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a b s t r a c t

We propose a theory for diffusion of a substance in a body allowing for changes in
temperature. The key aspect is that the body is allowed to deform although we restrict
our attention to the case where the velocity field is known. In accordance with recent
developments in the literature, we concentrate on a situation where diffusion and
temperature diffusion are governed by equations which have more of a hyperbolic nature
than parabolic. Since this involves relaxation time equations for both the heat flux and the
solute flux the fact that the body can deform necessitates the use of appropriate objective
time derivatives. In this regard our work is based on recent work of Christov and Morro on
heat transport in amoving body. An analysis of well posedness of the theory is commenced
in thatwe establish the uniqueness of a solution to the boundary–initial value problem, and
continuous dependence on the initial data for the same.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In his pioneering paper, Cattaneo [1] used a statistical mechanics argument to modify Fourier’s law of heat conduction
in a rigid body. If Q denotes the heat flux vector, T the temperature field, k the thermal conductivity and τ a relaxation time,
then Cattaneo [1] proposed Q be related to T by the equation

τ
∂Q
∂t

+ Q = −k∇T . (1)

This equation has hadmuch success in predicting effects associatedwith temperature waves, or second sound. Fourier’s law
is recovered from (1) when τ → 0. Since Fourier’s law is a constitutive equation, we believe it is correct to regard (1) also as
a constitutive equation rather than a balance law. Hence, when one wishes to consider Eq. (1) in the context of a deformable
continuous body care must be taken with how one generalizes ∂Q/∂t . One cannot simply replace the partial derivative by
the material derivative since this is not an objective quantity.

Recently, Christov [2] has suggested that ∂Q/∂t should be replaced by a Lie derivative. Then, (1) should be replaced by

τ


∂Qi

∂t
+ vj

∂Qi

∂xj
− Qj

∂vi

∂xj
+

∂vm

∂xm
Qi


+ Qi = −k

∂T
∂xi

, (2)

where v is the velocity at x at time t . In Eq. (2), the Einstein summation convention is employed and standard indicial
notation will be employed throughout. Christov’s [2] work, in analogy to the viscoelastic frame indifference (see [3]),
generalized Christov and Jordan [4], where it was shown that for fluid convection, the mere Maxwell–Cattaneo law with
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partial time derivatives leads to paradox. In [2], a single equation for the temperature was derived despite the complex
nonlinearity. Later on, the viscoelasticity was revisited in [5] and the possibility to derive a model resolved with respect to
the velocity components was demonstrated. Further related articles are those of Jordan et al. [6], Jordan [7], and Quintanilla
and Jordan [8], while Jordan [9] is a very interesting paper applying some of the hyperbolic ideas to traffic flow.

Since the appearance of Christov’s important paper, several articles have employed his equation in investigating thermal
convection, Papanicolaou et al. [10], Straughan [11,12], in investigating acoustic wave propagation, Straughan [13], and in
thermohaline convection with particular application to heliummotion in stars, Straughan [14]. Ciarletta and Straughan [15]
and Tibullo and Zampoli [16] have analyzed aspects of well posedness of Eq. (2) in a Cattaneo–Christov system of equations.
The results found indicate that Christov’s [2] derivative as used in (2) does lead to physically relevant and novel results.
Furthermore,Morro [17] has shown Eq. (2) to be completely compatiblewith the second law of thermodynamics.Morro [17]
also shows how one may generalize equation (2) to a general theory for a fully deformable continuum.

In a parallel, but later, development to that of Cattaneo [1], a hyperbolic theory for diffusion of a solute has been proposed;
see [18]. Recent work on hyperbolic mass transport is given by Jou and Galenko [19], and further details, references, and
applicationsmay be found in chapter 13 of the book by Jou et al. [20], and in Section 9.1.4 of the book by Straughan [21]. From
amathematical point of view, hyperbolic equations formass transport are a subject of intense investigation, see e.g. Grasselli
et al. [22], and Jiang [23], who also includes a very good review on mathematical aspects of the subject.

Since hyperbolic mass transport and hyperbolic heat transport (finite speed of propagation) are becoming increasingly
important, we here propose an extension of the Christov [2] and Morro [17] theories of heat propagation in a deformable
body, to the case of heat and mass transport.

2. Classical theories

The classical theory of heat and mass transport may be found in e.g. [24]. This theory is based on equations of balance of
energy

ρ
∂ε

∂t
= −

∂Qi

∂xi
(3)

and balance of mass transport

∂C
∂t

= −
∂ Ji
∂xi

, (4)

where ρ is the density, ε is the internal energy, C is the concentration of the solute, and J is the mass flux. When ε = ε(T ),
Eq. (3) becomes

ρcp
∂T
∂t

= −
∂Qi

∂xi
, (5)

where cp is the specific heat at constant pressure.
Eqs. (4) and (5) must be complemented by constitutive equations. The classical ones are those of Fourier,

Qi = −k
∂T
∂xi

, (6)

and of Fick,

Ji = −D
∂C
∂xi

, (7)

where D is the diffusion coefficient.
When one is interested in the simultaneous transmission of heat and solute then Eqs. (6) and (7), are usually modified to

include cross-diffusion effects, i.e. the Soret and Dufour effects. If F denotes the Dufour coefficient and S denotes the Soret
coefficient, then (6) and (7) may be generalized to

Qi = −k
∂T
∂xi

− F
∂C
∂xi

, (8)

and

Ji = −D
∂C
∂xi

− S
∂T
∂xi

, (9)

where the terms −F∇C and −S∇T are known as the Dufour and Soret effects, respectively. In general k, F ,D, and S may be
nonlinear functions of T and C , but we here treat them as constants, as is very often done in the literature.

Upon insertion of Eqs. (8) and (9) into the balance laws (4) and (5), one obtains a parabolic system of equations with
cross diffusion effects for T and C . It is worth remarking that such equations have been applied tomany problems in physics,
see [25–27], and to problems in thermal convection, see [28–32].
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3. Lie derivative formulation of mixed theory

As we have indicated in the introduction, there is much recent interest in application of hyperbolic rather than parabolic
theories for diffusion and heat, and so we now propose such a theory for a deformable body.

The balance laws (4) and (5) are still necessary although since the body is allowed to move the partial derivatives are
replaced with material derivatives, e.g. Ṫ = T,t + viT,i, thus instead of (5) and (4) we have

ρcpṪ = −Qi,i, (10)

and

Ċ = −Ji,i. (11)

Recalling Christov [2] Eq. (2), we replace constitutive Eqs. (8) and (9) by

τ [Qi,t + vjQi,j − Qjvi,j + (vm,m)Qi] = −Qi − kT,i − FC,i + ξ11Qi + ξ2Qj,ij, (12)

and

τc[Ji,t + vjJi,j − Jjvi,j + (vm,m)Ji] = −Ji − DC,i − ST,i + λ11Ji + λ2Jk,ik. (13)

Here τ and τc are relaxation times for heat and solute flux vectors, respectively. It is important to note that in generalizing
Christov [2] Eq. (2), we have followed Morro [17], his Eq. (33), and added the ξ1 and ξ2 terms in Eq. (12), and the λ1 and λ2
terms in Eq. (13). Actually, Morro [17] shows that the coefficients are generally nonlinear functions of deformation, but we
employ linear constitutive theory on the right of (12) and (13) with constant coefficients, since we are primarily interested
in the velocity and Lie derivative effects.

Thus for prescribed velocity field v(x, t), and prescribed density field ρ(x, t), Eqs. (10)–(13) yield a system of equations
for the temperature and the concentration, T and C .

4. Continuous dependence on the initial data

Christov [2] remarks that equations involving his formulation of the Cattaneo law must be investigated both for their
mathematical predictions and for their physical predictions.We commence in this direction bydemonstrating that a solution
to the boundary–initial value problem for (10)–(13) depends continuously on the initial data.

Let now Ω be a bounded domain in R3 with boundary Γ sufficiently smooth to allow application of the divergence
theorem. Let ‖·‖ and (·, ·) denote the norm and inner product on L2(Ω).

For v(x, t) given we define boundary and initial conditions on T , C,Qi, and Ji by

T (x, t) = TB(x, t), C(x, t) = CB(x, t),

εijkQj(x, t)nk = Q B
i (x, t), εijkJj(x, t)nk = JBi (x, t), vini = 0,

(14)

for x ∈ Γ , TB, CB,Q B
i and JBi prescribed functions, with n being the unit outward normal to Γ , and

T (x, 0) = T0(x), C(x, 0) = C0(x),

Qi(x, 0) = Q 0
i (x), Ji(x, 0) = J0i (x),

(15)

for x ∈ Ω , and T0, C0,Q 0
i , J0i given. We denote the boundary–initial value problem comprised of (10)–(15) by P .

We now show that a solution to P depends continuously on the initial data in the interval (0, T ), for some T < ∞.
To demonstrate continuous dependence, we let (T 1,Q 1

i , C1, J1i ) and (T 2,Q 2
i , C2, J2i ) be two solutions to P for the same

boundary data functions as given in Eqs. (14), but for different initial data values Tα
0 ,Q α

i0, C
α
0 , Jαi0, where α = 1 or 2. Define

now the difference variables θ, qi, φ and hi by

θ = T 1
− T 2, qi = Q 1

i − Q 2
i ,

φ = C1
− C2, hi = J1i − J2i .

(16)

Then, one shows that (θ, qi, φ, hi) satisfies the boundary–initial value problem

ρcp

θ,t + viθ,i


= −qi,i,

τ [qi,t + vmqi,m − qmvi,m + vm,mqi] = −qi − kθ,i − Fφ,i + ξ11qi + ξ2qj,ij,
φ,t + viφ,i = −hi,i,

τc[hi,t + vmhi,m − hmvi,m + vm,mhi] = −hi − Dφ,i − Sθ,i + λ11hi + λ2hk,ik,

(17)

together with

θ(x, t) = 0, φ(x, t) = 0,
εijkqj(x, t)nk = 0, εijkhj(x, t)nk = 0,

(18)
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on Γ × [0, T ], and

θ(x, 0) = θ0(x), φ(x, 0) = φ0(x),

qi(x, 0) = q0i (x), hi(x, 0) = h0
i (x),

(19)

where x ∈ Ω , and θ0 = T 1
0 − T 2

0 , φ0 = C1
0 − C2

0 , q0i = Q 1
i0 − Q 2

i0, h
0
i = J1i0 − J2i0.

We next multiply Eq. (17) 1 by θ and integrate over Ω , then multiply Eq. (17) 2 by qi and integrate over Ω , then multiply
Eq. (17) 3 by φ and integrate over Ω , and finally multiply Eq. (17) 4 by hi and integrate over Ω . This results, with some use
of the boundary conditions, in the identities

d
dt

cp
2

∫
Ω

ρθ2dV =
cp
2

∫
Ω

vi,iρθ2dV +
cp
2

∫
Ω

viρ,iθ
2dV − (qi,i, θ), (20)

d
dt

τ

2
‖q‖

2
= −

τ

2
(vm,mqi, qi) + τ(dimqi, qm) − ‖q‖

2
+ k(θ, qi,i)

+ F(φ, qi,i) −
ξ1

2

∫
Ω

(qi,j − qj,i)(qi,j − qj,i)dV − (ξ1 + ξ2)
qi,i2

, (21)

d
dt

1
2

‖φ‖
2

=
1
2
(vi,iφ, φ) − (hi,i, φ), (22)

and
d
dt

τc

2
‖h‖

2
= −

τc

2
(vm,mhi, hi) + τc(dimhi, hm) − ‖h‖

2
+ D(hi,i, φ)

+ S(θ, hi,i) −
λ1

2

∫
Ω

(hi,j − hj,i)(hi,j − hj,i)dV − (λ1 + λ2)
hi,i

2
,

(23)

where dim is the symmetric part of the velocity gradient, i.e. dim = (vi,m + vm,i)/2.
Next, we form the combination k(20) + (21) + D(22) + (23). Then, let

M = max
Ω̄×[0,T ]

vm,m
 , R = max

Ω̄×[0,T ]

ρ,

RL = min
Ω̄×[0,T ]

ρ, V = max
Ω̄×[0,T ]

viρ,i


and λ = max{µ1, µ2, µ3},

(24)

where µi are the eigenvalues of dij. We employ the arithmetic–geometric mean inequality in the form

2F(φ, qi,i) ≤
F
α

‖φ‖
2
+ Fα

qi,i2
,

2S(θ, hi,i) ≤
S
β

‖θ‖
2
+ βS

hi,i
2

,

for α, β > 0 at our disposal, together with (24) in the result. In this manner, the troublesome terms like (qi,i, θ) add out and
we arrive at

dΦ
dt

≤


MkRcp +

S
β

+ cpkV


‖θ‖
2
+


F
α

+ DM


‖φ‖
2
+ (τM + 2λτ − 2) ‖q‖

2

+ (τcM + 2τcλ − 2) ‖h‖
2
+ [αF − 2(ξ1 + ξ2)]

qi,i2
+ [Sβ − 2(λ1 + λ2)]

hi,i
2

,

(25)

where the function Φ(t) is defined as

Φ(t) = kcp

∫
Ω

ρθ2dV + τ ‖q‖
2
+ D ‖φ‖

2
+ τc ‖h‖

2 . (26)

Next, select α = 2(ξ1 + ξ2)/F and β = 2(λ1 + λ2)/S. Then from (25), we easily determine a computable constant µ such
that

dΦ
dt

≤ µΦ. (27)

Upon integrating, inequality (27) yields
Φ(t) ≤ exp(µt)Φ(0). (28)

In fact the constant µ which does not depend on the initial data is given by

µ = max

RM + V

RL
+

S
RLβkcp

,M + 2λ −
2
τ

,M + 2λ −
2
τc

,
F

αD
+ M


.

Inequality (28) demonstrates continuous dependence on the initial data for a solution to the boundary–initial value
problem P .
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Remarks

1. If we inspect the proof of continuous dependence on the initial data, then the condition on vi on the boundary may be
replaced by vini ≥ 0 on Γ × [0, T ).

2. Inequality (28) also leads to the uniqueness of a solution to P .
3. When the domain Ω is unbounded one may extend the continuous dependence result just established to this case,

without requiring strong decay of the solution as r =
√
xixi → ∞. We do not give details of this, but one must employ

a combination of the method given here together with either the technique of Graffi [33–35], or the weighted energy
method of Rionero and Galdi [36].
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