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Introduction: Thyroid cancer is a rare disease that needs to be differentiated

from the more frequent benign nodular goiter. The current, primary tech-

nique for distinguishing between benign and malignant nodules is by a

fine-needle biopsy (FNB) cytological examination. This type of examination,

unfortunately, often provides inconclusive results, and in recent years the

introduction of molecular markers for the preoperative diagnosis of thyroid

nodules has been proposed.

Areas covered: This review covers current and emerging research in the diag-

nostic application of the BRAF mutation in papillary thyroid carcinomas. It

considers the available literature related to the usefulness of preoperative

BRAF mutation analysis as a diagnostic tool to refine inconclusive cytology.

It also considers the available techniques used to detect this specific mutation.

Expert opinion: Many effective methods are now available to detect BRAF

mutation in FNB material. Thanks to its high specificity, this genetic alteration

is now considered a useful diagnostic marker for patients who have indeter-

minate thyroid nodule cytology and is a useful tool for thyroid nodule man-

agement despite its low sensitivity limiting its application. The authors

believe that, in the future, the screening of genetic alterations will enter stan-

dard clinical practice as an adjunctive tool to conventional cytology, and

larger studies will provide a better definition of the best, most cost-effective

combinations of markers and methods.

Keywords: BRAF mutation, fine-needle aspiration cytology, papillary thyroid cancer,

thyroid cancer, thyroid cancer diagnosis
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1. Introduction

Thyroid cancer is the most common endocrine malignancy. Although its incidence
has increased over the last few decades, it remains a rare disease, accounting for only
1% of all new cancers worldwide.

Thyroid cancer is generally indolent and its clinical appearance is that of a nodule
slowly growing in size. Hence, a relevant clinical issue in the management of thyroid
nodule is to distinguish benign from malignant nodules. This clinical problem is
made more relevant by the high incidence of benign nodular goiter. Whereas
thyroid cancer is rare, benign nodular goiter constitutes a very common clinical
finding. Its prevalence is extremely variable, depending on different factors such
as the age of the subject and geographical, environmental and genetic factors.

1.1 Epidemiology of benign and malignant thyroid nodules
The prevalence of palpable thyroid nodules in adults has been estimated to vary
from 1 to 9% in iodine-sufficient areas [1-4]. However, ultrasonography allows
the detection of a large number of clinically silent thyroid nodules termed
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incidentalomas. Using this tool, the prevalence of thyroid
nodules is found to vary from 20 to 67% in unselected popu-
lations and can be even higher in older subjects and in areas
with insufficient iodine intake [5-7].
Most thyroid nodules are benign in nature and thyroid car-

cinoma accounts for ~ 5% of nodules [8,9]. This percentage
changes largely in endemic goiter areas, where the abundance
of multinodular goiters reduces the ratio of malignant nodules
in favor of benign nodules. The incidence rate of thyroid
cancer has increased in both sexes over the last few decades,
doubling in the last 20 years [10]. This can be attributed
mainly to papillary thyroid carcinoma (PTC) and particularly
its follicular variant (fvPTC), while follicular thyroid carci-
noma (FTC) has declined and poorly differentiated and
anaplastic carcinoma has remained very rare [8]. PTC remains
the most frequent thyroid cancer, accounting for ~ 85 -- 90%
of all cases.

2. Clinicopathological evaluation of
thyroid nodules

2.1 Clinical assessment
Generally, only clinically evident nodules or incidentalomas
with a diameter > 1 cm should be evaluated, as smaller inci-
dentalomas only rarely acquire clinical significance [11]. The
evaluation of a patient with thyroid nodules comprises a

careful history, a meticulous clinical examination consisting
of inspection and palpation of the neck, and searching for
signs or symptoms of altered thyroid function. The ultrasono-
graphic evaluation, hormonal status evaluation, search for
serological autoimmunity and cytological analysis supplement
the clinical assessment. The clinical assessment can divide the
thyroid nodules into groups that have a suspicion of malig-
nancy; however, it misses the goal of differentiating benign
nodules from malignant neoplasms [12]. Thyroid ultrasound
is a first-line diagnostic procedure, useful for detecting and
characterizing nodular thyroid disease. Ultrasound features
associated with malignancy are hypoechogenicity, microcalci-
fications, irregular margins, absent halo sign, solid pattern and
intranodular vascularization [13,14]. However, these patterns
taken singly have a low specificity. When multiple patterns
are considered, the specificity increases but the sensitivity
decreases [15]. Taking these limits into consideration, ultra-
sound evaluation of thyroid nodules finds its main appli-
cation in the selection of those nodules that require cytology
examination and to guide the needle biopsy [16].

2.2 Fine-needle biopsy cytology
So far, cytologic examination of fine-needle biopsy (FNB),
performed with or without aspiration, is the most accurate
and cost-effective method for evaluating thyroid nodules.
Although this procedure has improved with time, it still has

Article highlights.

. Thyroid cancer is a rare disease whose initial clinical appearance is that of a nodule, which needs to be diagnosed among the
much more common benign thyroid nodules. So far, fine-needle biopsy cytology (FNBC) is the most accurate and
cost-effective method for evaluating thyroid nodules. However, inconclusive results, such as unsatisfactory, indeterminate or
those suspicious for malignancy, represent a large gray zone even for skilled pathologists.

. Patients with these cytologic findings have to undergo diagnostic surgery, which will detect thyroid malignancy only in some
of them. For this reason, molecular markers have been proposed to improve the differential diagnosis between benign
nodules and malignant thyroid tumors.

. Activating mutations of the BRAF gene occur in a broad range of human cancers. Their frequency in thyroid cancer is second
only to melanoma. The valine-to-glutamate substitution at residue 600 (BRAFV600E) is nearly the only BRAF mutation found in
about half of papillary thyroid cancer (PTC) with a histological subtype-dependent frequency. BRAFV600E is a very specific
marker of PTC as it is not present in follicular or medullary thyroid cancer or in benign thyroid diseases.

. Several methods have been developed and applied successfully to searching for BRAF mutations in thyroid specimens.
A sensitive method is needed because contamination with wild-type BRAF from non-tumor cells occurs regularly in FNB
samples. Besides dideoxy sequencing of polymerase chain reaction products, some detection methods for BRAFV600E are
restriction fragment length polymorphism, mutant allele-specific polymerase chain reaction amplification, real-time LightCycler
PCR, also called Mutector assay, real-time quantitative gap ligase PCR, dual priming-based multiplex PCR analysis
and pyrosequencing.

. A BRAFV600E-based assay has 100% specificity, but its sensitivity is limited by the restricted expression of this oncogene to
PTC. The frequent finding of PTC in indeterminate cytology makes BRAFV600E useful in this cytological category. In FNBC
suspicious for malignancy, this assay can be used as a confirmatory one. The utility of adjunctive methods of cancer
identification in inadequate and benign FNBC is consistent with the risk of malignancy and the rate of false negatives,
respectively. The low rate of false positives limits the utility and the cost-effectiveness of BRAF mutation testing or other
diagnostic tests for thyroid cancer in benign FNBC. BRAF mutation is also associated with a more aggressive disease, thus it
can be used as a prognostic marker.

. The large amount of new data prompted a substantial change in the guidelines for the management of thyroid cancer on this
issue. Now BRAF mutation is considered to be a diagnostic marker that is useful for patients with indeterminate FNBC to help
thyroid nodule management.

This box summarizes key points contained in the article.

BRAF mutation in cytology samples as a diagnostic tool for papillary thyroid carcinoma

2 Expert Opin. Med. Diagn. [Early Online]

E
xp

er
t O

pi
n.

 M
ed

. D
ia

gn
. D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ita

 S
tu

di
 d

i N
ap

ol
i o

n 
04

/2
1/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



some relevant limits: the sampling is sometimes insufficient
for correct evaluation; some lesions are impossible to classify
as benign or malignant; and the method is highly operator-
dependent, with accuracy being assured only with a very expe-
rienced pathologist. Although ultrasound-guided biopsy and
on-site assessment of specimen adequacy at the time of biopsy
reduce the rate of non-diagnostic tests, ~ 5% of fine-needle
biopsy cytology (FNBC) remains inadequate [17,18]. Differen-
tial diagnosis is sometimes difficult or impossible, and these
nodules are classified as indeterminate or suspicious for
malignancy. Another important issue is the way the cytology
findings are reported to the clinician. The vast array of diag-
nostic nomenclatures now in use sometimes leads to a non-
univocal interpretation. A commonly accepted categorical
reporting system makes the cytology diagnosis easier to under-
stand by the clinicians who have to use it for decision-making.
Simplification of thyroid reporting into categories has been
proposed by different authors and has been accepted by differ-
ent institutions [19,20]. These classifications, gaining growing
consensus, are based on four to six or more categories, includ-
ing: unsatisfactory or inadequate for insufficient or degraded
aspirates; obviously benign; indeterminate for follicular pat-
terned lesions that cannot be fully classified, requiring histo-
logical assessment for actual classification; suspicious for
malignancy; and obviously malignant [21,22]. Using this five-
tier system for FNBC classification, the aspirates classified as
unsatisfactory, indeterminate or suspicious represent a large
gray zone even for skilled pathologists (Table 1) [19,23-25].
Patients with these cytologic findings have to undergo diag-
nostic surgery, which will detect thyroid malignancy only in
some of them. For this reason, ancillary tools have been
sought in recent years in order to improve the differential
diagnosis between benign and malignant thyroid nodules. At
present, immunologic and, more recently, molecular markers
are the most promising tools to better characterize nodules
with uncertain cytologic diagnosis.

3. The BRAF gene and its
physiopathological role

3.1 Physiology of BRAF signaling
The members of the RAF family (ARAF, BRAF and CRAF or
RAF-1) are protein-serine/threonine kinases that participate
in the Ras-RAF-MEK-ERK signal transduction cascade, also
denoted as the mitogen-activated protein kinase (MAPK) cas-
cade [26]. The MAPK cascade plays a pivotal role in many
aspects of cell biology in nearly every cell type. The RAF
kinase isoforms are composed of three conserved regions:
CR1, CR2 and CR3. CR1 contains a RAS-binding domain
and a cysteine-rich domain, which can bind two zinc ions.
CR2 is a serine/threonine-rich domain that binds to the regu-
latory protein 14-3-3. CR3 is the protein kinase domain [27].
Under non-stimulatory conditions, RAF resides in the cyto-
sol. Ras induces RAF translocation to the plasma membrane,
where it undergoes conformational changes induced by

multiple steps, including phosphorylation, dephosphorylation
and protein--protein interactions. Whereas maximal activation
of CRAF requires serine and tyrosine phosphorylation by
both Src and Ras, BRAF is highly activated by oncogenic
Ras, is not activated by Src, and Ras and Src do not syner-
gize [28]. BRAF activation leads to phosphorylation of the
MAPK-kinases MEK-1/2, which in turn phosphorylate and
activate the MAPKs. Several MAPKs have been identified:
extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun-
amino-terminal kinase (JNK), p38 and ERK5 [29]. Once acti-
vated, MAPKs phosphorylate a multitude of target substrates
on serine or threonine residues and regulate cellular activities,
including gene expression, proliferation, apoptosis, cell
differentiation, movement and metabolism [30,31].

3.2 BRAF gene mutations in human cancer
More than 65 different missense BRAF mutations have been
detected in human cancer so far [32]. Most of them occur
within the kinase domain or in the glycine-rich loop. A few
of these mutations (G466E, G466V, G596R and D594V)
hamper BRAF activation by Ras and partly hamper ERK acti-
vation [33,34]. The others destabilize the inactive conformation
of BRAF, thus stimulating its kinase activity leading to
increased ERK activity. A single missense mutation at posi-
tion 1799 accounts for nearly 90% of all BRAF somatic muta-
tions detected in human cancer. This mutation occurs within
the activation segment, introducing negative charges and
disrupting the hydrophobic interaction between the glycine-
rich loop of the N-terminal region and the activation segment
of the kinase domain [32,35]. The V600 substitution, 95%
of which consists of V600E, accounts for nearly 8% of all
human cancer, including melanoma (27 -- 70%), thyroid can-
cer (36 -- 53%), colorectal cancer (5 -- 22%), serous ovarian
cancer (~ 30%), and, at lower frequency (1 -- 3%), sarcoma,
glioma, liver, stomach, breast and lung cancer [36]. Single
point mutations are not the only genetic alterations that acti-
vate BRAF found in human tumors. Fusion of the BRAF gene
with the AKAP9 gene through a paracentric inversion of the
long arm of chromosome 7 was first described by fluorescence
in situ hybridization analysis (FISH) [37]. This recombination
results in an AKAP9/BRAF chimera, where the BRAF autoin-
hibitory regulatory domain is lost, inducing constitutive
activation of the kinase. In only a very few cases was the
BRAF autoinhibitory regulatory domain lost by the deletion
of 3 nucleotides at position 1799 -- 1801, or 18 nucleotides
were inserted at position 1799 -- 1816, resulting in the
insertion of 6 amino acids in the BRAF protein [38,39].

4. BRAF mutations in thyroid cancer

In the first study that described the mutations of BRAF in
human cancer, thyroid tumors were not investigated [32].
However, as soon this tumor was considered, it became clear
that this was a principal site for BRAF mutations and that
their frequency in thyroid cancer was second only to
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melanoma. From that moment, a large number of studies
investigated several aspects of the BRAF oncogene in thyroid
cancer, including its prevalence in the different histological
subtypes and association with environmental, geographical,
ethnic and genetic factors. The valine-to-glutamate substitu-
tion at residue 600 (V600E) is nearly the only BRAFmutation
found in thyroid cancer, with a very few exceptions for the
K601E and A598V missense mutations, the AKAP9/BRAF
recombination, the 1799 -- 1801 deletion and the 1799 --
1816 insertion [37-41]. For this reason, the studies on BRAF
in thyroid cancer almost exclusively consider the V600E
mutation. The prevalence of the BRAFV600E mutation in
PTC varies widely in different studies, ranging from 29 to
83%. Unlike in other genetic alterations such as RET rear-
rangements, the sensitivity of the detection method used has
a minor responsibility for this variability. When the analysis
considers separate groups for histological and patient features,
the prevalence variability is drastically reduced.
Since 2003, > 100 studies have analyzed the presence of

BRAFV600E in the thyroid. The results are generally consistent,
and considering only the major ones, the overall prevalence of
BRAFV600E in sporadic adult thyroid cancer patients is ~ 46%
(1326/2867) in PTC and 18% (48/258) in anaplastic thyroid
carcinoma (ATC). None of the 237 FTC, 85 medullary
thyroid carcinoma (MTC) or 1082 benign neoplasms con-
sidered harbored a BRAF mutation. Thus, with the only
exception being a few cases of hyperplastic nodules that might
represent a precursor lesion of PTC, BRAFV600E in the thyroid
is restricted to papillary-patterned cancer and it does not
occur in Hashimoto’s thyroiditis, benign colloid nodules,
thyroid adenomas, FTC, MTC or other types of thyroid
tumor [42-45]. Its restricted expression makes BRAFV600E a
100%-specific PTC/papillary-patterned cancer marker within
thyroid malignancies.
Although the specificity of BRAFV600E as a PTC marker is

100%, when considering its sensitivity it must be taken into
account that PTC is a heterogeneous disease including differ-
ent histological subtypes with individual clinicopathological
characteristics [46,47]. The most frequent subtypes are conven-
tional PTC (cPTC), follicular variant PTC (fvPTC) and tall
cell PTC (tcPTC). Many studies that determined the preva-
lence of BRAF mutations showed a subtype-dependent
distribution, tcPTC showing the highest prevalence (73%),

followed by cPTC (50%) and fvPTC (19%) (Table 2). It is
notable that the prevalence of BRAF mutations decreases
from the most to the least aggressive PTC variant. The associ-
ation of BRAFmutation with aggressive subtypes of PTC sup-
ports the role of BRAF mutation in determining the tumor’s
aggressiveness [39,48]. In studies where other histotypes have
been compared, BRAFV600E was more frequent in Warthin-
like PTC (75%) and oncocytic variant of PTC (55%) than
in cPTC (46%) and less frequent in hyalinizing trabecular
PTC [41,49-50].

Some studies investigated whether the BRAFV600E muta-
tion is present in small PTC and whether its prevalence is
different from that of overt PTC. Papillary thyroid microcar-
cinoma (PTMC) is defined by the World Health Organiza-
tion as a tumor measuring 1 cm or less in its greatest
dimension. PTMC is a common incidental finding, much
more frequent than large PTC. Thus, it might represent an
early phase in the development of PTC or an individual
tumor entity with its own clinicopathological characteristics.
The prevalence of BRAFV600E mutation in PTMC of 123
Italian and 60 Korean patients was 71 and 52%, respec-
tively [51,52]. In a Chinese cohort of 230 patients with PTC,
92 were PTMC and 138 overt PTC, and the frequency of
the BRAFV600E mutation did not differ between the two
groups (67.4 and 65.9%, respectively) [53]. As in large PTC,
in PTMC BRAFV600E was more frequent in tumors with pap-
illary pattern than with follicular pattern [50]. More recently,
Basolo et al. demonstrated a strong association of BRAFV600E

with PTC variants (classical and tall cell) and tumor size
(> 10 mm) in a very large study of small (£ 20 mm)
PTC [54]. The high frequency of BRAF mutation in PTMC
indicates a role in the initiation of PTC tumorigenesis, and
the higher frequency of BRAF mutation in clinically evident
PTMC than in incidental PTMC suggests the need for
more careful management of patients with incidental
PTMC harboring BRAFV600E [55].

Ionizing radiation is known to be a relevant cause of genetic
alteration and carcinogenesis. The role of ionizing radiation in
thyroid carcinogenesis has been studied extensively in Belarus,
Ukraine and parts of the Russian Federation, which have been
affected by the Chernobyl accident. These studies showed that
the Chernobyl accident resulted in a dramatic increase in the
number of thyroid cancers of PTC type with a frequency of
rearrangements of the RET proto-oncogene higher than in
sporadic PTC [56,57]. These data are consistent with the notion
that ionizing radiation is particularly effective at inducing
DNA double-strand breaks. Unlike RET rearrangements, the
percentage of BRAF mutations in post-Chernobyl PTC was
significantly lower than in sporadic adult PTC [58-60]. These
data indicate that BRAF mutation is a rare event in thyroid
cancer that has developed in subjects exposed to radiation.
The involvement of different etiologic/pathogenetic mecha-
nisms in the development of BRAF mutations and RET rear-
rangements is also suggested by the observation that these two
oncogenes are mutually exclusive [61].

Table 1. Risk of malignancy of cytological categories,

based on histopathological diagnosis.

Cytology Risk of malignancy (%)*

Unsatisfactory 5 -- 10
Benign 1 -- 2
Indeterminate 20 -- 30
Suspicious 50 -- 75
Malignant 100

*Data from [19,23-25,100,94].

BRAF mutation in cytology samples as a diagnostic tool for papillary thyroid carcinoma
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5. Methods to detect BRAF mutation

Detection of the BRAF mutation has been performed success-
fully in tissues and in cells obtained from FNB. Direct
sequencing is the gold standard to detect a single nucleotide
mutation. However, a sensitive technique is required when a
low level of mutation is mixed with abundant wild-type
gene copies. Dideoxy sequencing of polymerase chain reaction
products can detect BRAFT1799A mutation in heterozygosity
only when present in most of the cells in a cell mixture [62].
Thus, this method is unable to detect the mutation in thyroid
aspirates when largely contaminated by normal surrounding
or intranodular cells. Contamination with wild-type BRAF
from non-tumor cells occurs regularly in FNB samples, espe-
cially when the nodule is located in the posterior thyroid and
the needle track through the gland is long. Moreover, some
authors suggested that BRAF mutation can be restricted to
the papillary component of thyroid tumors, further reducing
the mutated/wild-type BRAF ratio [63]. Several methods have
been developed and applied to search for BRAF mutations
in thyroid specimens. The sensitivity of BRAF mutation
detection is markedly increased by polymerase chain reaction
(PCR) amplification followed by restriction fragment length
polymorphism (RFLP), mutant allele-specific polymerase
chain reaction amplification (MASA), real-time LightCycler
PCR (LC-PCR), also called Mutector assay, and real-time
quantitative gap ligase PCR (GLCR) [64-68]. The first two
methods are analytical assays based on observation of an elec-
trophoresis gel band, whereas the other two are quantitative
assays based on DNA probe elongation. Dual priming-based

(DPO) multiplex PCR analysis is a very sensitive technique
that is able to detect the presence of BRAFT1799A in as few
as 2% of cells in a wild-type population [69]. However,
DPO-based multiplex PCR analysis diagnosed 5 false posi-
tives over 693 nodules [70]. Although this is a very low per-
centage (0.7%), it must be taken into account because a
malignant diagnosis switches a medical treatment to a surgical
one. Pyrosequencing is a recently developed method of
nucleotide sequencing based on real-time pyrophosphate
measurement [71]. This is a sequencing-by-synthesis method
that measures the incorporation of each of the four nucleo-
tides at each template position in an automated process
involving a pyrosequencer device. This method has been
shown to be more sensitive than the dideoxy sequencing
method, allowing detection of low amounts of the mutant
allele in thyroid FNB [72]. The prevalence of BRAF mutation
in tissue samples is not dramatically affected by the detection
method applied, as occurs for RET rearrangements [73]. How-
ever, the choice of the most appropriate detection method
for FNB specimens must take into account its sensitivity, sen-
sibility and reproducibility (Table 3). Real-time LightCycler
PCR and pyrosequencing fit these requirements.

6. Application of BRAF mutations in thyroid
cancer diagnosis

6.1 Testing for BRAF mutations in FNB
The high frequency of BRAF mutations in thyroid cancer and
the availability of several accurate methods of detection
offered new perspectives for the classification, diagnosis and

Table 2. Prevalence of BRAF mutation in PTC subtypes; positive/total (%).

Study cPTC fvPTC tcPTC

Nikiforova et al. [63] 28/53, (53) 2/30, (7) 6/6, (100)
Cohen et al. [75] 28/42, (67) 6/51, (12)
Kim et al. [102] 58/70, (83)
Trovisco et al. [41] 28/53, (53) 0/32, (0) 1/3, (33)
Frattini et al. [103] 11/14, (77)
Fugazzola et al. [104] 18/47, (38) 0/6, (0)
Puxeddu et al. [105] 19/35, (54)
Salvatore et al. [106] 16/35, (45) 3/22, (14) 5/9, (55)
Sapio et al. [62] 14/31, (45) 5/12, (41)
Fugazzola et al. [107] 85/176, (48) 9/51, (17)
Frasca et al. [82] 116/223, (52)
Girlando et al. [108] 34/44, (77) 9/16, (56)
Kebebew et al. [84] 126/245, (51) 7/29, (24)
Lupi et al. [85] 56/82, (68) 21/112, (18) 32/40, (80)
Riesco-Eizaguirre et al. [109] 18/35, (51) 5/25, (20) 4/5, (80)
Giannini et al. [110] 10/18, (55) 9/17, (53) 12/15, (80)
Oler and Cerutti [111] 48/73, (66) 10/47, (21)
Wang et al. [83] 45/94, (48) 1/3, (33) 8/11, (73)
Abubaker et al. [112] 8/13, (61)
Ito et al. [86] 230/583, (39) 4/20, (20) 6/12, (50)
Overall 977/1939, (50) 91/473, (19) 93/128, (73)

cPTC: Conventional papillary thyroid cancer; fvPTC: Follicular variant papillary thyroid cancer; PTC: Papillary thyroid cancer; tcPTC: Tall cell variant papillary

thyroid cancer.
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risk stratification of thyroid tumors. The diagnostic potential
of BRAF mutation has been investigated extensively on clini-
cal grounds in an attempt to provide the pathologist with a
further tool to refine the inconclusive cytology. Xing et al.
investigated whether detection of BRAFV600E in FNB speci-
mens was technically possible and compared the accuracy of
DNA sequencing and Mutector assay on 45 FNB specimens,
finding a BRAF mutation in 8/16 PTC and demonstrating
that it can be readily and reliably detected in thyroid cytolog-
ical specimens [67]. The possibility of amplifying a very low
amount of DNA and its molecular stability make it possible
to analyze material scratched from glass slides, left behind in
the needle, or processed for liquid-based cytology. Each of
these sources has advantages (recovery from archival glass
slides, repetition of DNA extraction from ThinPrep) or disad-
vantages (less or insufficient material from glass slide or needle
washout after smear preparation for cytology) that must be
taken into account when choosing the most appropriate one.
BRAF mutation can potentially be helpful in different clin-

ical situations: i) to identify malignant nodules with indeter-
minate or inadequate FNBC; ii) to confirm the malignancy
in suspicious FNBC; iii) to reduce false negative results in
benign FNBC; and iv) to select micro-PTCs requiring a
more aggressive therapeutic approach

Retrospective analyses of surgical series have suggested
a malignancy rate of 20 -- 30% in indeterminate cytology,
a percentage largely dependent on the pathologist’s
experience [19,23-24]. This cytological category, accounting for
11 -- 25% of FNBC, was proposed for all FNB characterized
by a high number of follicular cells, microfollicular arrange-
ment and scanty or absent colloid, and as such it includes fol-
licular adenoma (FA) and FTC together with Hashimoto’s
thyroiditis and benign nodular goiter with regressive
changes [23,74]. However, PTCs are a frequent finding in inde-
terminate cytology, accounting for more than half of the
malignancies [24]. Thus, whereas testing for BRAF mutation
is useless for distinguishing FTC from FA, it is effective in
recognizing PTC in this cytological category. Follicular, tra-
becular and solid-patterned PTC account for most of the
indeterminate cytological findings because these variants are
characterized by a prevalent follicular structure. As BRAF
mutation positivity in PTC correlates with the presence of
the papillary structure, the presence of these PTC variants
reduces the overall sensitivity of BRAF mutation analysis in
indeterminate FNBC. In a series of 55 indeterminate
FNBC, Cohen et al. found 5 samples (3 cPTC and 2 fvPTC)
harboring BRAFV600E out of a total of 32 malignant
specimens (17%), 29 of which were PTC (21 fvPTC,

Table 3. More frequently used methods for detection of BRAF mutation.

Method Main features Accuracy Sensitivity Ref.

Chain-terminator sequencing
(Sanger method)

Determines the consecutive order
of the nucleotide sequence

+++ + [66,75]

PCR amplification followed
by restriction fragment length
polymorphism (RFLP)

Amplicons are digested with
specific restriction enzymes

++ ++ [64,69]

Single stranded conformation
polymorphism (SSCP)

Single mutant and wild-type
DNA strands migrate differently
in acrylamide gel. Useful as
screening assay

+ ++ [41]

Mutant allele-specific
polymerase chain reaction
amplification (MASA)

Amplification of mutant and
wild-type DNA by two distinct
primers

++ ++ [62,75]

LightCycler PCR (LC-PCR)
(Mutector assay)

Primer extension occurs only
if matching mutant DNA.
Color reaction is observed if
nucleotides are incorporated

++ +++ [67,75]

LightCycler fluorescence
melting curve analysis PCR

Real-time PCR and fluorescence
melting curve analysis analyzed
by the LightCycler instrument

++ +++ [63]

Real-time quantitative gap
ligase PCR (GLCR)

Real-time PCR with adjacent
primers labeled with a reporter
and a quencher dye

++ +++ [68]

Dual priming-based multiplex
PCR analysis (DPO-PCR)

PCR products obtained using
allele-specific primers modified
by deoxyinosine linkers are
electrophoresed in acrylamide gel

++ +++ [69,70]

Pyrosequencing Sequencing-by-synthesis method.
Determines the order of the
nucleotide sequence. Requires a
pyrosequencer device

+++ +++ [72,113]
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8 cPTC) [75]. Zatelli et al. searched BRAF mutations by dye
terminator cycle sequencing in 89 indeterminate aspirates,
finding positive 1/11 PTC [66]. More successful were
Nikiforov et al., who found 17 PTC in 52 indeterminate aspi-
rates, 7 of which were bearing BRAFV600E, and Kim et al.,
who identified 13/18 PTC bearing BRAFV600E [76]. The utility
of the test depends on the prevalence of BRAF mutation in
PTC, so that in geographical areas such as Korea where it
is > 80%, searching for BRAFV600E was demonstrated to be
a highly sensitive test [42]. Overall, considering the studies
reported in Table 4, a diagnostic test based on detection of
BRAFV600E shows 27% sensitivity with only 1 false positive
over 318 tests. PTC accounts for the vast majority of FNBC
suspicious for malignancy. Hence, as expected, BRAF muta-
tion testing is useful for identifying PTC in this cytological
category, showing a sensitivity of 65% in 211 aspirates
(Table 4).

The utility of adjunctive methods of cancer identification
in inadequate and benign FNBC is consistent with the risk
of malignancy and the rate of false negatives, respectively.
According to the findings reported in Table 4, whereas in
inadequate FNBC testing for BRAF mutation disclosed
15 PTC in 115 aspirates (13%), in benign FNBC only
11 in 1155 aspirates (0.9%) were positive for BRAFmutation.
Also, in a very recent study in the Korean population, where
BRAF mutation is very frequent, none of the 504 benign
FNBC examined displayed BRAFV600E [42]. The low rate
of false negative FNBC limits the utility and cost-
effectiveness of BRAF mutation testing or other diagnostic
tests for thyroid cancer in benign FNBC. Evaluation of the
actual benefit and cost-effectiveness of BRAF mutation testing
in inadequate and benign FNBC should consider overall the
cytology and molecular diagnosis yields. Indeed, the utility
of BRAF mutation testing increases with the risk of malig-
nancy in these FNBC categories. This risk is very dependent
on the cytopathologist’s expertise.

Searching for mutated BRAF might have a great impact in
decision-making of micro-PTCs. According to the recom-
mendations developed recently by the American Thyroid
Association [11], the treatment for PTC < 1 cm, low risk,
unifocal and with intrathyroidal extension should be lobec-
tomy. Multifocality and thyroid capsule invasion are histolog-
ical findings and can be ascertained only postoperatively.
A recent study performed by Basolo et al. [54] demonstrated
that the presence of mutated BRAF in micro-PTCs strongly
correlates with extrathyroidal extension and thyroid capsule
invasion; because of this, the detection of BRAF mutation in
micro-PTCs indicates the possibility of an aggressive behav-
ior, thus suggesting that clinicians choose a more aggressive
therapeutic approach.

6.2 Testing for BRAF mutation in blood
Thyroglobulin is the current primary marker for thyroid
cancer persistence or recurrence after surgical resection and
radioactive iodine therapy. However, its utility is hampered

by the presence of large thyroid remnants or by thyroglobulin
antibodies in the serum [77]. Melanoma and other cancer types
at advanced disease stages shed sufficient cells to allow blood-
based detection of specific cancer markers, including mutated
BRAF [78,79]. Real-time quantitative gap ligase PCR was used
by Chuang et al. in a small series of patients, demonstrating
that 3/5 (60%) of cases positive for BRAFV600E in primary
tumors also had detectable BRAF mutation in serum [68].
Cradic et al. investigated whether BRAFV600E could be
detected in the blood of PTC patients with residual or meta-
static disease and whether it might provide diagnostic
information [80]. They searched for BRAFV600E by an allele-
specific real-time PCR method in blood samples of
173 PTC patients with different disease status, finding
8/38 PTC patients positive with persistent or recurrent dis-
ease. Although circulating measurement of mutated BRAF
does not appear to offer substantial advantages over serum
thyroglobulin measurement, it might be useful in patients
with a large remnant or detectable thyroglobulin antibodies,
where thyroglobulin measurement is of limited value.

7. Application of BRAF mutation in prognosis

In recent years several studies have been performed to assess
the impact of BRAF status on clinical outcome in PTC
patients. So far the presence of an association between BRAF
mutation and clinicopathological features related with a
poor prognosis has been reported by several authors.
A study performed by Xing et al. including 219 patients
from different geographic areas showed a clear correlation
between BRAFV600E and extrathyroidal extension, lymph
node metastasis and advanced stages III/IV [39]. A large
meta-analysis performed by Lee et al. including 1168 patients
from 12 selected studies revealed a strong correlation between
BRAF mutation and extrathyroidal extension and advanced
disease stage [81]. The effectiveness of BRAF status as an inde-
pendent predictor of such high-risk clinical indicators was
demonstrated further by using a multivariate regression anal-
ysis in three more recent studies including, respectively,
323 Italian patients, 108 Chinese patients and 314 American
patients [82-84]. Some other studies failed to confirm the prog-
nostic value of BRAF mutation in PTC. Recently, two multi-
variate analyses including, respectively, 500 and 631 patients,
showed no correlation between BRAF mutation and clinical
characteristics and prognosis [85,86].

Such controversial results may be related to different issues,
such as different staging of the disease at the time of the initial
diagnosis, variability in the diagnostic criteria, different meth-
odologies of clinical data collection and application of differ-
ent methods for detecting BRAF mutation. Also, geographic,
genetic and environmental factors can account for these
apparently conflicting results.

Also, the age composition of the different series may
hide the association between BRAF mutation and clinical
characteristics and prognosis. Indeed, BRAF mutations are
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rare in childhood PTC and significantly more frequent in old
than in young patients with conventional PTC [50,63]. The
association between BRAF mutation and greater age could
reflect important biological features of this oncogene.
An overall assessment of the clinical impact of BRAF status

on PTC can be obtained solely with an accurate evaluation of
disease recurrence during a sufficiently long follow-up. Several
studies focused on the relationship between BRAF mutation
and long-term outcome. The first report concerning this field
was by Xing in 2005 [43]. The author found a positive correla-
tion between BRAF mutation and disease recurrence over a
median clinical follow-up of ~ 15 months. Such results were
obtained by multivariate analyses with adjustment for all the
recognized clinicopathological prognostic factors, including a
history of radioiodine treatment. A recent study performed by
Elisei et al. reported for the first time the overall survival of
102 patients over a mean follow-up of 15 years [87]. The authors
demonstrated by multivariate analysis a significantly higher
mortality in the BRAF-positive group than in the BRAF-
negative group. These reports strongly support the negative
prognostic impact of oncogenic BRAF on PTC outcome.
The hypothesis of a negative prognostic significance of

BRAF mutation in PTC is further empowered by its associa-
tion with the tall cell variant that represents the most aggres-
sive histological subtype of PTC [88,89]. Indeed, among the
various subtypes tcPTC, cPTC and fvPTC, the average prev-
alence of BRAF mutation is, respectively, 73, 50 and 19%,
echoing the order of aggressiveness of PTC subtypes (Table 2).
A negative prognostic significance of BRAF mutation was
also demonstrated in micro-PTC in a large study where
BRAFV600E mutation was associated with multifocality,
absence of tumor capsule, extrathyroidal extension, lymph
node metastasis and advanced stage [54]. Owing to this large

body of literature, many authors propose preoperative BRAF
mutation testing of FNBC for predicting the extent of the
initial disease and subsequent clinical outcomes in both
micro- and large PTC [54,90-92].

8. Conclusions

Thyroid cancer, the most common endocrine malignancy, is a
rare disease, accounting for only 1% of all new cancers world-
wide, and when correctly diagnosed its prognosis is very favor-
able. The most relevant clinical problem with thyroid cancer
is the difficulty in distinguishing it from the much more fre-
quent benign nodular goiter. At present, a significant percent-
age of FNBC, the most accurate and cost-effective method for
evaluating thyroid nodules, yields inconclusive results that call
for other diagnostic tools. BRAFV600E mutation represents an
ideal thyroid cancer marker as it is a genetic alteration present
in a significant percentage of PTC, the most prevalent thyroid
cancer type, and it is absent in benign thyroid diseases. Detec-
tion of the BRAF mutation has been successfully performed
by different methods in cellular material obtained by FNB.
Contamination with wild-type BRAF from non-tumor infil-
trating or perinodular cells, a frequent occurrence in FNBC,
has been overcome by applying sensitive methods. A BRAF
mutation detection method will always be less sensitive than
conventional cytology because this genetic alteration is pres-
ent only in a fraction of PTC, which in turn is only the major
fraction of total thyroid cancer. The excellent specificity but
limited sensitivity of BRAF mutation as a malignancy marker
limits its application, so that a positive test is diagnostic of
cancer but a negative one is not conclusive for benignity.
Thus, a BRAF mutation-based assay is a good means to
diagnosing the malignant nature of a thyroid nodule but it

Table 4. Sensitivity of BRAF mutation testing in different FNB categories.

Study, assay Total samples, total PTC, BRAF mutation/total cancer (sensitivity %)

Inadequate Indeterminate Suspicious Benign

Cohen et al., Mutector [75] 55, 29, 5/32 (17) 11, 2, 0/2 (0)
Sapio et al., MASA [100] 46, 0, 0/0 21, 0, 0/2 (0) 16, 6, 4/6 (67) 15, 0, 0/0
Sapio et al., MASA [99] 25, 1, 1/2 (50) 47, 20, 9/24 (37) 18, 0, 0/0
Kim et al.,
pyrosequencing [113]

27, 18, 13/21 (62) 16, 0, 0/0

Zatelli et al.,
DNA sequencing [66]

1, 0, 0/0 89, 11, 1/18 (6) 22, 18, 10/22z (45) 308, 6§, 6/6§ (100)

Nikiforov et al., LC-PCR [76] 52, 13, 7/21 (33) 12, 2, 1/5 (20)
Cantara et al.,
DNA sequencing [94]

53, 13, 8/16 (50) 41, 7, 2/7 (29) 54, 46, 37/46 (80) 87, 8, 2/9 (22)

Kim et al., DPO-PCR [70] 12, 11, 7/11 (64) 8, 0, 1*/4 (0) 72, 50, 50/70 (71) 688, 2, 5{/2 (100)
Overall 112, 24, 15/27 (55) 318, 79, 29/107 (27) 211, 140, 110/168 (65) 1155, 20, 11/24 (49)

*False positive.
zTwo breast cancer metastases.
§Presumed as based on follow-up because the patients with negative tests were not operated on.
{Three false positives.

DPO-PCR: Dual priming-based multiplex PCR analysis; FNB: Fine-needle biopsy; LC-PCR: Real-time LightCycler PCR; MASA: Mutant-allele specific amplification.
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is useless to exclude it. In view of this limit, searching for
BRAFmutation in nodules with inconclusive FNBC has a rel-
evant impact in decision-making only in positive cases.
Indeed, the presence of BRAF mutation allows clinicians to
make a definitive diagnosis of malignancy and to advise
patients to have radical surgery, reducing the need for a sec-
ond intervention for completion. According to the authors’
meta-analysis (Table 4), testing for BRAF mutations signifi-
cantly improves the preoperative diagnosis of malignancies
in the case of suspicious FNBC (~ 65% sensitivity). Less accu-
rate is testing for BRAF mutation in nodules with indetermi-
nate cytology (~ 27% sensitivity), where most thyroid cancers
do not harbor the mutation (FTC) or the latter is infrequent
(trabecular and solid-patterned PTC). A promising molecular
approach in this field could be represented by searching for a
combination of specific markers, including other oncogenes
and microRNAs (miRNAs) [83,93].

The detection of BRAF mutation might help in decision-
making for micro-PTCs, where this oncogene correlates with
clinicopathological features predictive of a more aggressive
disease. The presence of BRAF mutation in such cases might
help endocrinologists to choose a more effective treatment.

9. Expert opinion

So far, cytologic evaluation of FNB is the most accurate and
cost-effective method for evaluating thyroid nodules. This
technique is easy to perform, cheap and highly accurate,
with rare false positive and false negative results. Unfortu-
nately, inconclusive results represent a large gray area that
does not provide firm indications on the therapy to adopt.

The discovery of the molecular pathogenesis of thyroid
cancer has provided the basis for further improvements of pre-
surgical diagnostic tools. At least theoretically, a molecule
with a specific pathogenetic role is the best candidate as a hall-
mark of that specific disease. For this reason, since the role of
BRAF in thyroid carcinogenesis has unfolded, numerous stud-
ies have investigated its possible applications as a diagnostic
marker, prognostic indicator and as a site for targeted therapy.
BRAFV600E mutation is a 100% specific thyroid cancer marker
and its detection in a biopsy specimen classifies its nature
as malignant.

Different methods have been applied successfully to detect
BRAF mutation in thyroid biopsy specimens. An ideal
detection method is one that is reliable and sufficiently sensi-
tive to detect the BRAF mutation even when it is mixed with
abundant wild-type gene copies. Direct sequencing fits the
first requirement, and in this respect it is more indicated
than other analytical methods where the presence of the onco-
gene is detected by viewing an electrophoretic gel band. How-
ever, dideoxy sequencing of polymerase chain reaction
products can detect BRAFV600E mutation in heterozygosity
only when present in most of the cells in a cell mixture.
This can produce a certain number of false negative results
because contamination with wild-type BRAF from non-tumor

cells occurs regularly in FNB samples, especially when a large
immune reaction is present. Real-time LightCycler PCR, a
quantitative assay based on DNA probe elongation, is much
more sensitive than direct sequencing and sufficiently reliable,
representing a suitable method to be applied to material
obtained by FNB. Recently, pyrosequencing, a quantitative
nucleotide extension sequencing, has emerged as a new meth-
odology suitable for detecting mutated among more abundant
wild-type genes. Pyrosequencing is a simple, fast, low-cost and
sensitive method. In this regard, it seems to be one of the
most appropriate methods for detecting BRAF mutation in a
clinical setting.

Whereas the finding of BRAF mutation in a thyroid nodule
biopsy has a clear diagnostic value and is of great clinical
impact for patients with a nodule with inconclusive cytology,
its absence leaves the nodule undiagnosed and the clinician in
the difficult situation of choosing between medical or surgical
therapy. The negative predictive value (NFV) for malignancy
(true negative results/true negative results + false negative
results) of BRAF mutation is ~ 0.45 in unselected FNB. As
such this information is of modest clinical utility. To be useful
on clinical grounds, the NPV should be calculated for each
cytological category for an individual pathologist. As shown
in Table 4, the NPV for each cytological category is largely
variable between different institutions, depending on the
incidence of malignancy, on the incidence of PTC variants,
on the prevalence of BRAF mutation in PTC in that geo-
graphical/ethnical area and, to a lesser extent, on the method
used to detect the mutation. For example, in the study by
Zatelli et al. [66] in indeterminate FNBC the risk of malig-
nancy was 20% and the incidence of PTC was 12.4%, and
this determined a NPV for BRAF mutation detected by direct
sequencing of only 0.06. In the study by Cantara et al. [94] in
the same geographical/ethnical area, the risk of malignancy
in indeterminate FNBC was 17% and the incidence of
PTC was 17%, and this determined a NPV for BRAF muta-
tion detected by the same method of 0.29. In different
geographical/ethnical areas, by a different method, the NPV
can be greatly different, as shown in the study by Kim et al.,
where NPV was 0.62 [70]. The NPV is a parameter that can
be considered by the clinician to decide the more appropriate
therapy, but because this genetic alteration is present only in a
fraction of PTC, which in turn is only the major fraction of
total thyroid cancer, a BRAF mutation-based assay will never
exclude totally the malignant nature of a thyroid nodule. In
view of this limit, a negative test for BRAF mutation in nod-
ules with inconclusive FNBC cannot be used to choose
between medical and surgical treatment, but it is rather
helpful to guide the extension of the surgery.

Preoperative knowledge of the malignant nature of a
thyroid nodule is of indisputable value for the surgeon for
deciding on the type and extension of the surgery. Total thy-
roidectomy without lymphadenectomy is the operation of
choice for multinodular goiter [95,96]. For single benign
nodular goiter, the extension of surgery is a controversial
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issue. Conservative surgery is an alternative choice to total
thyroidectomy to reduce the risk of operative complications.
Patients with single nodules with indeterminate FNBC
should be referred to diagnostic thyroidectomy. Then, histo-
logical diagnosis of malignancy will impose a second interven-
tion for completion accompanied by central lymph node
dissection. The risk of malignancy for the 318 patients with
indeterminate FNBC reported in Table 4 was 33.6%; this
was the percentage of patients who would need a second inter-
vention for completion. Testing for BRAF mutation would
address 29 patients directly to total thyroidectomy with lym-
phadenectomy, reducing to 24.5% the patients who would
need a re-intervention.
The detection of BRAF mutation in routine cytology eval-

uation is not cost-effective in all patients undergoing FNB.
Patients with FNB that is suspicious for malignancy should
be referred to total thyroidectomy with lymphadenectomy
because the risk for cancer is ~ 80%. A positive test for
BRAF mutation would give the surgeon a greater awareness
of the type of operation to be performed, but a negative test
would not change the type of surgery. In benign and unsatis-
factory cytology, BRAF mutation analysis would be helpful to
reduce false negative or non-diagnostic results. However,

owing to the very large number of FNB performed and the
low risk of malignancy in these FNB categories, BRAF muta-
tion analysis is not advised because of its low clinical utility
and high economic impact on the public health system.
This conclusion must take into account the actual cytology
accuracy, which is operator dependent. A benign FNBC
with a BRAF mutation-positive result poses the dilemma of
which is the correct assessment. Mutational analysis is less
subjective than cytologic smear assessment and can also detect
malignant cells in suboptimal sampling that hampers correct
cytological assessment. Therefore, the unequivocal presence
of BRAF mutation (i.e., ascertained by sequencing) changes
the presurgical diagnosis of nodules with benign FNBC.
In the studies by Cameselle-Teijeiro et al. and Musholt
et al., PTC or atypical hyperplasia was the final histological
diagnosis of benign FNBC carrying BRAF mutation [44,97].

Although BRAF mutation has been shown to be a specific
PTC marker, this genetic alteration is present only in a frac-
tion of thyroid cancer. This important limit can be overcome,
as proposed in several studies, by searching for multiple thy-
roid cancer markers. Besides BRAF mutation, a panel of mol-
ecules aberrantly expressed or genetic alterations associated
with thyroid cancer would include galectin-3, RET/PTC,
Trk, PAX8/PPRg, RAS mutations and miRNAs [76,98-100,94].
These studies indicate that molecular testing for a panel of
mutations enhances the accuracy of FNB. Only a few years
ago the use of specific molecular markers to improve the
diagnostic accuracy of inconclusive nodules was not recom-
mended by The American Thyroid Association Guidelines
Taskforce (recommendation 8) [101]. Now, after a large body
of evidence provided by many laboratories worldwide, that
recommendation has been revised and the use of molecular
markers is considered to refine indeterminate cytology on
FNB to help critical situations in thyroid nodule management
(Figure 1) [11].

In the near future, screening for genetic alterations will
enter the clinical routine as an adjunctive tool to conventional
cytology. Larger studies will lead to a more precise definition
of the best cost-effective combinations of markers and
methods to apply.
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Figure 1. Testing for BRAF mutation in the management of

thyroid nodules with different fine-needle biopsy cytology

yields.
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