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Abstract

Audio analytic systems are receiving an increasing in-
terest in the scientific community, not only as stand alone
systems for the automatic detection of abnormal events by
the interpretation of the audio track, but also in conjunc-
tion with video analytics tools for enforcing the evidence of
anomaly detection. In this paper we present an automatic
recognizer of a set of abnormal audio events that works by
extracting suitable features from the signals obtained by mi-
crophones installed into a surveilled area, and by classify-
ing them using two classifiers that operate at different time
resolutions. An original aspect of the proposed system is the
estimation of the reliability of each response of the individ-
ual classifiers. In this way, each classifier is able to reject
the samples having an overall reliability below a thresh-
old. This approach allows our system to combine only re-
liable decisions, so increasing the overall performance of
the method. The system has been tested on a large dataset
of samples acquired from real world scenarios; the audio
classes of interests are represented by gunshot, scream and
glass breaking in addition to the background sounds. The
preliminary results obtained encourage further research in
this direction.

1. Introduction

In the recent years audio analytics has emerged more and

more as a relevant tool for improving security of the persons

and of public and private assets. In fact, in many cases the

analysis of the audio signal acquired by one or more mi-

crophones deployed into a surveilled area allows to detect

abnormal situations that may represent a risk for the pub-

lic security, more reliably than the video analytics counter-

part. The analysis of the audio signal can be used for raising

the attention of the surveillance operator on a specific cam-

era, or in conjunction with a video analytics tool in a sort

of multiclassifier system, or, still more importantly, for the

surveillance of areas where video is not allowed.

For these reasons, in the recent years we have assisted to

a growing interest toward these issues. In [1] the authors de-

scribe a shot detection system that uses audio information.

In a first stage the system segments the audio stream into

successive frames of 20 ms and attributes them to the shot
class or to the normal class. The classification is done by a

GMM on the basis of features typically used in the context

of audio classification as short time energy, MFCC, spectral

statistical moments. Then event detection is carried out on a

0.5 second decision window using a Maximum A Posteriori

decision rule. Similar approaches based on a GMM clas-

sifier have been adopted also in [15, 13, 16]. In particular,

Vacher et al. [15] propose a system for scream and glass

break detection in indoor applications (apartments) using

wavelet based cepstral coefficients. Rouas et al. [13] use

energy and MFCC features and test both GMM and SVM

for shout detection in outdoor scenarios (railway). They

also propose to adopt adaptive thresholding for determin-

ing sound activity, with the aim of limiting the false de-

tections. Valenzise et al. [16] discuss a system that dis-

criminates among ambient noise, scream or gunshot, by us-

ing two parallel GMM classifiers for identifying screams

from noise and gunshots from noise. More recently, Nta-

lampiras et al. in [10] presented a hierarchical system that

classifies the sound as vocalic (normal or screamed speech)

or non-vocalic (background environment, gunshot or explo-

sion) event. Based on this decision a different path is chosen

to further characterize the audio signal. Depending on the

chosen path, ad hoc descriptors are calculated and specific

GMM classification stages are activated in order to provide

the final audio classification.

The methods in [8, 11] face the problem of abnormal au-

dio event detection adopting a novelty detection approach,

with the aim of better dealing with data which differ con-

siderably from those seen by the system during the training

phase. In particular, Lecomte et al. in [8] use a One-Class

Support Vector Machine (OC-SVM) to model the distri-

bution of the normal sounds and then construct some sets
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Figure 1. The system architecture of the proposed audio event classification system.

of decision functions that allow to control the trade-off be-

tween false-alarm and miss probabilities without re-training

the OC-SVM. Similarly, in [11] the authors model normal-

ity in the sound track testing GMM, SVM and HMM. In

both [8, 11], tests were performed on a large datasets of

samples coming from the use of their systems in real con-

texts for hours or days.

All the considered approaches show very interesting re-

sults in the different domains of application demonstrating

that the technology is quite mature for the realization of

systems to be employed in real environments. Consistently

with other approaches in the literature, the method proposed

in this paper analyzes the input signal at two resolution

levels: at the first level it classifies short segments of few

dozens of milliseconds into a set of predefined classes of

interest for the application at hand. At the second level, the

classification outputs are aggregated into longer time seg-

ments, whose duration is comparable to that of the events

to detect, typically of the order of seconds. However, the

original aspect of the proposed system, that is also the main

contribution provided in this paper, is the estimation of the

reliability of each output provided by the classifiers of the

system: in this way, each classifier is able to reject the sam-

ples having an overall reliability below a threshold; this ap-

proach allows our detection system to combine only reliable

decisions, ignoring outliers that could to false positive de-

tection.

The paper is organized as follows: in Section 2 we de-

scribe the architecture of the proposed system, providing

also some details about the adopted framework for sample

rejection, while in Section 3 we present the dataset used for

experimetal validation and the results of the tests. Finally,

we draw conclusions and discuss future directions of our

research.

2. System Architecture

The proposed system analyze the audio signal at two lev-

els of granularity. At the first level it classifies the time

frames, where a time frame is a short segment of the signal

whose time span is few dozens of milliseconds. The time

frames are partially overlapped. At the second level the pro-

posed system combines the classification outputs obtained

on adjacent frames in order to detect events of interest. The

analysis at two levels is quite common in the design of au-

dio event classification systems and it is motivated by the

simple observation that most of the audio signal descrip-

tors available in the literature are defined on the frame level,

while the events of interest are typically characterized by a

larger duration.

The system architecture of the proposed method for au-

dio classification is shown in Figure 1. The audio signal is

fed to the features extraction module: this module imple-

ments the set of features outlined in Table 1. The features,

calculated on a frame basis, are used by an LVQ neural net-

work for assigning the audio class (i.e. background noise,

scream, gun shot, ...) to the time frame. The frame re-

ject module attributes the sample to the class guessed by

the LVQ or rejects it when the reliability is below a thresh-

old σ∗
F . The value of threshold is determined according to

the method described in subsection 2.1. The frame reject

module requires that the LVQ classifier provided also the

reliability together with the guessed class. To this aim we

adopted the method defined in [2] for the estimation of the

reliability of the frame level classifier1 ψF , which is calcu-

lated as a combination of two contributions that accounts

for the following situations that can be the cause of unre-

1In the following we will denote with superscript I and F those quan-

tities referred to the frame and the interval classifiers, respectively.
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liable classifications: (a) the considered sample is signif-

icantly different from those present in the dataset, so that

the point is located in a region of the feature space far from

those occupied by the samples of the training set and asso-

ciated to the various classes; (b) the point which represents

the considered sample in the features space lies where the

regions pertaining to two or more classes overlaps. Specifi-

cally, we calculated:

ψF = min{ψF
a , ψ

F
b } (1)

where ψF
a and ψF

b accounts for the first and the second

causes of unreliability, respectively. The definitions of ψF
a

and ψF
b in case of an LVQ classifier are detailed in [2] and

here briefly recalled. The reliability parameter ψF
a is de-

fined as:

ψF
a =

⎧⎨
⎩

1− OF
win

OF
max

, if OF
win ≤ OF

max

0, otherwise

(2)

where OF
win is the distance of the sample from the closest

prototype (associated to the guessed class), while OF
max is

the highest value of OF
win among those relative to all the

samples of the training set. The reliability parameter ψF
b

takes into account also the distance OF
2win from the second

closest prototype, but associated to a different class with

respect to the guessed one. Specifically,

ψF
b = 1− OF

win

OF
2win

(3)

Classification outputs of n consecutive overlapped

frames are collected in order to provide the final detection of

the events of interest. The value of n is chosen so as to have

a time span (hereinafter interval) that is significant for the

type of events to discriminate (it typically ranges between

250ms and 1s).

The interval classification module computes the reliabil-

ity using a different definition of OI
win. In fact, it defines

the plausibility OI
i that the sample at hand can be attributed

to the i-th class as the ratio between the number of frames

in the interval attributed to that class and n. Consequently,

in this case OI
win = max

i
{OI

i }, so that ψI
a and ψI

b can be

defined as:

ψI
a = OI

win (4)

ψI
b = OI

win −OI
2win (5)

and the overall classification reliability if the interval clas-

sifier ψI can be measured as

ψI
b = min{ψI

a, ψ
I
b} = OI

win −OI
2win = ψI

b (6)

Again plausibility information is used by the interval reject

module in order to provide the final classification of the in-

terval, so that the label assigned to each interval can be: no

event (background noise), event of interest (depending on

the applicative scenario it can be scream, glass break, gun

shot, explosion, ...), uncertain (rejected sample). The first

two labels are assigned to the samples classified with high

reliability, while all the unreliable samples fall in the third

category.

2.1. Optimal values of the reject threshold

The rationale of the method used in this paper for fixing

the reject threshold has been presented in [3]. For the sake

of completeness, in the following we will briefly review it.

To this regard, it is assumed that an effectiveness func-

tion P , taking into account the requirements of the particu-

lar application, evaluates the quality of the classification in

terms of correct recognition, misclassification and rejection

rates. Under this assumption the optimal reject threshold

value, determining the best trade-off between reject rate and

misclassification rate, is the one for which the function P
reaches its absolute maximum. The requirements of a given

application domain are specified by attributing costs to mis-

classifications, rejects and correct classifications. The cost

of an error can be a function of the guess and of the actual

class [14]. To operatively define the function P , let us refer

to a general classification problem. Suppose that the pat-

terns to be classified can be assigned to one of N+1 classes,

labeled with 0, 1, ..., N . Labels 1, ..., N denote the actual

classes, while 0 is a fictitious class collecting the rejected

patterns. For each actual class i, let us call Rii the percent-

age of patterns correctly classified, Rij the percentage of

patterns erroneously assigned to the class j (with j �= i)
and Ri0 the percentage of rejected patterns.

For the same class i, letR0
ii andR0

ij respectively indicate

the percentages of patterns correctly classified and of pat-

terns erroneously assigned to the class j, when the classifier

is used at 0-reject. If we assume for P a linear dependence

on Rii, Rij and Ri0, its expression is given by:

P =
N∑

i=1

Cii(Rii −R0
ii)+

−
N∑

i=1

N∑
j=1,j �=i

Cij(Rij −R0
ij)−

N∑
i=1

Ci0Ri0 (7)

In other words, P measures the actual effectiveness im-

provement when the reject option is introduced, with re-

spect to the performance of the classifier at 0-reject. The

term Cij denotes the cost of assigning to the class j a pat-

tern belonging to the class i. Note that, if j = 0, this is the

cost of rejecting a pattern coming from the class i, while,

if j = i, Cij actually represents the gain associated to a

correct classification. Obviously, in order that a rejection

be convenient, for each class i, the following relation must
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Table 1. The set of features used for describing the audio signal.

Category Feature name Reference

Spectral features
Spectral centroid, spectral skewness, spectral kurtosis, spectral slope,

[12][6]
spectral decrease, spectrum rolloff

Global Temporal
Temporal Decrease, Temporal Centroid, [12][6]

Features

Energy Feature TotalEnergy, ERSB [6] [9]

Instantaneous Temporal
Zero-crossing rate [12] [6]

Features

Perceptual features
Sharpness, Spread, TotalLoudness,

[12] [7]
Specific Loudness, Normalized Specific Loudness

Other features Spectral Crest, Volume [12]

hold:

Cij ≥ Ci0 ∀j �= 0, j �= i (8)

Since Rii, Rij and Ri0 depend on the value of the re-

ject threshold σ, P is also a function of σ. Starting from

the results presented in [3], it is possible to show that the

following relation holds:

P (σ) =
N∑

i=1

N∑
j=1,j �=i

(Cij − Ci0)
∫ σ

0

Dij(ψ)d(ψ)+

−
N∑

i=1

(Cii + Ci0)
∫ σ

0

Dii(ψ)d(ψ) (9)

whereDii(ψ) andDij(ψ) (with j �= i) are, respectively, the

occurrence density curves of correctly classified and mis-

classified patterns for the class i as a function of the value

of σ. In other words, Dij(ψ)d(ψ) is the fraction of patterns

of the class i assigned to class j with a reliability in the

interval [ψ,ψ + dψ].

The optimal value σ∗ of the reject threshold σ is the one

for which the function P gets its maximum value. In prac-

tice, the functions Dij(ψ) are not available in their analyt-

ical form and therefore, for evaluating σ∗, they should be

experimentally determined in tabular form on a set of la-

beled patterns, adequately representative of the target do-

main. The value of σ∗ can be then determined by means of

an exhaustive search among the tabulated values of P (σ).

3. Experimental results
The performance of the proposed system are evaluated

on a large dataset of audio samples collected from the In-

ternet or recorded by the authors. The dataset is composed

of signals belonging to the following classes: background

noise, scream, gun shot, broken glass. The background

noise was acquired in indoor and outdoor environments to

account for different applicative scenarios. The composi-

tion of the dataset is summarized in Table 2. The audio

tracks in the dataset are sampled at 8 kHz and mono.

Table 2. Composition of the dataset used for the experimentations.

Class Time duration
Background noise (BN) 3707,5 secs

Broken glass (BG) 1471,8 secs

Gun shot (GS) 1042,1 secs

Scream (S) 674,3 secs

We partitioned the test database into three equally sized

sets preserving the original class distribution: one set (train-
ing set) was used for training the LVQ neural network, a

second set (validation set) was used for determining the op-

timal values of the reject thresholds at the frame and the in-

terval levels, while on the third set (test set) we determined

the overall performance of the system.

In order to derive the set of the most discriminative fea-

tures for the problem at hand we performed a preliminary

features selection by means of the Weka tool [5]. In par-

ticular, we used the CFS Subset Eval method [4], which

evaluates the worth of a subset of features by considering

the individual predictive ability of each feature along with

the degree of redundancy between them; subsets of features

that are highly correlated with the class while having low

inter-correlation are preferred. As for the search method,

we used the Best First strategy. At the end, we individuated

the descriptors that are reported in table 3.

The first experiment was aimed at evaluating the impact

of the adoption of the reject option after the LVQ classifier

at the frame level. The ideal behavior that we would like to

obtain after the adoption of this module is that the all sam-

ples that are erroneously classified by the LVQ should be

rejected, while all the samples that the classifier recognizes

correctly should be mantained. In such ideal case the classi-

fier at the interval level aggregates only the samples that at

the frame level were attributed to the correct class. Unfor-

tunately, in real cases due to the fact that the distributions

of the correctly classified samples and of the misclassified
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Table 3. The set of the most discriminants descriptors selected in each category of features.

Category Feature name
Spectral Features Spectral centroid, spectrum rolloff, spectral pitch, spectral flux

Global Temporal Features Temporal Decrease, Temporal Centroid

Energy Features TotalEnergy, ERSB

Instantaneous Temporal Features Zero-crossing rate

Perceptual features Spread

Other features Volume

ones as a function of the classification reliability are usually

partially overlapped, it happens that on one side some sam-

ples that were correctly classified by the original classifier

are rejected and on the other side some samples that were

misclassified by the original classifier are not rejected, so

they are passed to the next stage as reliable ones.

This behavior can be observed by considering the results

reported in Table 4 where we consider the confusion ma-

trix in case of the base LVQ classifier and in Table 5 that

accounts for the performance of the classifier with the re-

ject option. The results in the latter table were obtained by

setting the cost of the rejections Ci0 = 2, the cost of mis-

classifications Cij = 5, with i �= j, and the gain of correct

classifications Cii = 1. For the sake of simplicity in this

paper we do not consider a dependence of the costs and of

the gains by the specific class, even if in real cases such fea-

tures provided by the adopted rejection framework may be

very useful. The choice of the costs used for experimen-

tations is motivated by the fact that at the frame level we

are mainly interested to configurations with high values of

the cost of the classification errors, while we may accept

also relatively high rates of rejections of correctly classified

samples. In fact, at this level the primary goal is to obtain

the highest percentage of correct classifications even if on

a subset of the available samples. The comparison of the

results reported in the Tables 4 and 5 shows that the adop-

tion of the reject module after the LVQ classifier allows to

reduce in all cases the number of misclassification. This

is more evident in the case of the BG class that is largely

confused with the BN class.

In the second experiment we considered the recognition

performance of the system at the interval level. The ob-

tained results are reported in Tables 6, 7 and 8. In particular,

in Table 6 it is reported the confusion matrix at the interval

level when the reject option is not enables at both levels of

the system. In this case it is possible to note that the sys-

tem is able to recognize correctly all the classes with the

exception of the BG that is confused about one time over

four with the BN class. We observe a significant improve-

ment of the recognition rates going from the frame level to

the interval one that in absolute value is around 10% for all

classes. However, if we focus on the results reported in Ta-

ble 7 obtained when the reject otion is enabled only at the

frame level, we can notice a further 10% increase of the ac-

curacy over the BG class without any negative impact on

the recognition rates of the other classes. Finally, in Table

8 we consider the results obtained by the system at the in-

terval level when the reject option is enabled at both levels.

In this case we can notice again that the adoption of this

module does not impact over the recognition of the BN, GS
and S classes, but only a small fraction of erroneously clas-

sified samples from the BG class were rejected, suggesting

that the use of the reject option is more beneficial if adopted

only at the frame level.

Table 4. Confusion matrix of the base LVQ classifier adopted at

the frame level on the considered dataset.

BN BG GS S
BN 91.61% 6.64% 0.50% 1.24%

BG 35.32% 54.93% 4.96% 4.80%

GS 1.66% 4.19% 90.49% 3.66%

S 1.30% 4.35% 4.15% 90.20%

Table 5. Confusion matrix of the LVQ classifier with the reject

option adopted at the frame level on the considered dataset. The

cells in the rightmost column report the percentage of the rejected

samples.

BN BG GS S Rej.
BN 90.61% 5.87% 0.44% 1.01% 2.07%

BG 33.53% 52.08% 4.37% 4.04% 5.98%

GS 1.59% 3.43% 89.35% 3.09% 2.55%

S 1.12% 3.75% 3.79% 89.26% 2.08%

4. Conclusions

In this paper we have proposed a system for automatic

recognition of the events of interest from the audio signals

acquired by microphones. The main feature of the system

is the capability of estimating the reliability of each clas-

sification act that is used for rejecting unreliably classified
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samples. In this way the system takes its decisions by re-

lying only on samples on which it is more confident. This

approach allows to improve recognition performance with

respect to the base classifier. The system was tested on a

dataset of audio events acquired in real operational scenar-

ios showing interesting performance.

Future work will be devoted to a more extensive tests

that will consider a larger set of classes of interest (for in-

stance the detection of the aerosol spray for the realization

of an audio based detector of graffiti activities), and to the

adoption of more sophisticated rules of aggregation of the

frame samples at the interval level with the aim of consid-

ering variable length intervals that better fit to the typical

duration of the events of interest.

Table 6. Confusion matrix at the interval level on the considered

dataset when the reject option is not enabled at both the frame and

interval level.

BN BG GS S
BN 100.00% 0.00% 0.00% 0.00%

BG 26.61% 73.39% 0.00% 0.00%

GS 0.00% 0.00% 100.00% 0.00%

S 0.00% 0.00% 0.00% 100.00%

Table 7. Confusion matrix at the interval level on the considered

dataset when the reject option is enabled only at the frame level.

BN BG GS S
BN 100.00% 0.00% 0.00% 0,00%

BG 16.97% 83.03% 0.00% 0.00%

GS 0.00% 0,00% 100.00% 0.00%

S 0.00% 0.00% 0.00% 100.00%

Table 8. Confusion matrix at the interval level on the considered

dataset when the reject option is enabled at both the frame and

interval level.

BN BG GS S Rej.
BN 100.00% 0.00% 0.00% 0.00% 0.00%

BG 16.61% 81.92% 0.00% 0.00% 1.48%

GS 0.00% 0.00% 100.00% 0.00% 0.00%

S 0.00% 0.00% 0.00% 100.00% 0.00%
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