4 g(x) := H(Iq ∪ {x}, Jq); /* mean squared residue */
5 if (gmin > g(x)) then gmin := g(x);
6 if (gmax < g(x)) then gmax := g(x);
7 endfor
8 α :=select(Δ);
9 μ := gmin + α(gmax − gmin);
10 RCL:= {c ∈ C | g(c) ≤ μ};
11 c :=select(RCL); Iq := Iq ∪ {c};
12 return (c,Bq = (Iq, Jq));
end

Fig. 4. Pseudo-code of build-rows procedure invoked in our GRASP-like algorithm

without improving the current better bicluster. The best incumbent bicluster is
returned in line 16. Both procedures build-columns (Figure 3) and build-rows

(Figure 4) take as input a partial bicluster Bq and try to enlarge it. The choice
of the next element to be added to the partial solution is determined by ordering
all candidate elements in a candidate list C with respect to their incremental
costs given by evaluating a greedy function g : C → R that is the mean squared
residue. The RCL then is the list of best candidates. The heuristic is adap-
tive because the incremental costs associated with every element are updated
at each iteration to reflect the changes brought on by the selection of previous
elements. The probabilistic component of our GRASP-like algorithm is charac-
terized by randomly choosing one element from the RCL, but not necessarily the
top candidate. In more detail, let g(i) be the incremental cost associated with
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procedure local-improvement-rows(c,Δ,B̄q ,A,MaxDist)
1 score := H(Īq, J̄q); /* B̄q = (Īq, J̄q), A = (X,Y ) */
2 D := Īq; new :=select(X); dist :=distance(new,c);
3 if (new ∈ D) then
4 if (dist >MaxDist) then D := D \ {new};
5 else
6 if (dist ≤MaxDist) then D := D ∪ {new};
7 endif
8 new := argmin

d∈D
H(D \ {d}, J̄q); /* mean squared residue */

9 D := D \ {d}; new :=select(D);
10 dist :=distance(new,c);
11 if (dist >MaxDist and H(D \ {new}, J̄q) < H(D, J̄q)) then D := D \ {new};
12 if (score > H(D, Jq)) then
13 reevaluate-probabilities(Δ);
14 Īq := D; bool := true;
15 else
16 bool := f alse;
17 endif
18 return (bool,B̄q = (Īq, J̄q));
end

Fig. 5. Pseudo-code of local-improvement-rows procedure invoked in our
GRASP-like algorithm

the incorporation of element i in the solution under construction and let gmin

and gmax be the smallest and the largest incremental costs, respectively, i.e.

gmin = min
c∈C

g(c), gmax = max
c∈C

g(c). (1)

The restricted candidate list RCL is made up of elements c ∈ C with the best
(i.e., the smallest) incremental costs g(c). There are two main mechanisms to
build this list: a cardinality-based (CB) and a value-based (VB) mechanism. In
the CB case, the RCL is made up of the z elements with the best incremental
costs, where z is a parameter. In the VB case, the mechanism that we adopted,
the RCL is associated with a parameter α ∈ [0, 1] and a threshold value μ =
gmin +α(gmax − gmin). In fact, all candidate elements c whose incremental cost
g(c) is no greater than the threshold value are inserted into the RCL. Note that,
the case α = 0 corresponds to a pure greedy algorithm, while α = 1 is equivalent
to a random construction.

As already underlined, we have implemented the reactive version of the GRASP
metaheuristic framework. Reactive GRASP is the first enhancement that incor-
porates a learning mechanism in the memoryless construction phase of the basic
GRASP. In Reactive GRASP, the value of the RCL parameter α is selected in each
iteration from a discrete set of possible values with a probability that depends on
the solution values found along the previous iterations. One way to accomplish
this is to use the rule proposed in [26]. Let Δ = {α1, α2, . . . , α�} (Figure 1 line 1)
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procedure local-improvement-columns(c,Δ,B̄q ,A,MaxDist)
1 score := H(Īq, J̄q); /* B̄q = (Īq, J̄q), A = (X,Y ) */
2 D := J̄q ; new :=select(Y ); dist :=distance(new,c);
3 if (new ∈ D) then
4 if (dist >MaxDist) then D := D \ {new};
5 else
6 if (dist ≤MaxDist) then D := D ∪ {new};
7 endif
8 new := argmin

d∈D
H(Īq, D \ {d}); /* mean squared residue */

9 D := D \ {d}; new :=select(D);
10 dist :=distance(new,c);
11 if (dist >MaxDist and H(Īq, D \ {new}) < H(Īq, D)) then D := D \ {new};
12 if (score > H(Iq, D)) then
13 reevaluate-probabilities(Δ);
14 J̄q := D; bool := true;
15 else
16 bool := f alse;
17 endif
18 return (bool,B̄q = (Īq, J̄q));
end

Fig. 6. Pseudo-code of local-improvement-columns procedure invoked in our
GRASP-like algorithm

be the set of possible values for α. At the first GRASP iteration, all � values
have the same probability to be selected (lines 2–4), i.e.

pαi =
1

�
, i = 1, . . . , �. (2)

At any subsequent iteration, let ẑ be the incumbent solution objective function
value and let Ai be the average objective function value of all solutions found
using α = αi, i = 1, . . . , �. The selection probabilities are periodically reevaluated
(Figure 5 line 13 and Figure 6 line 13) as follows:

pi =
qi

∑�
j=1 qj

, (3)

where qi = ẑ/Ai, i = 1, . . . , �. If values of α = αi (i ∈ {1, . . . , �}) lead to the
best solutions on average, then the value of qi is increased and larger values of
qi correspond to more suitable values for α. The probabilities associated with
these more appropriate values will then increase when they are reevaluated.

Due to greater diversification and less reliance on parameter tuning, Reactive
GRASP has lead to improvements over the basic GRASP in terms of robustness
and solution quality. In fact, it has been successfully applied in power system
transmission network planning [27] and in a capacitated location problem [28].
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We next focus on the local search strategy that we have designed. We have
implemented two local search algorithms, whose pseudo-codes are reported in
Figures 5 and 6, respectively. Both the procedures successively replace a bicluster
B̄q = (Īq , J̄q) in the current solution by a better bicluster in the neighborhood
of B̄q made of all biclusters that differ from B̄q either because they have one
more element (row or column) and/or one less element. The element new to be
removed and/or added is chosen on the basis either of the diversity (Figures 5
and 6 lines 3–7) or of the improvement in terms of objective function value given
by the mean squared residue (Figures 5 and 6 lines 8–11). If a better mean
squared residue neighbor bicluster is found (Figures 5 and 6 line 12), then the
selection probabilities of the α’s in Δ are accordingly reevaluated (Figures 5
and 6 line 13).

Example. Suppose that we have a matrix A of 10 genes (rows) and 5 conditions
(columns). Fixed as input the number of sets of genes and conditions (in the
following example, 3 and 2, respectively), k-means algorithm will provide as
output the required sets. Those sets may contain common elements but there
will never be identical.

Then, biclusters seeds (B) are created: in our example, 3 × 2 combinations
are made to find a match between each set of genes and each set of conditions
(B1, . . . ,B6). Among these combinations, only those whose mean squared residue
(hScore) is less than or equal to a given threshold δ are saved. Suppose that only
3 out of the 6 candidates are selected (B1,B2,B3).

Now, the 3 biclusters are given as input to an iterative refinement procedure
that tries to add and/or remove items, considering first the columns and then
the rows.

Let us suppose that B1 has 6 rows and 3 columns (1,3,5). The procedure
evaluates the improvement that could be obtained from the insertion of one of
the remaining columns (2 and 4), in terms of hScore. If hScore is below a given
threshold μ, then the corresponding column is inserted within a list of elements
(RCL). Suppose that both columns 2 and 4 are included. One element (suppose
column 4) is selected at random from the RCL and added to B1.

Once modified the current solution, the local search tries to improve it, by
performing the following three steps.

1. Extract a new random element from the columns not included in the current
solution (in our example, column 2). If the distance of column 2 from the
column previously extracted from RCL (column 4) is less than or equal to a
threshold given in input (MaxDist), column 2 is added to B1. Let us suppose
this is the case.

2. From B1 the column that makes the hScore value of the bicluster worst is
then eliminated. Suppose that this column is 3. Therefore, the set of columns
in the new bicluster B1 is 1,2,4,5.

3. A further column is selected at random from all the columns of B1. It will be
removed only if an improvement in terms of hScore is obtained. Supposing
that this happens for column 5, the final bicluster consists of columns 1,2,4.
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This procedure stops after a certain number of iterations without improvement
(MaxNoImpr) and performs the above described operations on the set of rows of
the bicluster under the same stopping condition.

The whole iterative procedure is applied on each selected bicluster (B1, B2,
and B3).

5 Experimental Results and Biological Significance

Our Reactive GRASP-like algorithm has been implemented in C language, com-
piled with the Apple Xcode 3.1, and run on a MacBookPro 2GHz Intel Core
Duo running MAC OSX 10.6. We have performed several iterations adopting
the stopping criterion that counts a maximum number of iterations without
improvement of the incumbent solution and inspected the results obtained.

A series of experiments has been conducted on the Yeast (Saccharomyces
cerevisiae) cell cycle expression dataset [29] and on the dataset coming from the
Lymphoma/Leukemia Molecular Profiling Project [30] to evaluate the quality of
the proposed algorithm.

The first dataset includes 2884 genes and 17 conditions, with the expression
level reported as an integer value in the range 0 to 600. Missing values in Yeast
dataset are represented by -1. The second dataset is formed by 4026 genes and
96 conditions, with the expression level reported as an integer value in the range
-300 to 300.

Table 1. Statistics on results of biclustering on the Yeast cell cycle expression dataset
and on the Lymphoma/Leukemia molecular profiling project. The table lists the mean
values of number of genes, number of conditions, volume, squared residue H, and run-
ning time over 10 trials using 10 different random number generator seeds. The last row
reports the mean squared residual Hr obtained on a set of 33 (for yeast dataset) and 11
(for Lymphoma dataset) biclusters with the same cardinality of the bicluster obtained
by our Reactive GRASP-like algorithm but with randomly selected membership.

Statistics Yeast Dataset Lymphoma Dataset

mean number of genes 97,33 59,63

mean number of conditions 10,52 8,18

mean volume 1000,06 478,93

mean H value 195,73 0,03

mean running time (in secs) 4044,43 5012,03

mean Hr value 1821,76 0,56

Table 1 shows results for a set of 33 biclusters generated for Yeast, and 11
biclusters generated for Lymphoma, in terms of number of genes, number of
conditions, mean volume, mean squared residue H and mean running time over
10 trials using 10 different random number generator seeds. The differences in
the values of H scores and volumes for the two datasets depend on the numerical
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values of the data included in each bicluster. In the last row, Table 1 reports the
mean squared residualHr obtained on a set of 33 and 11 biclusters with the same
cardinality of the biclusters obtained by our Reactive GRASP-like algorithm
but with randomly selected membership. Comparing this mean squared residual
with the mean squared residual obtained with our approach, it is evident that
our proposal is outperforming a simple random approach, since the Hr value is
in both cases about one order of magnitude larger than the H .

Looking at the bicluster plots in Figure 7 and 8, one can notice that the
genes in sample biclusters present a similar behavior under a set of conditions.
This proves that our method is able to identify coherent biclusters from gene
expression data.

Fig. 7. Graphical representation of the expression levels for sample biclusters obtained
in our analysis on Yeast dataset ( [29]). On the rows we have the gene behaviour and
on columns the conditions.

In order to verify the biological significance of biclusters obtained, we used
GO annotation database and tools online. In GO annotation, terms describing
biological processes, cellular components, and molecular functions are assigned
to genes, so that a list of genes can be analyzed, looking for terms associated.
The statistical significance to which the genes matches with the different GO
terms or categories can be indicated by p-value. We used the Yeast Genome
Gene Ontology Term Finder [31] to evaluate the biological significance of the
33 biclusters obtained in our analysis of the Yeast dataset, and the PANTHER
(Protein ANalysis THrough Evolutionary Relationships) Classification System
[32] for the analysis on Lymphoma results.
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Fig. 8. Graphical representation of the expression levels for sample biclusters obtained
in our analysis on Lymphoma dataset ( [30]). On the rows we have the gene behaviour
and on columns the conditions.

Table 2. Statistics on results of biclustering on the Yeast cell cycle expression dataset
and on the Lymphoma/Leukemia molecular profiling project. The table shows a sum-
mary of the results in terms of p-values.

Statistics Yeast Dataset Lymphoma Dataset

mean p-value for biological process 1,83E-03 1,15E-03

mean p-value for molecular function 9,28E-04 5,88E-03

mean p-value for cellular component 1,60E-03 1,38E-01

minimum p-value for biological process 3,89E-15 5,25E-05

minimum p-value for molecular function 5,08E-17 3,27E-08

minimum p-value for cellular component 6,62E-22 1,05E-03

We reported in Table 2 a summary of the results, in terms of the mean p-
value and the best p-value obtained for each of the three main categories, i.e.
biological process, cellular component, molecular function. The analysis has been
performed by submitting each gene list to the tool, and when a significant result
was obtained, the p-value was selected. When two or more GO terms were signif-
icantly associated to the gene list, only the lowest p-value was selected. Figure 9
shows an example of the graphical result of the analysis for one of the biclusters
analyzed. The analysis has found at least one GO term significantly associated
to the gene list for 29 out of 33 biclusters in Yeast database, and for 11 out
of 11 biclusters in Lymphoma dataset. This means that biclusters are made of
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Fig. 9. The graphical output of the Yeast Genome Gene Ontology Term Finder tool
for a sample bicluster obtained in our analysis

genes not only associated in terms of similar expression levels in the experimen-
tal data, but also with biological relationships, with a statistical confirm of the
significance of this relationship. In the example of Figure 9, the GO term “struc-
tural costituent of ribosome” and its parent “structural molecule activity”, have
p-value ¡=1e-10, and are those most significantly associated to the list of genes
included in the specific bicluster analyzed. This example shows that our analysis
identified in this case a bicluster enriched by genes whose function, at level of
protein expressed, is focalized on structural functions of ribosome. Therefore,
the GO analysis confirms from a biological point of view the coherence of the
bicluster analysis, being most of the gene clusters characterized by a common
function, or cellular localization, or by the involvement in a biological process.

In conclusion, our Reactive GRASP-like algorithm is able to overcome several
drawbacks of previous approaches for biclustering of biological data. We plan
to perform further validation with other datasets from literature, as well as to
design further variants of the algorithm to incorporate an intensification proce-
dure by means of path-relinking [33, 34] and/or designing variable neighborhood
structures [35, 36].
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