Chemistry and Antigerminative Activity of Essential Oils and Monoterpenoids from Mediterranean Plants

Laura De Martino¹*, Emilia Mancini¹, Aurelio Marandino¹, Luiz Fernando Rolim de Almeida² and Vincenzo De Feo¹

¹Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy; ²Departamento de Botânica, Instituto de Biociências de Botucatu, UNESP - Campu de Botucatu, Distrito de Rubião Júnior, S/N, 18.618-000, Botucatu-SP, Brazil

Abstract: The Mediterranean flora is characterized by the abundance of aromatic plants. The feature differentiating these plants from all others, in spite of the fact that they belong to many different families, is the production of chemically related secondary compounds, the low molecular weight and volatile isoprenoids. This remarkable presence of aromatic species is important in determining the phytotoxic potential within this ecosystem. Such plants make a significant contribution to phryganic Mediterranean ecosystems both in terms of species number and biomass. Thus, the essential oils play an important role in this ecological context. Mediating various processes in the frame of an ecosystem, they become indirectly beneficial to the plants, considering their involvement in processes of adaptative character in Mediterranean ecosystem.

For this reason, our research group carried out a series of studies on the possible phytotoxic properties of aromatic plants that, being rich in active principles, are considered a primary source of potential allelochemicals. The focus of this overview is direct to have an overall idea about the chemistry and antigerminative activity of essential oils of some Mediterranean aromatic plants and their main constituents.

Keywords: Mediterranean flora, aromatic plants, essential oils, chemistry, antigerminative activity, monoterpenes.

INTRODUCTION

Essential oils are concentrated natural products, characterized by a strong odour and are formed by aromatic plants as secondary metabolites. The term 'essential oil' was used for the first time in the 16th century by Paracelsus von Hohenheim, who named the effective component of a drug 'Quinta essential' [1]. They are liquid, volatile, limpid and coloured, soluble in lipids and in organic solvents with a generally lower density than that of water. They can be present in all plant organs, i.e. buds, flowers, leaves, stems, twigs, seeds, fruits, roots, wood or bark, and are stored in secretory cells, cavities, canals, epidermic cells or glandular trichomes. They are usually obtained by steam or hydrodistillation, first developed in the Middle Ages by Arabs, but several other techniques can be used to extract essential oils from the aromatic plants, i.e. solvent extraction, expression under pressure, supercritical fluid and subcritical water extractions. Essential oils are extracted from various aromatic plants generally localized in temperate to warm countries like Mediterranean and tropical countries, where they represent an important part of the traditional pharmacopoeia. Known for their antiseptic, i.e. bactericidal, virucidal and fungicidal, and medicinal properties and their fragrance, they are used in preservation of foods and as antimicrobial, analgesic, sedative, anti-inflammatory, spasmolytic and locally anesthesic remedies [2].

In nature, essential oils play an important role in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants. They also may attract some insects to favour the dispersion of pollens and seeds, or repel undesirable others [2]. Moreover, essential oils play a pivotal role in plant interactions with the environment, for self defense, sexual attraction, symbiosis, and development [3]. The production and accumulation of secondary metabolites, which inhibit and/or stimulate germination and development of other plants (allelochemicals), is an important mechanism in the interactions between plants. This chemical interaction is probably of widespread significance in the functioning of natural communities. In fact, a number of plants have inhibitory effects on the growth of neighbouring or successional plants by releasing chemicals into the soil, either as exudates from living tissues or by decomposition of plant residues [4-6]. Thus, the study of compounds produced by plants, which inhibit or stimulate the germination and the development of other plants, is important for understanding the mechanisms of the ecological interaction [7].

One of the best known and well-studied examples of allelopathy is the "Salvia phenomenon". The first studies that demonstrated the presence of volatile growth inhibitors produced by Salvia species were carried out on Salvia leucophylla and S. apiana by Muller and co-workers [8-12]. Authors showed that when cucumber seedlings were placed in proximity to crushed leaves of the two Salvia species, their root growth was markedly inhibited, and this inhibition was increased as the amount of leaves was increased. Successively, the same authors suggested that the inhibition of

^{*}Address correspondence to this author at the Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy; Tel: +39089968292; Fax: +39089969602; E-mail: Idemartino@unisa.it

growth of annual grassland species in and about colonies of *Salvia* species and the gradually decreasing inhibition of herbs extending 9 m out into grassland from *Salvia* patches, were due to the production of volatile terpenes, particularly camphor and cineole [9-12].

Volatile oils and their constituents are today being explored for weed and pest management and are viewed as an important source of lead molecules in agriculture [13]. Bioactive terpenoids constitute an important part of the defensive mechanisms of a large number of organisms and represent a fairly untapped source of active compounds of potential use both in the agricultural and pharmaceutical fields [14]. In fact, a large number of highly phytotoxic allelochemicals are derived from the terpenoid pathway [15] and the phytotoxicity of essential oils has been investigated in various plant tissues which contains or produce these compounds [16-18].

The Mediterranean flora is characterized by the abundance of aromatic plants. The feature differentiating these plants from all others, in spite of the fact that they belong to many different families, is the production of chemically related secondary compounds, the low molecular weight and volatile isoprenoids. This remarkable presence of aromatic species is important in determining the phytotoxic potential within this ecosystem [19]. Such plants make a significant contribution to phryganic Mediterranean ecosystems both in terms of species number and biomass [20]. Thus, the essential oils play an important role in this ecological context. Mediating various processes in the frame of an ecosystem, they become indirectly beneficial to the plants, considering their involvement in processes of adaptative character in Mediterranean ecosystem [19]. Recently, volatile sesquiterpenes that emanate from roots of some invasives bushes were shown to inhibit the seedling growth of associated vegetation, and thus possibly help in successful invasion in the introduced sites [13].

For this reason, our research group carried out a series of studies on the possible phytotoxic properties of aromatic plants [7, 21-29] that, being rich in active principles, are considered a primary source of potential allelochemicals. The focus of this overview is direct to have an overall idea about the chemistry and antigerminative activity of essential oils of some Mediterranean aromatic plants and their main constituents.

We studied the *in vitro* possible phytotoxicity of the essential oils from 12 Mediterranean plants, belonging to three different families, *Hyssopus officinalis* L. (hyssop), *Lavandula angustifolia* Mill. (lavender), *Majorana hortensis* L. (marjoram), *Melissa officinalis* L. (lemon balm), *Ocimum basilicum* L. (basil), *Origanum vulgare* L. (oregano), *Salvia officinalis* L. (sage), *Thymus vulgaris* L. (thyme) (Lamiaceae), *Carum carvi* L. (caraway), *Foeniculum vulgare* Mill. (fennel), *Pimpinella anisum* L. (anise) (Apiaceae), *Verbena officinalis* L. (vervain) (Verbenaceae) against the germination and radicle growth of the crop species *Raphanus sativus* L. cv. Saxa (radish) and *Lepidium sativum* L. (garden cress), comparing the effects of the oils in light of their chemical composition [7, 24, 27]. Furthermore, similar studies about the chemical composition and the possible antigerminative activity of different essential oils from plants belonging to Lamiaceae [Nepeta curviflora Boiss., Nepeta nuda L. ssp. albiflora, Salvia hierosolymitana Boiss., Salvia multicaulis Vahl. var. simplicifolia Boiss., Salvia africana L., Salvia elegans Vahl, Salvia greggii A. Gray, Salvia mellifera Greene, Salvia munzii Epling, Teucrium arduini L., Teucrium maghrebinum Greuter et Burdet, Teucrium montbretii Benth. ssp. heliotropiifolium (Barbey) Davis, Teucrium polium L. ssp. capitatum (L.) Arcangeli], Guttiferae (Hypericum perforatum L., Hypericum perfoliatum L. and Hypericum hircinum L.) and Asteraceae [Helichrysum italicum (Roth)] families [21-23, 25, 26, 28, 29] were carried out.

Table 1 shows the composition of the 12 essential oils, object of our study. The main constituent of P. anisum and F. vulgare essential oils was cis-anethole, which represented 97.1% and 76.3% of the whole oils, respectively. The dominant components in C. carvi oil were estragole, limonene, βpinene and trans-pinocamphone. Vervain essential oil was mainly constituted by citral and isobornyl formate. β -Pinene, iso-pinocamphone and trans-pinocamphone were the most abundant components of H. officinalis essential oil. Linalol (23.1%) and linally acetate (44.4%) represented the main components of the oil of L. angustifolia. Marjoram essential oil was mainly constituted by 1,8-cineole (33.5%) and α pinene (9.0%). The main constituents of M. officinalis essential oil were (-)-citronellal (39.6%), and in minor measure carvacrol and iso-menthone; iso-pinocamphone (35.1%) and carvone (39.7%) were the predominant components of O. basilicum essential oil. In O. vulgare and T. vulgaris oils, ocymene and carvacrol were the main constituents, accounting, respectively, for 41.9% and 44.0%, in oregano, and 56.2% and 24.4% in thyme oil. Sage essential oil was mainly constituted by trans-thujone (37.9%).

The oils were tested against germination and radical elongation of radish and garden cress seeds (Tables 2 and 3). The germination of *Lepidium sativum* was drastically affected by the essential oils of balm, caraway, hyssop, thyme and vervain, with a 100% inhibition. Caraway, vervain, sage and marjoram essential oils influenced, in a significative way, the radicle elongation of this seed, at all tested doses. Moreover, some oils (anise, basil), at the lowest dose, promoted the germination and/or radicle elongation of garden cress. Generally, garden cress is the less sensitive seed. Almost all oils, except anise, basil and fennel, inhibited by 100% the germination of *R. sativus*, at the highest dose tested.

In addition, caraway, hyssop and sage oils inhibited, in a significative way, the germination of radish, at all doses tested. The radicle growth of the same seeds was affected by 100% by vervain, caraway, oregano, thyme, hyssop and lavender essential oils. Moreover, all oils cited above, except lavender, were active towards radicle elongation, at all doses.

The antigerminative activity was assessed by performing two different methods, by dipping and by volatilization: infact, an other test, for evaluating the potential phytoxicity of essential oils, was carried only through their vaporization. Seed germination process and radical elongation were

Table 1.Essential Oil Compositions (%) of Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis,
Ocimum basilicum, Origanum vulgare, Salvia officinalis, Thymus vulgaris, Carum carvi, Foeniculum vulgare, Pimpinella
anisum, Verbena officinalis

Compound	Kiª	Ki ^b	P. anisum ^c %	M. offcinalis %	O. basilicum %	C. carvi %	F. vulgare %	H. offcinalis %	L. angustifo- %	M. hortensis %	O. vulgare %	S. officinalis %	T. vulgaris %	V. officinalis %	Identifi- cation ^d
α-Thujene	930	1035		0.1±0.0	t	0.2±0.0	t	0.4±0.0	0.2±0.0	0.1±0.0	0.5±0.0	0.4±0.0	t		1,2
α-Pinene	938	1032	0.3±0.0	0.9±0.0	0.3±0.0	0.5±0.2	1.8±0.1	1.0±0.0		9.0±0.1	0.4±0.0	4.4±0.1	2.5±0.1	0.2±0.0	1, 2, 3
(-)-Camphene	953	1076						0.2±0.0	0.7±0.0	0.3±0.0	0.2±0.0	4.1±0.0	1.0±0.1		1, 2, 3
Sabinene	973	1132	t	t	0.3±0.0	1.0±0.1	t	1.4±0.9	t	1.1±0.1	t	0.4±0.0	t	0.5±0.0	1, 2, 3
Hepten-3-one	975			t						t				0.2±0.1	1, 2
β-Pinene	978	1118		0.4±0.1	0.5±0.0	7.4±0.4	0.5±0.1	18.2±0.0		3.8±0.9	0.2±0.0	2.5±0.1		t	1, 2, 3
cis-Pinane	980	1073			0.1±0.0	0.1±0.0			0.1±0.0		0.1±0.0				1,2
Verbenene	982	1131		t	t	t	t	0.1±0.0	t	t	t	t	t		1, 2
Myrcene	993	1174		0.1±0.0	0.3±0.1	0.7±0.1	0.2±0.1	1.8±0.2	0.3±0.0	0.7±0.3	0.5±0.0	0.5±0.1	0.1±0.0		1, 2, 3
α-Phellandrene	995	1176	0.1±0.0	t	t	t	0.3±0.0	t	0.2±0.0	0.2±0.0	0.1±0.0	t	t		1, 2, 3
Δ3-Carene	997	1153	0.1±0.0				0.3±0.1		0.3±0.1	0.3±0.0	0.2±0.0				1, 2, 3
α-Terpinene	1012	1188		0.1±0.1	t	t	t	0.2±0.1	t	0.1±0.0	0.5±0.0	t	0.1±0.0	t	1, 2, 3
o-Cymene	1020	1187	0.1±0.0	2.3±0.9	0.1±0.0	0.2±0.0	0.7±0.1	0.2±0.0	0.6±0.1	2.6±0.9	41.9±0.1	2.5±0.2	56.2±0.2	0.1±0.0	1, 2, 3
<i>p</i> -Cymene	1024	1280		0.6±0.0		0.1±0.1	0.3±0.0		0.3±0.0	0.4±0.1	0.1±0.0	1.2±0.1	0.1±0.0		1, 2, 3
β-Phellandrene	1029	1218	t	0.3±0.0	0.3±0.0	0.6±0.2	0.4±0.1	1.8±0.2	0.1±0.0	9.1±0.5	0.1±0.0	1.0±0.0	0.2±0.1	0.7±0.2	1, 2, 3
Limonene	1030	1203		1.4±0.3	0.4±0.0	14.3±0.5	1.5±0.5	1.3±0.7	0.3±0.0	6.4±0.5	0.3±0.0	1.4±0.0	0.6±0.0	2.3±0.9	1, 2, 3
1,8-Cineole	1034	1213		0.2±0.0	0.5±0.1	0.1±0.0	t	0.2±0.0	t	33.5±0.3	0.6±0.1	4.2±0.3	t	0.4±0.1	1,2
(Z)-β-Ocimene	1038	1246	t	t	0.1±0.0	0.1±0.0	t	0.3±0.0	1.7±0.3	0.1±0.0	t	t	t	t	1, 2, 3
(E)-β-Ocimene	1049	1280		t	1.2±0.0	0.3±0.1	t	1.0±0.0	0.6±0.1	0.2±0.1	t	t	t	0.3±0.1	1, 2, 3
γ-Terpinene	1057	1255	t	0.4±0.0	t	t	0.1±0.0	0.2±0.0	t	0.8±0.3	2.8±0.2	0.1±0.0	0.4±0.0	0.1±0.0	1, 2, 3
<i>cis</i> -Sabinene hydrate	1063	1556							0.3±0.0		0.2±0.0	0.1±0.0			1, 2, 3
cis-Linalol oxide	1065	1450							0.4±0.1						1, 2, 3
Fenchone	1067	1392	0.2±0.0		0.4±0.1		14.2±0.4								1,2
Terpinolene	1086	1265	t	0.1±0.0	0.1±0.1	t	t	0.2±0.0	t	0.2±0.1	0.1±0.0	t	0.7±0.1	t	1,2
Linalol	1097	1553	0.4±0.1	0.7±0.1	0.7±0.0	0.5±0.1	t	1.0±0.1	23.1±0.2	9.8±0.7	0.7±0.3	1.1±0.06	0.4±0.1	0.1±0.0	1, 2, 3
endo-Fenchol	1098	1120			0.2±0.0										1,2
cis-Thujone	1105	1430		t				0.1±0.0	t		t		t		1, 2, 3
trans-Thujone	1115	1449				0.1±0.0	t			t		37.9±0.1			1, 2, 3
trans-Pinocarveol	1138	1654			t	t	t	0.1±0.0	t	0.1±0.0	t	0.2±0.0	t	t	1, 2
(-)-Citronellal	1143	1491		39.6±0.4								0.2±0.0	0.5±0.1		1, 2, 3
iso-Borneol	1144	1633		0.5±0.0						0.1±0.0			0.1±0.0		1, 2, 3
Camphor	1145	1532		1.1±0.0	0.6±0.0	t	t		0.9±0.0	0.2±0.0	t	13.9±0.7	t		1, 2, 3
Menthofuran	1150	1502						0.3±0.0							1, 2, 3
iso-Pinocamphone	1153	1566		t	35.1±0.0	t	t	29.1±0.0	0.1±0.0	0.2±0.0	0.1±0.0	0.1±0.0	t	0.2±0.0	1, 2
trans- Pinocamphone	1159	1160		0.4±0.0	t	4.3±0.9		11.2±0.9		t	t	0.3±0.0	t	t	1,2
Lavandulol	1162	1674						4.4±0.4							1, 2

(Table 1) Contd....

Compound	Kiª	Ki ^b	P. anisum ^c %	M. offcinalis %	O. basilicum %	C. carvi %	F. vulgare %	H. offcinalis %	L. angusti- folia %	M. hortensis %	O. vulgare %	S. officinalis %	T. vulgaris %	V. officinalis %	Identifi- cation ^d
iso-Menthone	1163	1503		8.8±0.9									0.1±0.0		1, 2, 3
Pinocarvone	1165	1587		t	0.4±0.0			0.5±0.0	t	t	t	t	t	t	1,2
Borneol	1167	1719		0.1±0.0	0.2±0.0			0.1±0.0	6.3±0.9	2.0±0.5	0.3±0.0	7.6±0.4	0.2±0.0	0.1±0.0	1, 2, 3
Terpinen-4-ol	1176	1611		0.1±0.0	0.2±0.0	t	t	0.3±0.1	0.2±0.0	0.4±0.1	0.4±0.0	0.5±0.0	t	0.2±0.0	1, 2, 3
dihydro-Carveol	1177	1755					0.3±0.1	1.2±0.1	0.4±0.0	0.8±0.1		0.2±0.0	0.2±0.0		1, 2
p-Cymen-8-ol	1185	1864		t			t	t	0.3±0.0	0.1±0.0	0.2±0.0	0.1±0.0	t	t	1,2
α-Terpineol	1189	1706	t	0.1±0.0	1.3±0.3	t		1.2±0.1	0.4±0.0	0.7±0.1	t	0.3±0.0	0.3±0.0	0.3±0.1	1, 2, 3
Myrtenal	1193	1648			1.0±0.0	0.1±0.0	0.1±0.0	1.0±0.3	0.4±0.1	0.7±0.1		0.2±0.0	0.3±0.0		1,2
Estragole	1195	1670				65.0±0.9	0.8±0.1	0.4±0.0		0.1±0.0	0.1±0.0	t			1, 2, 3
Myrtenol	1196	1804			0.6±0.0			1.3±0.5	0.4±0.0	0.2±0.1		0.2±0.0	0.3±0.0		1,2
Citronellol	1213	1772		6.2±0.3											1, 2, 3
cis-Carveol	1226	1878			0.1±0.0										1,2
Isobornyl formate	1228	1596												45.4±0.9	1,2
Carvone	1241	1752			39.7±0.9										1, 2, 3
Linalyl acetate	1248	1565		2.3±0.3	0.4±0.0			0.3±0.0	44.4±0.7	3.3±0.6	0.1±0.0	1.5±0.2			1, 2, 3
Geraniol	1255	1857		5.7±0.3					9.3±0.3	0.6±0.1		0.3±0.0			1,2
cis-Anethole	1262	1780	97.1±0.4			t	76.3±0.9	0.3±0.0						0.2±0.0	1,2
(E)-Citral	1270	1727												44.5±0.9	1, 2, 3
Isobornyl acetate	1277			t	t	0.1±0.0			0.3±0.0	0.6±0.1	t	0.7±0.0	t	t	1, 2
Bornyl acetate	1284	1591		t	t	0.1±0.0		t	0.2±0.0	1.2±0.5	t	0.88±0.0	t	t	1,2
Cinnamic acid methyl ester	1289				0.1±0.0										1, 2
Thymol	1290	2198		0.1±0.0				t		0.7±0.1	0.7±0.0	t	8.7±0.9		1, 2, 3
Carvacrol	1297	2239		13.3±0.9	t		t	t		4.1±0.9	44.0±0.9	0.3±0.0	24.4±0.9		1, 2, 3
Myrtenyl acetate	1313	1698			0.5±0.0	t		0.6±0.0		t	t	t			1,2
Terpinyl acetate	1333	1709								0.5±0.0	1				1,2
Eugenol	1353	2186		0.5±0.0											1, 2, 3
Citronellyl acetate	1358	1662		1.6±0.9											1, 2
Methyl eugenol	1369	2023		t	0.5±0.0	0.6±0.1	t	0.7±0.0	t		t			t	1, 2
α-Copaene	1377	1497		t	0.1±0.0	t	t	0.1±0.0	t	0.1±0.0	0.1±0.0	t	t	0.2±0.1	1,2
Geranyl acetate	1379	1765		1.7±0.3											1,2
Isoledene	1382	1367		t	0.1±0.0	t	t	0.1±0.0	t	t	0.1±0.0	t	t	0.1±0.0	1,2
β-Bourbonene	1385	1535			1.2±0.3			1.3±0.3							1,2
β-Elemene	1387	1600		0.6±0.0	0.1±0.0	0.2±0.0	t	t		t	t		t	0.2±0.1	1,2
α-Gurjunene	1408	1529		0.4±0.0	0.4±0.0			0.5±0.0							1,2
Longifolene	1411	1576		0.9±0.1	0.5±0.0		t	0.5±0.0	t	0.1±0.0	t	t	t	t	1,2
β-Caryophyllene	1418	1612	t	0.6±0.0	1.4±0.5	0.1±0.0	t	1.0±0.5	1.0±0.9	0.3±0.1	0.2±0.1	1.3±0.0	0.1±0.0	0.1±0.1	1,2
β-Cedrene	1424	1638		0.3±0.0	0.5±0.0			0.6±0.0	1.3±0.1	0.5±0.1	0.6±0.0	1.0±0.0		0.4±0.1	1, 2
Aromadendrene	1437	1628	t	t	t	0.2±0.0	t	t	t	t	t	0.1±0.0	t		1, 2
α-Humulene	1455	1689		0.2±0.0	0.5±0.0	t	t	0.6±0.0	0.6±0.0	0.3±0.1	0.1±0.0	5.9±0.9	t	0.2±0.0	1,2

```
(Table 1) Contd....
```

Compound	Kiª	Ki ^b	P. anisum ^c %	M. offcinalis %	O. basilicum %	C. carvi %	F. vulgare %	H. offcinalis %	L. angustifo- %	M. hortensis %	O. vulgare %	S. offici- nalis %	T. vulgaris %	V. officinalis %	Identifi- cation ^d
allo-Aroma- dendrene	1463	1661		t	1.2±0.5	t	t	1.4±0.2	0.5±0.0	t	t	0.1±0.0	t	0.1±0.0	1,2
Neryl isobutyrate	1468	1870							0.1±0.0						1,2
γ-Gurjunene	1473	1687		0.2±0.0	0.5±0.0		t	0.1±0.0		0.1±0.0	0.1±0.0	0.1±0.0	t	t	1,2
cis-β-Guaiene	1490	1694		0.1±0.0		0.4±0.2		0.4±0.0							1,2
Bicyclogermacrene	1491	1756			1.5±0.0	t		3.1±0.5		0.1±0.0				0.1±0.0	1,2
cis-Muurola- 4(14),5-diene	1510	1675		2.3±0.5	3.0±0.9	0.1±0.0	t	3.7±0.9	0.3±0.0	0.1±0.0	t	t	t	0.2±0.1	1,2
α-7-epi-Selinene	1518	1740		0.6±0.0	0.1±0.0	t	t	0.1±0.0		0.1±0.0	0.1±0.0	0.1±0.0	t	0.2±0.1	1,2
Caryophyllene oxide	1580	2008		0.2±0.0					0.4±0.0		0.2±0.0	0.8±0.0			1,2
α-Cadinol	1652	2255		0.2±0.0		0.6±0.1		0.3±0.0							1,2
Total			98.3	96.3	97.3	98	97.8	96.4	97.0	97	96.9	98.7	97.5	97.6	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c --- = absent; t = trace, less than 0.05%; ^d: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

Table 2.Effects of Different Doses of Essential Oils of Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa
officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis, Thymus vulgaris, Carum carvi, Foeniculum vulgare,
Pimpinella anisum, Verbena officinalis on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed
as Mean of Three Replicates ± SD

	Raphanus sativus											
	Germinated Seeds											
	P. anisum	M. offcinalis	O. basilicum	C. carvi	F. vulgare	H. offcinalis	L. angustifo- lia	M. hortensis	O. vulgare	S. officinalis	T. vulgaris	V. officinalis
Control	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1	9.1±1.1
0.06 (μg/mL)	9.3±0.6	7.7±2.1	8.7±1.5	2.7±2.1***	8.7±1.2	6.0±0.0***	8.7±1.5	8.3±0.6	8.3±0.6	6.0±2.6**	8.0±1.0	0.7±1.2***
0.125 (μg/mL)	8.7±0.6	7.7±0.6	9.3±1.2	0.0±0.0***	8.3±0.6	2.3±0.6***	6.0±1.7**	8.7±0.6	1.0±1.0***	6.7±1.5**	6.7±1.2**	0.0±0.0***
0.25 (μg/mL)	9.0±0.0	2.0±1.0***	8.0±1.0	3.3±5.8**	7.3±1.2*	0.0±0.6***	5.0±0.0***	6.3±2.3**	0.0±0.0***	4.7±1.2***	1.3±1.2***	0.0±0.0***
0.625 (μg/mL)	8.7±0.6	0.0±0.0***	8.3±1.2	0.0±0.0***	7.0±1.0**	0.7±1.2***	0.0±0.0***	5.7±1.5***	0.0±0.0***	2.0±2.0***	0.0±0.0***	0.0±0.0***
1.25 (μg/mL)	9.0±1.0	0.0±0.0***	8.0±1.7	0.0±0.0***	5.7±2.3**	0.0±0.0***	0.0±0.0***	3.3±2.3***	0.0±0.0***	0.7±0.6***	0.0±0.0***	0.0±0.0***
2.5 (µg/mL)	8.0±1.7	0.0±0.0***	5.7±2.5**	0.0±0.0***	5.0±2.0***	0.0±0.0***	0.0±0.0***	0.0±0.0***	0.0±0.0***	0.0±0.0***	0.0±0.0***	0.0±0.0***
						Lepidium sati	vum					
						Germinated s	eeds					
	P. anisum	M. offcinalis	O. basilicum	C. carvi	F. vulgare	H. offcinalis	L. angustifo- lia	M. hortensis	O. vulgare	S. officinalis	T. vulgaris	V. officinalis
Control	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6	9.3±0.6
0.06 (μg/mL)	10.0±0.0	9.7±0.6	10.0±0.0	9.7±0.6	9.7±0.6	9.3±1.2	8.7±0.6	9.0±1.0	9.3±0.6	9.0±1.0	9.7±0.6	9.3±0.6

(Table 2) Contd....

	Lepidium sativum											
	Germinated seeds											
0.125 (μg/mL)	10.0±0.0	9.0±0.0	9.3±0.6	8.3±0.6	9.7±0.6	9.7±0.6	9.3±0.6	9.0±1.0	8.3±2.1	9.0±1.0	9.7±0.6	8.3±1.2
0.25 (μg/mL)	8.7±0.6	9.0±1.7	9.7±0.6	8.3±1.2	9.3±0.6	10.0±0.0	9.3±0.6	8.7±1.2	6.3±4.7	9.7±0.6	7.7±0.6*	0.0±0.0***
0.625 (μg/mL)	9.7±0.6	5.3±1.2***	9.7±0.6	3.7±2.1*	9.3±0.6*	9.3±0.6	9.7±0.6	10.0±0.0	7.3±2.1	9.3±0.6	4.0±1.7**	9.0±1.0
1.25 (μg/mL)	8.0±1.0	0.3±0.6***	8.3±1.2	0.7±1.2***	9.0±1.0	8.7±0.6	8.3±1.2	8.7±0.6	0.0±0.0***	8.3±1.5	0.0±0.0***	8.7±0.6
2.5 (μg/mL)	0.7±1.2***	0.0±0.0***	3.3±3.5*	0.0±0.0***	4.3±2.3*	0.0±0.0***	1.3±2.3**	6.3±1.5*	0.3±0.6***	1.3±1.5**	0.0±0.0***	0.0±0.0***

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 3. Effects of Different doses of Essential Oils of Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis, Thymus vulgaris, Carum carvi, Foeniculum vulgare, Pimpinella anisum, Verbena officinalis on Radicle Elongation of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus											
Radicle Length (cm ± SD)												
	P. anisum	M. offcinalis	O. basilicum	C. carvi	F. vulgare	H. offcinalis	L. angustifolia	M. hortensis	O. vulgare	S. officinalis	T. vulgaris	V. officinalis
Control	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9	3.0±0.9
0.06 (μg/mL)	3.2±0.2	2.5±0.3	2.9±0.1	1.5±0.6*	2.7±0.8	1.6±0.4*	2.7±0.3	2.3±0.4	1.6±0.3*	2.2±0.4	1.7±0.7*	0.2±0.3***
0.125 (μg/mL)	3.1±0.1	1.8±0.4	2.8±0.6	0.0±0.0***	2.3±0.3	1.4±0.7*	2.5±0.2	2.8±0.3	0.5±0.5***	2.1±0.3	0.8±0.2**	0.0±0.0***
0.25 (μg/mL)	2.9±0.2	0.3±0.2***	2.6±0.1	0.3±0.6***	2.9±1.4	0.9±1.3**	2.3±0.2	2.1±0.6	0.0±0.0***	1.6±0.4*	0.7±0.6***	0.0±0.0***
0.625 (μg/mL)	2.7±0.2	0.0±0.0***	2.3±0.4	0.0±0.0***	2.3±0.4	0.4±0.7***	0.0±0.0***	1.7±0.2*	0.0±0.0***	0.9±0.8**	0.0±0.0***	0.0±0.0***
1.25 (μg/mL)	2.0±0.1	0.0±0.0***	2.7±0.5	0.0±0.0***	1.9±0.3	0.0±0.0***	0.0±0.0***	1.3±0.4**	0.0±0.0***	0.5±0.5***	0.0±0.0***	0.0±0.0***
						Lepidium s	ativum					
						Radicle length	(cm ± SD)					
	P. anisum	M. offcinalis	O. basilicum	C. carvi	F. vulgare	H. offcinalis	L. angustifolia	M. hortensis	O. vulgare	S. officinalis	T. vulgaris	V. officinalis
Control	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3	6.1±1.3
0.06 (μg/mL)	7.6±0.3	4.5±0.4	3.7±0.5*	3.4±0.4*	5.7±0.5	5.9±1.3	4.5±0.3	2.3±0.5*	3.8±0.9	3.9±0.3*	4.3±0.1	3.8±0.4*
0.125 (μg/mL)	5.3±0.1	4.2±0.5	6.1±0.8	2.3±0.1**	6.0±0.5	4.6±0.4	5.1±0.2	1.6±0.3**	2.6±0.2*	2.9±0.3*	3.0±0.4*	1.9±0.5**
0.25 (μg/mL)	3.4±0.6*	1.0±0.7**	4.5±0.9	1.9±0.3**	4.9±0.3	3.5±0.3*	2.1±0.4**	1.4±0.5**	1.0±0.8**	2.3±0.4**	1.1±0.2**	0.0±0.0**
0.625 (μg/mL)	4.4±0.9	0.4±0.2**	5.8±0.7	0.3±0.1**	5.0±0.7	3.7±0.4*	3.7±0.5*	1.9±0.3**	0.9±0.3**	0.9±0.2**	0.2±0.1**	2.8±0.4*
1.25 (μg/mL)	3.1±0.2*	0.0±0.1**	3.4±0.3*	0.1±0.1**	3.4±1.1	2.8±0.3*	3.1±0.3*	0.9±0.3**	0.0±0.0**	0.4±0.1**	0.0±0.0**	1.1±0.2**

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

observed directly in Petri dishes, each 24 h. Vaporization assay of essential oils has been surprising: almost all the oils have given proof of total inhibition of germination and radical elongation of two species assayed. Cress has been totally inhibited quite everytime; radish has been inhibited both in germination and in radical growth.

Mancini and coworkers [21] determined the compositions (Table 4) and the effects against germination and initial radical elongation of radish and garden cress of the essential oils from *Nepeta curviflora* and *Nepeta nuda* ssp. *albiflora*, collected in Lebanon in different sites (Tables 5 and 6).

Thirty-six components in the essential oil from N. curviflora were identified accounting for the 91.3% of the total oil. Sesquiterpene hydrocarbons were the most abundant compounds and represented 61.2% of total oil. The major components of this oil were β -caryophyllene (41.6%), (E)- β farnesene (6.2%) and (Z)- β -farnesene (4.8%); caryophyllene oxide (9.5%) was instead the main oxygen containing sesquiterpene. Thirty-six components in the oil from N. nuda L. subsp. albiflora collected in Laklouk representing 92.8% of the total oil were identified. Also in this case sesquiterpene hydrocarbons (38.4%) prevailed over the other compounds and in this oil, β -bisabolene (11.8%), (E)- β -farnesene (7.1%) and β -sesquiphellandrene (4.1%) were the main components. Oxygen containing monoterpenes (27.3%) were also abundant, particularly pulegone (10.8%) and (E,Z)-nepetalactone (8.0%). Noteworthy was also the presence of the oxygenated sesquiterpene caryophyllene oxide (6.9%). The oil from the same species collected in Tannourine Cedar Forest presented a different composition. Fifty-two compounds in all were identified accounting for 91.2% of the oil. The amount of sesquiterpene hydrocarbons (22.7%) and oxygenated sesquiterpenes (22.5%) was similar: in the first fraction β bisabolene (7.8%) prevailed, while in the second one the main compound was caryophyllene oxide (7.3%). The oxygenated monoterpenes pulegone (7.2%) and (E,Z)nepetalactone (4.4%) were also present in a significant percentage. The three essential oils were studied for their phytotoxic activity against germination and initial radical elongation of radish and garden cress: the germination of radish and garden cress appeared no significantly sensitive to three essential oils, while radical elogation was affected at the highest dose tested. Radical elongation of radish was affected significantly by N. nuda essential oil, at the highest dose tested. Radical elongation of garden cress seemed significantly less sensitive to N. curviflora oil. At the highest dose tested, the essential oil of N. curviflora promoted significantly the germination of radish. Radical elongation of garden cress was weakly inhibited in response to 1.25 µg/ml and 0.625 µg/ml of N. nuda.

The essential oils also from *S. hierosolymitana* and *S. multicaulis* var. *simplicifolia* (Table 7) collected in Lebanon were evaluated on germination and initial radical elongation of *Raphanus sativus* L. and *Lepidium sativum* L. (Tables 8 and 9) [22]. In all, 115 compounds were identified: 82 for S *hierosolymitana* and 72 for *S. multicaulis* var. *simplicifolia*. S. *multicaulis* var. *simplicifolia* oil is rich of monoterpenes (34.5%) and sesquiterpenes (46.9%). In *S. hierosolymitana* the monoterpenoid fraction amounted to 17.7% of the oil and was characterized only by oxygenated monoterpenoids,

amongst which the most abundant was α -thujone (3.0%). The sesquiterpenoid fraction was mainly composed of sesquiterpenoid hydrocarbons (11.5%). Noteworthy was the content of carbonylic compounds (17%), amongst which the C-18 ketone hexahydrofarnesyl acetone and the C-13 ketone β-ionone were particularly abundant; other components of the oil were fatty acids (21.4%). In the oil from S. multi*caulis* var. *simplicifolia* the sesquiterpenoid fraction amounted to 46.9% of the total oil, while the monoterpenoid fraction was lower (34.5%). Differently from S. hierosolymitana, in which monoterpenoid hydrocarbons were completely absent, in S. multicaulis oil they accounted for the 10.6% and were particularly represented by α -pinene (5.5%). Also oxygenated monoterpenoids were abundant (23.9%) and in this fraction the main compounds were myrtenol (4.6%) and sabinyl acetate (4.6%). Among sesquiterpenoids, sesquiterpenoid hydrocarbons (38.6%) prevailed, particularly α -copaene (6.6%), β -caryophyllene (4.4%) and aromadendrene (3.9%). Another important difference in comparison with S. hierosolymitana essential oil was the paucity of carbonylic compounds and of fatty acids.

Tables 8 and 9 report the phytotoxic activity of these essential oils against germination and initial radical elongation of radish and garden cress. The oils affected the germination and the radical elongation of radish and garden cress in a different way. Radical elongation seemed to be more affected than germination. The germination of radish did not appear significantly sensitive to the two essential oils. Moreover, at a dose of 0.625 μ g/mL the essential oil of S. hierosolymitana significantly inhibited the germination of radish. At the lowest dose tested the essential oil of S. multicaulis var. simplicifolia significantly promoted the germination of radish. The germination of garden cress was weakly inhibited in response to 0.125 μ g/mL of essential oil of S. multicaulis var. simplicifolia. Radical elongation of radish was inhibited significantly in response to 0.125 µg/mL and 1.25 µg/mL of S. multicaulis var. simplicifolia. Radical elongation of garden cress was promoted in response to 0.625 µg/mL of essential oil of S. multicaulis var. simplicifolia.

Because of Muller and coworkers based their biological studies on Salvia "phenomenon" [8-12], we decided to study other species of the same genus. In a next paper, we studied the chemical composition (Table 10) and phytotoxic activity (Tables 11 and 12) of essential oils from other five species of Salvia [25]. In S. africana the monoterpenes and sesquiterpenes were almost in a similar percentage, amounting to 50.6% and 43.2%, respectively. The main compounds were *p*-cymene (21.2%), γ -terpinene (15.5%), both monoterpenes, τ -cadinol (13.6%) and α -eudesmol (10.7%), oxygenated sesquiterpenes. In the oil from S. elegans, the monoterpenes amounted to 68.2% and consisted mainly of oxygenated compounds (62.7%); on the other hand, the total sesquiterpenes were 24.0% (20.9% sesquiterpene hydrocarbons and 3.1% of oxygenated sesquiterpenes) of the total oil. cis-Thujone (38.7%) was the most abundant among oxygenated monoterpenes. The main sesquiterpene hydrocarbons was δ cadinene (11.5%). In the oil from S. greggii, the monoterpene fraction amounted to 70.0% of the total oil, while sesquiterpenes accounted for only 24.5%. In the monoterpene fraction, oxygenated monoterpenes represent a great amount, accounting for 68.9%. The main components were

Table 4.Essential Oil Compositions (%) of N. curviflora, N. nuda L. subsp. albiflora Collected in Laklouk (L) and N. nuda L. subsp.albiflora Collected in Tannourine Cedar Forest (T)

Compound	Ki ^a	Ki ^b	N. curviflora ^c %	N. nuda L %	N. nuda T %	Identification ^d
1,8-cineole	1034	1213	0.1	2.1		1, 2, 3
Linalool	1098	1553	2.2		1.2	1, 2, 3
p-Methylguaiacol	1165		t			1, 2
α-Terpineol	1189	1706	0.8	t		1, 2, 3
Pulegone	1233	1665		10.8	7.2	1,2
Dihydroedulan II	1285			1.2		1,2
Piperitone	1343			2.3	1.0	1,2
(Z,Z)-Nepetalactone	1368			0.5	2.9	1,2
α-Copaene	1377	1497	0.1	1.4	0.6	1,2
(E)-β-Damascenone	1380	1838	0.5	1.0		1,2
(Z,E)-Nepetalactone	1382		5.7	3.6	0.8	1,2
β-Cubebene	1382	1547		0.7		1,2
β-Bourbonene	1385	1535	1.0	2.5	0.9	1,2
(<i>E</i> , <i>Z</i>)-Nepetalactone	1407			8.0	4.4	1,2
β-Caryophyllene	1418	1612	41.6	1.6	2.5	1, 2, 3
γ-Elemene	1418	1650	t			1,2
Aromadendrene	1437	1628	1.6	1.2	0.8	1,2
(Z)-β-Farnesene	1439		4.8			1,2
α-Humulene	1455	1689	1.3		1.0	1,2
(<i>E</i>)-β-Farnesene	1457	1673	6.2	7.1	1.9	1,2
allo-Aromadendrene	1463	1661	0.5			1,2
γ-Gurjunene (5,11-Guaiadiene)	1473				0.6	1,2
β-Selinene	1474	1715	0.1			1, 2
Germacrene D	1477	1726	0.7		0.6	1,2
γ-Muurolene	1478	1704		2.7	0.5	1,2
ar-Curcumene	1483	1784			1.7	1, 2
Epizonarene	1485				0.5	1,2
Bicyclosesquiphellandrene	1488	1626		1.3		1,2
α-Muurolene	1500	1740		1.3	0.7	1,2
β-Bisabolene	1510	1743	1.3	11.8	7.8	1, 2
γ-Cadinene	1515	1776		0.3	1.2	1,2
1-endo-Bourbonanol	1520		t		0.4	1,2
δ-Cadinene	1526	1773	1.5	2.4		1,2
β-Sesquiphellandrene	1532			4.1		1, 2
α-Calacorene	1541	1941			0.4	1, 2
α-Cadinene	1543	1745	0.5		1.0	1,2

(11 11 4)	A 11
(I anie 4	
\mathbf{I}	

Compound	Kiª	Ki ^b	N. curviflora ^c %	N. nuda L %	N. nuda T %	Identification ^d
11-Norbourbonan-1-one	1559		0.2			1, 2
Ledol	1565	2057			0.6	1, 2
Palustrol	1567				0.3	1, 2
(Z)-3-Hexenyl benzoate	1570		0.5			1, 2
Germacrene D 4-ol	1577	2069	0.1			1,2
Spathulenol	1578	2150	3.9	2.7	1.9	1,2
Isocaryophyllene oxide	1579				0.5	1,2
Caryophyllene oxide	1580	2008	9.5	6.9	7.3	1, 2, 3
Globulol	1589	2098	0.2			1,2
Guaiol	1598	2108		1.0		1,2
Widdrol	1600			1.9	1.4	1,2
(E)-Sesquilavandulol	1601				1.9	1,2
α-Cedrol	1602				0.7	1,2
Humulene epoxide II	1605	2011	t	1.0		1,2
nor-Copaanone	1622				0.2	1,2
Caryophylladienol I	1640				1.0	1,2
t-Cadinol	1640	2187			1.9	1,2
t-Muurolol	1642	2209			1.8	1,2
Torreyol	1645	2145			1.0	1,2
α-Cadinol	1652	2255	0.3	1.2		1,2
cis-14-muurol-5-en-4-one	1667					1, 2
Longifolol	1717				1.5	1, 2
14-Hydroxy-α-humulene	1718	2478		0.9		1, 2
Tetradecanoic acid	1758	2672			0.9	1, 2, 3
(Z)-Lanceol	1765		t		0.1	1, 2
Hexahydrofarnesylacetone	1845	2131	1.6	2.0	1.9	1, 2
Neophytadiene	1845				0.3	1, 2
Hexadecanoic acid methyl ester	1925		0.6			1, 2, 3
(Z)-Phytol	1949		1.3		0.6	1, 2
Hexadecanoic acid	1957	2931		1.7	10.1	1, 2, 3
Heneicosane	2100			t		1, 2, 3
(Z,Z)-Octadecadienoic acid	2122		0.2			1, 2, 3
Docosane	2200				0.5	1, 2, 3
Tricosane	2300		1.1	0.5	1.4	1, 2, 3
Tetracosane	2400	2400			0.4	1, 2, 3
Pentacosane	2500	2500	1.3	1.5	4.0	1, 2, 3
Hexacosane	2600	2600			1.1	1, 2, 3

(Table 4) Contd....

Compound	Ki ^a	Ki ^b	N. curviflora ^c %	N. nuda L %	N. nuda T %	Identification ^d
Heptacosane	2700	2700		0.3	2.8	1, 2, 3
Octacosane	2800	2800			0.3	1, 2, 3
Nonacosane	2900	2900			1.2	1, 2
Hentriacontane	3100	3100		0.6	1.0	1, 2
Total			91.3	90.1	91.2	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c --- = absent; t = trace, less than 0.05%; ^d: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

Table 5.Effects of Different Doses of Essential Oils of N. curviflora, N. nuda L. subsp. albiflora Collected in Laklouk (L) and N.
nuda L. subsp. albiflora Collected in Tannourine Cedar Forest (T) on Germination of Raphanus sativus and Lepidium sati-
vum. The Data are Expressed as Mean of Three Replicates ± SD

Raphanus sativus											
Germinated Seeds											
	Nepeta nuda (T)	Nepeta curviflora	Nepeta nuda (L)								
Negative control	13.0 ± 0.0	10.0 ± 0.0	10.0 ± 0.0								
Control	14.3 ± 0.6	11.7 ± 2.1	11.7 ± 2.1								
0.250 (μg/mL)	12.7 ± 1.5	12.3 ± 1.5	11.7 ± 2.9								
0.625 (μg/mL)	13.3 ± 2.1	11.7 ± 0.6	12.0 ± 1.7								
1.25 (µg/mL)	13.3 ± 0.6	10.7 ± 3.5	13.0 ± 1.0								
2.50 (µg/mL)	12.0 ± 1.7	12.3 ± 0.6	12.3 ± 2.1								
	Lepidium	sativum									
	Germinat	ed Seeds									
	Nepeta nuda (T)	Nepeta curviflora	Nepeta nuda (L)								
Negative control	13.0 ± 0.0	13.0 ± 1.7	13.0 ± 1.7								
Control	13.7 ± 1.7	13.7 ± 1.7	13.7 ± 1.2								
0.250 (μg/mL)	12.7 ± 1.5	12.3 ± 1.5	13.0 ± 0.0								
0.625 (μg/mL)	$12.7 \pm 0.6*$	13.3 ± 2.1	11.0 ± 1.7								
1.25 (µg/mL)	13.7 ± 0.6	13.3 ± 0.6	12.0 ± 3.0								
2.50 (µg/mL)	12.3 ± 1.2	13.7 ± 0.6	$10.7 \pm 0.6*$								

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

cis-thujone (43.4%) and geranyl acetate (8.7%). δ -Cadinene (14.0%) was the most abundant sesquiterpene hydrocarbon. In the *S. mellifera* oil, the monoterpene fraction amounted to 76.1%, while the sesquiterpene one was 14.2%. Also in this case, the monoterpene fraction was mainly represented by oxygenated compounds (57.0%), with great prevalence of 1,8-cineole (39.8%) and camphor (12.2%). α -Pinene (9.2%) was the major component of non-oxygenated monoterpenes. In *S. munzii*, the monoterpene fraction amounted to 80.3% of the total oil, while sesquiterpenes represented only 15.6%: the main compounds are *cis* thujone (33.3%) and camphor (27.2%). The five essential oils were evaluated for their phytotoxic activity against germination (Table **11**) and initial

radical elongation (Table 12) of radish and garden cress. The oils affected the germination and the radical elongation of two seeds in a distinct way. The germination of radish appeared sensitive to *Salvia greggii* oil, at the highest dose (1.25 µg/mL) used. The germination of garden cress was completely inhibited by *S. elegans*, *S. greggii* and *S. munzii* oils, at the highest doses (1.25 µg/mL) used. The essential oil of *S. elegans*, at the almost all doses tested, inhibited significantly the radical elongation of both radish and garden cress. Also *S. greggii* and *S. munzii* oils inhibited, in a significative way, the radical elongation as of radish as of garden cress; on the other hand, *S. mellifera* oil inhibited, in a significative way, the radical elongation of radish but

Table 6.Effects of Different Doses of Essential Oils of N. curviflora, N. nuda L. subsp. albiflora Collected in Laklouk (L) and N.
nuda L. subsp. albiflora Collected in Tannourine Cedar Forest (T) on Radical Elongation of Raphanus sativus and Lepid-
ium sativum. The Data are Expressed as Mean of three Replicates ± SD

Raphanus sativus											
Radicle length (cm ± SD)											
	Nepeta nuda (T)	Nepeta curviflora	Nepeta nuda (L)								
Negative control	3.2 ± 1.5	1.4 ± 0.8	1.4 ± 0.8								
Control	3.0 ± 1.1	2.0 ± 1.3	2.0 ± 1.3								
0.250 (μg/mL)	2.0 ± 1.3***	1.7 ± 1.1	2.0 ± 1.6								
0.625 (μg/mL)	2.3 ± 1.2**	1.5 ± 1.3	1.9 ± 1.0								
1.25 (µg/mL)	1.6 ± 1.1***	1.4 ± 1.4	1.8 ± 1.1								
2.50 (µg/mL)	$1.9 \pm 1.3^{***}$	1.6 ± 0.9	1.7 ± 1.3								
	Lepidium s	sativum									
	Radicle length	n (cm ± SD)									
	Nepeta nuda (T)	Nepeta curviflora	Nepeta nuda (L)								
Negative control	3.2 ± 1.5	3.3 ± 1.5	3.3 ± 1.5								
Control	3.0 ± 1.1	2.6 ± 1.4	2.6 ± 1.4								
0.250 (μg/mL)	2.6 ± 1.3	2.6 ± 1.3	2.2 ± 1.4								
0.625 (μg/mL)	3.2 ± 1.5	2.7 ± 1.8	2.0 ± 1.0*								
1.25 (μg/mL)	3.2 ± 1.2	2.4 ± 1.3	2.0 ± 1.3								
2.50 (μg/mL)	3.4 ± 1.2	2.9 ± 1.7	2.3 ± 1.3								

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 7. Essential oil Compositions (%) of Salvia hierosolymitana and Salvia multicaulis var. simplicifolia

Compound	Ki ^a	Ki ^b	S. hierosolymitana [°] %	S. multicaulis var. simplicifolia %	Identification ^d
(Z)-4-Heptenal	901	1238	t		1, 2
α-Pinene	938	1032		5.5	1, 2, 3
Camphene	953	1076		0.9	1, 2, 3
Benzaldehyde	963	1543	0.7		1, 2, 3
Sabinene	973	1132		0.4	1,2
1-Octen-3-one	975	1312	0.1		1, 2
β-Pinene	980	1118		0.9	1, 2, 3
Myrcene	993	1174		0.3	1,2
2-Pentylfuran	1002	1243	t		1,2
(E,E)-2,4-Heptadienal	1015	1507	0.2		1, 2
<i>p</i> -Cymene	1025	1280		2.3	1,2
Limonene	1030	1203		0.3	1, 2, 3
1,8-Cineole	1034	1213	0.8	3.1	1, 2, 3
Phenylacetaldehyde	1048	1663	1.0		1, 2, 3
(E)-2-Octenal	1055	1466	0.5		1, 2

24 Current Bioactive Compounds 2012, Vol. 8, No. 1

(Table 7) Contd....

Compound	Ki ^a	Ki ^b	S. hierosolymitana ^c %	S. multicaulis var. simplicifolia %	Identification ^d
cis-Linalool oxide (furanoid)	1074	1482	0.4		1,2
trans-Linalool oxide (furanoid)	1085	1455	0.6		1,2
Linalool	1098	1553	1.9	0.5	1, 2, 3
α-Thujone	1105	1430	3.0	1.0	1,2
β-Thujone	1115	1451	1.6	0.9	1,2
trans-Pinocarveol	1137	1664		0.6	1,2
Camphor	1145	1532	0.9	0.8	1, 2, 3
(<i>E</i> , <i>Z</i>)-2,6-Nonadienal	1154	1572	t		1,2
Borneol	1167	1719		1.2	1, 2, 3
Terpinen-4-ol	1176	1611	0.5	1.2	1, 2, 3
Naphtalene	1179	1763	0.3		1, 2, 3
<i>p</i> -Methylacetophenone	1184	1797	0.5		1,2
α-Terpineol	1189	1706	1.1		1,2
Myrtenal	1193	1648	0.7	1.8	1,2
Myrtenol	1196	1804	0.6	4.6	1,2
Safranal	1197	1597	0.4		1, 2
Decanal	1206	1510	t		1,2
α-Ionene	1208	1567	0.3		1,2
trans-Carveol	1217	1845		0.2	1,2
Myrtenyl acetate	1227	1698		1.8	1,2
Geraniol	1235	1857	0.2		1,2
Pulegone	1237	1665	1.4		1,2
Neral	1240	1656	0.9		1,2
Linalyl acetate	1259	1665	1.6		1, 2, 3
Bornyl acetate	1284	1597		0.5	1, 2, 3
Indole	1290	2471	0.7		1, 2, 3
Thymol	1293	2198		1.7	1, 2, 3
Sabinyl acetate	1295	1658	0.6	4.6	1, 2
Carvacrol	1299	2239		0.6	1, 2, 3
4-Vinylguaiacol	1312	2180	4.0		1,2
α-Terpinyl acetate	1333	1709		0.5	1,2
Piperitenone	1343	1948	0.5	0.6	1, 2
α-Cubebene	1352	1466		0.3	1,2
Eugenol	1353	2186		1.5	1, 2, 3
Cyclosativene	1363	1492	0.5		1, 2
Ylangene	1372	1493		0.3	1, 2

(Table 7) Contd....

Compound	Ki ^a	Ki ^b	S. hierosolymitana ^c %	S. multicaulis var. simplicifolia %	Identification ^d
α-Copaene	1377	1497	1.7	6.6	1, 2
(E)-β-Damascenone	1382	1838	2.2	0.2	1,2
β-Bourbonene	1385	1535	0.6	0.7	1,2
β-Elemene	1387	1600		0.8	1,2
α-Cedrene	1411	1568	0.5		1, 2
β-Caryophyllene	1415	1612	2.4	4.4	1, 2, 3
Aromadendrene	1437	1628		3.9	1,2
(<i>E</i>)-β-Farnesene	1452	1673	1.2	1.2	1,2
(<i>E</i>)-Geranyl acetone	1454	1854	0.8		1,2
α-Humulene	1455	1689	0.9	0.5	1,2
allo-Aromadendrene	1463	1661	0.4	1.1	1, 2
β-Selinene	1475	1715	0.5	0.9	1,2
Germacrene D	1477	1726		0.6	1,2
γ-Muurolene	1478	1704	0.4	2.0	1,2
(<i>E</i>)-β-Ionone	1482	1957	3.5		1, 2, 3
ar-Curcumene	1483	1784		1.1	1,2
Dihydroactinidiolide	1485	2354	1.3		1,2
Viridiflorene	1491	1695		0.9	1,2
Valencene	1495	1740	t	1.2	1, 2
α-Selinene	1498	1744	0.5	0.4	1,2
α-Muurolene	1500	1740	0.2	1.3	1,2
(<i>E</i> , <i>E</i>)-α-Farnesene	1505	1758		0.6	1,2
γ-Cadinene	1515	1776	1.2	2.9	1,2
1S-cis-Calamenene	1520	1839	0.3	1.5	1,2
δ-Cadinene	1526	1773	0.1	3.0	1,2
α-Calacorene	1541	1941	t	0.9	1, 2
Ledol	1565	2057	0.6	0.6	1,2
(E)-Nerolidol	1566	2050		1.4	1, 2
Dodecanoic acid	1568	2467	0.1		1, 2, 3
Spathulenol	1578	2150	1.9	0.7	1,2
Caryophyllene oxide	1580	2008		0.8	1, 2, 3
Tridecan-2-one	1580	1815	0.3		1, 2
Globulol	1585	2098	0.2	0.4	1,2
Viridiflorol	1591	2104		0.9	1,2
Humulene epoxide II	1605	2011		0.5	1, 2
epi-Globulol	1629	2025		0.6	1,2

(Table 7) Contd....

Compound	Ki ^a	Ki ^b	S. hierosolymitana ^c %	S. multicaulis var. simplicifolia %	Identification ^d
T-Cadinol	1640	2187	1.2		1,2
T-Muurolol	1642	2209	0.6	0.5	1,2
Cubenol	1644	2080		0.6	1,2
Torreyol	1645	2145		0.1	1,2
α-Cadinol	1649	2255	0.5	0.8	1,2
β-Eudesmol	1650	2257		0.4	1,2
Tetradecanol	1672	2175	0.2		1, 2
Cadalene	1677	2256	0.1	1.5	1, 2
Pentadecan-2-one	1694	2031	0.7		1, 2
Tetradecanoic acid	1768	2672	1.5		1, 2, 3
14-Hydroxy-α-humulene	1780	2478		t	1,2
Hexahydrofarnesyl acetone	1835	2131	5.3	1.3	1, 2
Pentadecanoic acid	1873	2740	0.2		1, 2, 3
(E,E)-Farnesyl acetone	1918	2384	1.2		1,2
Phytol	1950	2622	4.8	0.6	1,2
Palmitic acid	1957	2931	12.5	1.2	1, 2, 3
(Z,Z,Z)-9,12,15-Octadecatrienoic acid	2099	3195	2.2	t	1, 2, 3
(Z,Z)-9,12-Octadecadienoic acid	2104	3160	3.3		1, 2, 3
(Z)-9-Octadecenoic acid	2120	3157	1.6		1, 2, 3
Tetracosane	2400	2400	0.1		1, 2, 3
Pentacosane	2500	2500	0.5	0.7	1, 2, 3
Hexacosane	2600	2600	0.2		1, 2, 3
Heptacosane	2700	2700	1.0	0.7	1, 2, 3
Octacosane	2800	2800	t		1, 2, 3
Nonacosane	2900	2900	0.8	0.9	1,2
Triacontane	3000	3000	t		1, 2, 3
Entriacontane	3100	3100	0.5		1, 2, 3
Dotriacontane	3200	3200	t		1, 2, 3
Total			86.6	90.8	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c --- = absent; t = trace, less than 0.05%; ^d: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

Table 8. Effects of Different Doses of Essential Oils of Salvia hierosolymitana and S. multicaulis var. simplicifolia on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

Raphanus sativus										
	Germinated Seeds									
	Salvia hierosolymitana	Salvia multicaulis var. simplicifolia								
Control	12.67 ± 1.51	10.67 ± 1.37								
0.062 μg/mL	13.33 ± 1.15	13.00 ± 1.00 ***								
0.125 μg/mL	13.33 ± 0.58	11.00 ± 2.00								
0.250 μg/mL	13.67 ± 0.58	12.33 ± 1.53								
0.625 μg/mL	8.33 ± 2.31*	12.67 ± 2.52								
1.25 μg/mL	11.67 ± 1.53	12.00 ± 1.00								
2.50 μg/mL	12.00 ± 0.00	11.33 ± 1.53								
	Lepidiun	n sativum								
	Germina	ted Seeds								
	Salvia hierosolymitana	Salvia multicaulis var. simplicifolia								
Control	11.17 ± 2.04	11.17 ± 1.47								
0.062 μg/mL	11.33 ± 1.15	11.33 ± 2.08								
0.125 μg/mL	11.67 ± 4.16	8.33 ± 2.08 *								
0.250 μg/mL	12.00 ± 2.00	10.33 ± 2.52								
0.625 μg/mL	12.00 ± 1.73	12.00 ± 2.65								
1.25 μg/mL	11.67 ± 2.08	12.00 ± 1.73								
2.50 μg/mL	12.33 ± 0.58	10.67 ± 0.58								

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 9. Effects of Different Doses of Essential Oils of Salvia hierosolymitana and S. multicaulis var. simplicifolia on Radical Elongation of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

Raphanus sativus								
Radicle Length (cm ± SD)								
Salvia hierosolymitana Salvia multicaulis var. simplicifolia								
Control	3.14 ± 2.24	3.89 ± 2.39						
0.062 μg/mL	2.60 ± 1.59	3.34 ± 2.03						
0.125 μg/mL	2.80 ± 2.01	2.62 ± 1.77***						
0.250 μg/mL	3.37 ± 2.00	3.18 ± 1.31						
0.625 μg/mL	2.71 ± 1.81	4.20 ± 2.62						
1.25 μg/mL	3.04 ± 1.80	2.13 ± 1.97***						
2.50 μg/mL	2.80 ± 2.07	3.29 ± 2.02						
	Lepidium	ı sativum						
	Radicle Leng	th (cm \pm SD)						
	Salvia hierosolymitana	Salvia multicaulis var. simplicifolia						
Control	3.47 ± 1.78	3.21 ± 1.60						

28 Current Bioactive Compounds 2012, Vol. 8, No. 1

(Table 9) Contd....

Lepidium sativum							
Radicle Length (cm ± SD)							
0.062 μg/mL	3.08 ± 1.58	2.64 ± 1.67					
0.125 μg/mL	3.31 ± 2.36	4.05 ± 2.51					
0.250 μg/mL	3.19 ± 1.67	3.61 ± 1.63					
0.625 μg/mL	3.25 ± 1.80	4.12 ± 1.34**					
1.25 μg/mL	3.18 ± 1.60	3.83 ± 1.85					
2.50 μg/mL	2.99 ± 1.51	2.97 ± 1.82					

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 10. Essential Oil Compositions (%) of Salvia africana, Salvia elegans, Salvia greggii, Salvia mellifera and Salvia munzii

Compound	Ki ^a	Ki ^b	S. africana ^c %	S. elegans %	S. greggii %	S. mellifera %	S. munzii %	Identi- fication ^d
Tricyclene	925	1013	0.7	0.2		0.2	0.3	1,2
α-Thujene	928	1035	0.2			0.3		1, 2
α-Pinene	938	1032				9.2		1, 2, 3
Camphene	953	1076		0.2		0.6		1, 2, 3
Sabinene	973	1132	0.4	0.3		0.6		1, 2
β-Pinene	980	1118	0.8	0.7	0.2			1, 2, 3
Myrcene	993	1174				2.0		1, 2
α-Phellandrene	1005	1150				0.1		1, 2, 3
δ-3-Carene	1008	1160	1.6					1, 2, 3
α-Terpinene	1013	1189	1.7	0.1		0.8	0.1	1, 2, 3
o-Cymene	1020	1187		0.1	0.2	0.5	0.1	1, 2, 3
<i>p</i> -Cymene	1025	1280	21.2					1, 2, 3
β-Phellandrene	1029	1218		0.4				1, 2, 3
Limonene	1030	1203	0.4	1.1	0.4	2.2	1.4	1, 2, 3
1,8-Cineole	1034	1213	0.2	0.4	0.2	39.8	0.2	1, 2, 3
(Z)-β-Ocimene	1038	1243	1.1	2.2	0.1	0.4	5.7	1,2
(<i>E</i>)-β-Ocimene	1049	1262		0.1	0.1	0.2	0.2	1,2
γ-Terpinene	1057	1256	15.5	0.1	0.1	2.0	0.2	1, 2, 3
cis-Sabinene hydrate	1063	1556	0.2	0.1	0.1	0.2	0.1	1, 2
trans-Linalool oxide	1085	1455		0.1	0.1		0.1	1, 2
trans- Sabinene hydrate	1093	1474	1.3			1.0		1, 2
cis-Thujone	1105	1430	0.2	38.7	43.4	0.2	33.3	1, 2
2-Phenyl ethyl alcool	1113	1925	0.2		3.3		2.0	1, 2, 3
trans-Thujone	1115	1449	0.4					1, 2
cis-p -Menth-2-en-1-ol	1128	1638	0.2	0.1	0.1			1, 2

```
(Table 10) Contd....
```

Compound	Ki ^a	Ki ^b	S. africana ^c %	S. elegans %	S. greggii %	S. mellifera %	S. munzii %	Identi- fication ^d
Camphor	1145	1532	0.2	4.6	4.2	12.2	27.2	1, 2, 3
Pinocarvone	1165	1587	0.1					1, 2
Borneol	1167	1719	0.4					1, 2, 3
Terpinen -4-ol	1176	1611	1.0	0.7	0.7	2.0	0.6	1, 2, 3
p-Cymen-8-ol	1185	1856	0.1	0.1	0.1	0.1	0.1	1, 2
α-Terpineol	1189	1706	0.5	1.6	2.0	0.7	1.2	1,2
Verbenone	1204	1723	0.1					1, 2
trans-Carveol	1217	1845	0.1			0.1		1,2
Myrtenyl acetate	1227	1698				0.1		1,2
Geraniol	1235	1857		6.5	3.4	0.1	4.0	1,2
Neral	1240	1656		0.7	0.5		0.6	1,2
Carvone	1241	1752			0.1			1, 2, 3
Geranial	1267	1712		1.0	0.5		0.5	1, 2, 3
Bornyl acetate	1284	1597	1.7	1.0	1.2	0.5	0.3	1,2
Thymol	1293	2198	0.8		1.6		1.1	1, 2, 3
Carvacrol	1299	2239	0.5	0.6	0.8		0.4	1, 2, 3
δ-Elemene	1335	1476		0.1	0.1		0.1	1, 2
α-Cubebene	1352	1466	0.2	0.1	0.4		0.1	1,2
(Z)-Isoeugenol	1353	2186	0.2	0.1		0.1	0.1	1,2
Citronellyl acetate	1358	1662			0.1			1,2
Neryl acetate	1367	2097		0.2	0.2		0.1	1, 2
Geranyl acetate	1379	1765		6.9	8.7		2.0	1, 2
β-Elemene	1387	1600		0.4	0.4		0.2	1,2
α-Gurjunene	1408	1529	0.2	0.1				1,2
Longifolene	1411	1576			0.1			1, 2
β-Caryophyllene	1415	1612	0.4	0.2	0.1	0.9	0.1	1,2
Aromadendrene	1422	1628	0.4	0.1		0.1	0.1	1, 2
β-Gurjunene	1431	1632	0.2		0.1	0.1		1,2
γ-Elemene	1434	1650				0.4		1,2
α-Guaiene	1437	1530	1.0	0.5		0.1	0.1	1,2
trans-Bergamotene	1438					0.1		1,2
α-Humulene	1455	1689	0.4	0.3		0.2	0.2	1,2
allo-Aromadendrene	1463	1661		0.2	0.2	0.1		1,2
γ-Gurjunene	1473	1687	0.1					1, 2
Germacrene D	1477	1726	0.1	0.2	0.2	0.1	0.2	1,2
γ-Muurolene	1478	1704		0.1	0.1	0.1	0.1	1,2

(Table	10)	Contd
--------	-----	-------

Compound	Ki ^a	Ki ^b	S. africana ^c %	S. elegans %	S. greggii %	S. mellifera %	S. munzii %	Identi- fication ^d
cis-β-Guaiene	1490	1694	0.2	0.2	0.2	0.2	0.2	1,2
Biciclogermacrene	1491	1756		2.5	1.7		1.1	1, 2
Valencene	1495	1741	0.4	0.5	0.4	0.2	0.3	1,2
α-Selinene	1498	1744				0.4		1, 2
α-Muurolene	1500	1740	0.4	1.8	2.3	0.1	1.4	1,2
β-Himachalene	1505	1706	0.4	0.1	0.1	0.3		1, 2
β-Bisabolene	1510	1743				0.7		1, 2
γ-Cadinene	1515	1776	2.8	1.5	1.3	0.3	1.0	1,2
Cubebol	1517	1957	0.2	0.2		0.1		1,2
cis-Calamenene	1520	1839		0.1	0.1			1, 2
Selina-3,7(11)-diene	1524		1.7			0.5		1,2
δ-Cadinene	1526	1773	4.6	11.5	14.0	0.9	8.9	1,2
α-Cadinene	1535	1745		0.3	0.3		0.2	1,2
Cadina-1,4-diene	1538	1799		0.1	0.1		0.1	1,2
α-Calacorene	1541	1941			0.1			1, 2
Germacrene B	1544	1854	0.2			1.1		1,2
Germacrene D-4-ol	1577	2069	0.5			0.5		1,2
Spathulenol	1578	2150		0.2				1, 2
Caryophyllene oxide	1580	2008	1.3			1.4		1, 2, 3
Globulol	1585	2098	0.2			1.8	0.2	1,2
Viridiflorol	1591	2104	0.2					1,2
β-Oplopenone	1608	2100		0.2	0.1	0.8	0.1	1,2
1-epi-Cubenol	1625	2088	2.9	0.2	0.2		0.1	1,2
τ-Cadinol	1640	2187	13.6	0.9	0.8	0.4	0.3	1,2
τ-Muurolol	1642	2209		1.4	1.1	0.4	0.5	1,2
α-Cadinol	1649	2255				1.9		1,2
α-Eudesmol	1652	2250	10.7					1, 2
Total			95.4	92.9	96.9	90.4	97.5	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c --- = absent; ^d: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

not of garden cress, while *S. africana* oil was inactive to-wards both seeds.

carried out *in vitro* experiments in order to verify their possible phytotoxic effects [26].

Teucrium is a genus of perennial plants which belongs to the Lamiaceae family; it is represented by more than 340 species, distributed mainly in the Mediterranean basin. We analyzed the chemical composition of the essential oils of four different species of *Teucrium* [*T. arduini* L., *T. maghrebinum* Greuter et Burdet, *T. montbretii* Benth. ssp. *heliotropiifolium*, *T. polium* L. ssp. *capitatum* (L.) Arcangeli] and In the four oils, 131 compounds in all were identified (Table 13): 53 for oil of *T. arduini* (86.2% of the total oil), 71 for *T. maghrebinum* (94.0% of the oil), 51 for *T. montbretii* (93.4% of the oil) and 89 for *T. polium* (92.4% of the oil). The oil of *T. arduini* comprised mainly sesquiterpenes (52.2%), particularly sesquiterpene hydrocarbons (30.8%). In particular, 21 sesquiterpene hydrocarbons were present in the oil, with a prevalence of caryophyllene (10.0%) and

Table 11. Effects of Different Doses of Essential oils of Salvia africana, Salvia elegans, Salvia greggii, Salvia mellifera and Salvia munzii on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

Raphanus sativus									
Germination (Number of Seeds)									
	Salvia africana	Salvia elegans	Salvia greggii	Salvia mellifera	Salvia munzii				
Control	9.3 ± 1.1	9.3 ± 1.1	9.3 ± 1.1	9.3 ± 1.1	9.3 ± 1.1				
0.06 μg/mL	9.7 ± 0.6	7.7 ± 2.0	7.3 ± 1.5	10 ± 0	9.7 ± 0.6				
0.125 μg/mL	9.0 ± 1.0	8.7 ± 1.5	8.0 ± 1.7	10 ± 0	10 ± 0				
0.25 μg/mL	8.7 ± 1.5	7.6 ± 0.6	8.7 ± 1.5	8.7 ± 0.6	9.0 ± 1.0				
0.625 μg/mL	9.7 ± 0.6	7.6 ± 0.6	7.6 ± 0.6	8.7 ± 1.5	9.0 ± 1.0				
1.25 μg/mL	8.7 ± 1.1	7.6 ± 0.6	6.3 ± 0.6	8.3 ± 1.5	8.7 ± 1.1				
		Lepidium sa	tivum						
		Germination (Num	ber of Seeds)						
	Salvia africana	Salvia elegans	Salvia greggii	Salvia mellifera	Salvia munzii				
Control	9.3 ± 0.6	9.3 ± 0.6	9.3 ± 0.6	9.3 ± 0.6	9.3 ± 0.6				
0.06 μg/mL	9.7 ± 0.6	8.3 ± 1.5	9.3 ± 1.1	8.7 ± 0.6	9.7 ± 0.6				
0.125 μg/mL	9.7 ± 0.6	8.7 ± 1.5	8.0 ± 1.7	8.7 ± 0.6	9.0 ± 1.0				
0.25 μg/mL	10 ± 0	$6.0 \pm 1.0^{*}$	7.0 ± 1.0	7.0 ± 1.0	10 ± 0				
0.625 μg/mL	10 ± 0	0 ± 0	1 ± 0	$6.0 \pm 1.0^{*}$	0 ± 0				
1.25 μg/mL	9.0 ± 1.0	0 ± 0	0 ± 0	6.3 ± 0.6	0 ± 0				

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 12. Effects of Different Doses of Essential Oils of Salvia africana, Salvia elegans, Salvia greggii, Salvia mellifera and Salvia munzii on Radical Elongation of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus									
Radicle Length (cm ± SD)										
	Salvia africana	Salvia elegans	Salvia greggii	Salvia mellifera	Salvia munzii					
Control	3.4 ± 2.0	3.4 ± 2.0	3.4 ± 2.0	3.4 ± 2.0	3.4 ± 2.0					
0.06 µg/mL	2.6 ± 1.0	2.7 ± 1.3	3.4 ± 1.9	2.4 ± 1.1*	2.1 ± 1.3**					
0.125 μg/mL	3.2 ± 1.6	$2.1 \pm 0.9^{**}$	1.9 ± 1.3	2.6 ± 1.4	$2.3 \pm 0.8^{**}$					
0.25 μg/mL	2.5 ± 1.5	$1.9 \pm 1.1 **$	2.7 ± 1.6	2.9 ± 1.7	$1.9 \pm 1.1^{**}$					
0.625 μg/mL	3.1 ± 2.0	$1.2 \pm 0.9^{***}$	$2.2 \pm 1.2*$	$2.2 \pm 0.9 **$	2.1 ± 1.2**					
1.25 μg/mL	2.5 ± 1.4	$1.4 \pm 0.6^{***}$	$1.3 \pm 0.5 ***$	$1.9 \pm 1.4^{\ast\ast}$	$1.2 \pm 0.7 * * *$					
		Lepidium	sativum							
		Radicle Lengt	h (cm ± SD)							
	Salvia	Salvia	Salvia	Salvia	Salvia					
	africana	elegans	greggii	mellifera	munzii					
Control	2.5 ± 0.9	2.5 ± 0.9	2.5 ± 0.9	2.5 ± 0.9	2.5 ± 0.9					
0.06 μg/mL	4.1 ± 2.4**	$1.7\pm0.8^{\ast\ast}$	2.4 ± 0.9	2.3 ± 0.7	2.3 ± 0.7					

32 Current Bioactive Compounds 2012, Vol. 8, No. 1

(Table 12) Contd....

Lepidium sativum									
Radicle Length (cm ± SD)									
0.125 μg/mL	2.6 ± 0.8	$1.1 \pm 0.8^{***}$	2.9 ± 1.5	3.3 ± 1.9	2.1 ± 0.9				
0.25 µg/mL	2.4 ± 0.9	$0.8 \pm 0.4^{***}$	2.5 ± 0.9	2.4 ± 1.8	$0.8 \pm 0.6^{***}$				
0.625 μg/mL	2.6 ± 0.9	$0.0 \pm 0.0^{***}$	2.5***	2.3 ± 0.9	$0.0 \pm 0.0^{***}$				
1.25 µg/mL	2.6 ± 1.1	$0.0 \pm 0.0^{***}$	$0.0 \pm 0.0^{***}$	2.6 ± 1.5	$0.0 \pm 0.0^{***}$				

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

 Table 13. Essential oil Compositions (%) of T. arduini, T. maghrebinum, T. montbretii ssp. heliotropiifolium and T. polium ssp. capitatum

Compound	Kiª	Ki ^b	T. arduini ^c	T. maghrebinum	T. montbretii ssp. heliotropiifolium	T. polium ssp. capi- tatum	Identification ^d
(E)-2-Hexenal	854	1231		t			1, 2
α-Thujene	930	1014		0.2		0.2	1, 2
α-Pinene	938	1075		1.6		0.2	1, 2, 3
Camphene	953	1076		0.3			1, 2, 3
Benzaldehyde	963	1543		0.2			1, 2, 3
Sabinene	973	1132				0.3	1, 2
1-Octen-3-one	975	1312		0.3			1,2
1-Octen-3-ol	977	1425	0.5	0.3	0.1	0.1	1, 2
β-Pinene	978	1118		1.9			1, 2, 3
Octan-3-ol	992	1394		0.4			1, 2, 3
Myrcene	993	1174		0.5		t	1, 2, 3
2-Pentylfuran	1002	1244	t				1, 2
α-Terpinene	1012	1189					1, 2, 3
<i>p</i> -Cymene	1025	1278				0.5	1, 2, 3
Limonene	1030	1203		4.4			1, 2, 3
Acetophenone	1036	1645			0.1		1,2
(Z)-β-Ocimene	1038	1245					1,2
Phenylacetaldehyde	1048	1663	0.1	0.4	0.1	0.1	1, 2, 3
cis-Linalool oxide, furanoid	1062	1450			0.1	0.5	1,2
cis-Sabinene hydrate	1063	1555				0.2	1,2
trans-Linalool oxide, furanoid	1076	1478			0.1	0.1	1,2
trans-Sabinene hydrate	1093	1474				0.1	1,2
Linalool	1098	1553	1.6	1.3	2.7	1.0	1, 2, 3
α-Campholenal	1128	1497		0.4			1, 2
cis-Sabinol	1135	1789				1.7	1,2
Nopinone	1136	1597		0.1		0.2	1, 2
cis-Verbenol	1144	1667		0.4		2.0	1, 2

```
(Table 13) Contd....
```

Compound	Ki ^a	Ki ^b	T. arduini ^c	T. maghrebinum	T. montbretii ssp. heliotropiifolium	T. polium ssp. capi- tatum	Identification ^d
Sabina ketone	1155	1652				0.4	1, 2
Pinocarvone	1165	1587		0.6		0.1	1, 2
Borneol	1167	1719				0.1	1, 2, 3
Umbellulone	1175	1656				0.3	1, 2
Terpineol-4	1176	1611		0.4		0.5	1, 2, 3
α-Terpineol	1189	1706		0.6	0.2		1, 2, 3
Myrtenal	1193	1648		t		t	1, 2, 3
Myrtenol	1196	1812				1.2	1, 2
cis-Verbenone	1204	1723		0.3		4.0	1, 2
α-Ionene	1208				0.2		1,2
trans-Carveol	1217	1845		0.1			1,2
β-Cyclocitral	1223	1629		t		0.1	1, 2
cis-Carveol	1226	1878				0.6	1, 2
Cumin aldehyde	1232	1804				0.1	1, 2
Carvone	1241	1750		2.5		0.3	1, 2
Thymol	1290	2198	0.2			0.1	1, 2, 3
<i>p</i> -Menth-9-en-1-ol	1291	1945	1.2				1, 2
<i>p</i> -Cymen-7-ol	1293	2067				1.5	1, 2
Dihydroedulan I	1296		0.4	0.1			1, 2
Carvacrol	1297	2239			13.5	9.6	1, 2, 3
<i>p</i> -Methoxyacetophenone	1302	1797	2.3			1.5	1, 2, 3
4-Vinyl guaiacol	1312	2180	1.8	2.0		0.1	1, 2
δ-Elemene	1335	1476		0.6			1, 2
α-Longipinene	1351					0.1	1,2
α-Cubebene	1352	1466	t	0.8	0.4		1, 2
Eugenol	1353	2186	0.5	1.6	0.8	0.5	1, 2, 3
Cyclosativene	1363	1492					1, 2
α-Ylangene	1372	1493			0.3		1,2
α-Copaene	1377	1503	0.6	0.8	0.6	1.0	1, 2
(<i>E</i>)-β-Damascenone	1380	1835	1.1	1.0	0.4	0.2	1, 2
β-Cubebene	1382	1547	0.7	2.5		0.1	1, 2
β-Bourbonene	1385	1535	1.2	1.0	1.8	0.5	1, 2
β-Elemene	1387	1598	0.2			0.2	1, 2
α-Elemene	1396				0.2		1, 2
α-Gurjunene	1408	1529				1.2	1,2
α-Funebrene	1409	1510				0.2	1,2

(Table 13) Contd....

Compound	Kiª	Ki ^b	T. arduini ^c	T. maghrebinum	T. montbretii ssp. heliotropiifolium	T. polium ssp. capi- tatum	Identification ^d
Caryophyllene	1415	1612	10.0	4.9	8.2	10.1	1, 2, 3
(<i>E</i>)-α-Ionone	1419		0.3				1, 2, 3
Aromadendrene	1422	1628	0.2	0.6		0.2	1, 2
β-Gurjunene (Calarene)	1423	1632		0.3		0.3	1, 2
epi-Bicyclosesquiphellandrene	1424		0.6			0.7	1, 2
β-Cedrene	1430	1638			0.9		1, 2
γ-Elemene	1436	1650	0.8	0.1		0.1	1, 2
β-Humulene	1437	1674		t		0.3	1, 2
(<i>E</i>)-β-Farnesene	1452	1673	t	0.3		0.1	1, 2
α-Humulene	1455	1689	3.1	0.9	2.8	3.4	1, 2
allo-Aromadendrene	1463	1661	1.9	0.5	2.8	0.4	1, 2
Germacrene D	1477	1726	5.8	14.3	3.7	3.9	1, 2
γ-Muurolene	1478	1704	1.0	0.3	1.0		1, 2
(<i>E</i>)-β-Ionone	1482	1957	1.4	0.5			1, 2, 3
ar-Curcumene	1483	1784				0.2	1, 2
Dihydroactinidiolide	1486	2354		0.5	1.6		1, 2
α-Amorphene	1487	1679	0.2	0.5	0.5	2.5	1,2
<i>cis</i> -β-Guaiene	1490	1694				1.5	1, 2
Bicyclosesquiphellandrene	1491	1626	0.2		1.8	0.1	1, 2
Bicyclogermacrene	1492	1756	1.9			0.7	1, 2
Valencene	1494	1741			0.5	0.2	1, 2
α-Muurolene	1503	1740	0.5		0.3	0.1	1, 2
γ-Cadinene	1515	1776	0.5	7.5		0.1	1,2
1-endo-Bourbonanol	1520				0.5		1,2
δ-Cadinene	1526	1773		13.5	2.7	3.1	1, 2
Cadina-1,4-diene	1538	1799		0.9		0.2	1, 2
α-Calacorene	1541	1942		0.3	0.2	0.2	1, 2
Germacrene B	1554	1856	t			0.6	1, 2
Ledol	1565	2057	0.8		1.7		1, 2
(E)-Nerolidol	1566	2050		1.4			1,2
Longipinanol	1572			t			1, 2
Germacrene D 4-ol	1577	2069				3.0	1, 2
Spathulenol	1578	2150	5.8	1.8		0.1	1, 2, 3
Caryophyllene oxide	1580	2008	7.7	4.0	8.8	5.0	1, 2, 3
Globulol	1588	2098				0.2	1,2
Viridiflorol	1591	2104	0.7		2.0		1, 2

(Table 1	3) C	ntd			
(Table 1	13) U	mu.	٠	٠	•

Compound	Ki ^a	Ki ^b	T. arduini ^c	T. maghrebinum	T. montbretii ssp. heliotropiifolium	T. polium ssp. capi- tatum	Identification ^d
Widdrol	1600				1.4	0.1	1, 2
Humulene epoxide II	1605	2071			0.9	1.3	1, 2
Cedrenol	1606	2133	4.8		0.1	0.1	1, 2
Torreyol	1645					6.5	1,2
α-Cadinol	1649	2255		1.9	0.7	4.0	1, 2
Caryophyllenol II	1650	2396			3.2	0.1	1, 2
(E)-Isoelemicin	1659	2403	1.6			0.2	1,2
Patchoulol	1664				0.5		1, 2
Cadalene	1677	2256		0.4	0.7	1.6	1, 2
Germacrone	1685			t			1, 2
α-Bisabolol	1686	2219	t	0.8		0.3	1, 2
(Z,E)-Farnesol	1689	2276		0.5		0.2	1, 2
Vulgarol B	1691				0.8		1,2
<i>cis</i> (Z)-α-Bisabolene-epoxide	1698					0.2	1, 2
Heptadecane	1700	1700		0.2		0.1	1, 2, 3
Hexahydrofarnesylacetone	1845	2131	3.8	2.8	2.6	0.8	1, 2
Hexadecanoic acid	1957	2931	9.3	1.8	10.7	0.1	1, 2, 3
13-epi-Manoyl oxide	1963	2388			0.7		1,2
Manoyl oxide	1994				0.5	0.1	1, 2
Kaurene	2048	2399				0.8	1, 2
Heptadecanoic acid	2054	2975	0.1				1, 2, 3
(Z)-9-Octadecenoic acid	2115		0.1				1, 2, 3
(Z,Z)-9,12-Octadecadienoic acid	2122	3157		0.6	2.4	0.5	1, 2, 3
Octadecanoic acid	2172	3402	0.2	0.2			1, 2, 3
Pentacosane	2500	2500	1.0	0.8	1.9	0.7	1, 2
Hexacosane	2600	2600	0.2	0.2			1, 2
Heptacosane	2700	2700	4.0	1.5	1.7	1.9	1, 2
Octacosane	2800	2800	0.6	0.1	0.5		1, 2
Squalene	2829		0.3				1, 2
Nonacosane	2900	2900	2.8	1.0	1.2	2.5	1, 2
Triacontane	3000	3000	0.4	t		0.1	1, 2
Hentriacontane	3100	3100	1.2	0.5	1.3	1.2	1, 2
Total			86.2	94	93.4	92.4	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c --- = absent; t = trace, less than 0.05%; ^d: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

germacrene D (5.8%). Seven oxygenated sesquiterpenoids were present in the oil, being the main constituent caryophyllene oxide (7.7%). Hydrocarbons were quite abundant (10.2%) and were constituted by almost heptacosane and nonacosane. Fatty acids (9.7%) were represented by hexadecanoic acid (9.3%), while hexahydrofarnesylacetone was the main constituent among carbonylic compounds (7.6%). In the oil of T. maghrebinum the most abundant compounds were germacrene D (14.3%), δ -cadinene (13.5%) and γ cadinene (7.5%). On the whole, the oil was constituted mainly by sesquiterpenes (61.9%) and monoterpenes (15.6%). Sesquiterpene hydrocarbons (51.5%) prevailed over oxygen containing sesquiterpenes (10.4%). Twenty-three sesquiterpene hydrocarbons were present in the oil, with a prevalence of germacrene D (14.3%), and also δ -cadinene, γ cadinene and caryophyllene. Among 8 oxygen containing sesquiterpenes, the most abundant was caryophyllene oxide. Among monoterpenes, 6 hydrocarbons accounted for the 8.9% of the total oil, with limonene as the main compound. In the essential oil of T. montbretii, the main fraction was constituted by sesquiterpenes (50.0%). Among these, sesquiterpene hydrocarbons (29.4%) prevailed on oxygen containing sesquiterpenes (20.6%). In the first fraction caryophyllene (8.2%), germacrene D (3.7%), allo-aromadendrene (2.8%) and α -humulene (2.8%) predominated, while among the 11 oxygen containing sesquiterpenes the most abundant compounds were caryophyllene oxide and caryophyllenol II. The phenols were quite abundant (14.3%) and were constituted almost entirely by carvacrol (13.5%). Fatty acids (13.1%) were mainly represented by hexadecanoic acid, while linalool was the main constituent of oxygenate monoterpenes (3.1%). In the oil of *T. polium* sesquiterpenes constituted also the main fraction and accounted for the 55.2% of the total oil with a prevalence of sesquiterpene hydrocarbons (33.9%) over oxygen containing sesquiterpenes (21.3%). Among the 30 sesquiterpene hydrocarbons, caryophyllene (10.1%), germacrene D (3.9%), α -humulene (3.4%) and δ -cadinene (3.1%) were the most abundant. In the other fraction, torrevol (6.5%), carvophyllene oxide (5.0%) and α -cadinol (4.0%) prevailed. Monoterpenes contributed for the 16.2% of the oil with a predominance of oxygen containing monoterpenes (15.0%), particularly cisverbenone and cis-verbenol. The phenolic compounds (10.3%) were represented almost entirely by carvacrol (9.6%).

The oils affected differently the germination (Table 14) and the radicle elongation (Table 15) of radish and garden cress. Radicle elongation seemed to be more affected in comparison to germination. The germination of radish did not appeared sensitive to the four essential oils: only the essential oil of T. polium, at a dose of 1.25 µg/ml, significantly inhibited the germination of radish. The germination of garden cress did not appeared sensitive to the four essential oils, too: only the essential oil of T. arduini, at the highest dose tested, significantly inhibited the germination of garden cress. The radicle elongation of radish was significantly inhibited by the all oils: particularly, the essential oil of T. arduini, at the highest doses tested, inhibited the radicle elongation of radish, and in minor measure, of garden cress. The essential oil of T. montbretii inhibited only the radicle elongation of radish, at the dose of $1.25 \,\mu\text{g/ml}$.

In continuation of our studies, we analyzed the chemical composition of the essential oils from *Hypericum perforatum* (section Hypericum), H. perfoliatum L. (section Drosocarpiun) and H. hircinum L. (section Androsaemum), exploiting also their possible phytotoxic effects on germination and early radicle elongation of radish and garden cress [29]. In the three oils, 111 compounds in all were identified: 53 for the oil of *H. hircinum* (93.7% of the total oil), 55 for *H. per*foratum (96.5% of the total oil) and 63 for H. perfoliatum (98.7% of the total oil). The components are listed in Table 16: the main components of *H. perforatum* were germacrene D (17.1%), β -caryophyllene (12.3%) and γ -muurolene (11.1%). The major compounds of *H. hircinum* essential oil were *cis*- β -guajene (27.5%), δ -selinene (11.4%), *n*-nonane (10.2%). For *H. perfoliatum*, the major compounds were α pinene (25.3%), thymol (15.8%), τ-cadinol (11.5%).

The oils did not affect very much the germination (Table **17**) and radicle elongation (Table **18**) of radish and garden cress: generally, germination of the two types of seeds was less sensitive to the three essential oils than radicle elongation; only the essential oil of *H. hircinum*, at the highest dose tested, inhibited the germination of garden cress. The essential oils of *H. hircinum* and *H. perforatum*, at the highest dose tested, inhibited radicle elongation of radish, while the essential oils of *H. perfoliatum* and *H. hircinum*, at the highest dose tested, significantly inhibited radicle elongation of garden cress.

Recently, we analyzed the chemical composition of the essential oil of *Helichrysum italicum* (Roth) Don ssp. *italicum*, collected in the National Park of Cilento and Diano Valley, examining also its possible phytotoxic effects against germination and early radicle elongation of *Raphanus sativus* and *Lepidium sativum*. Hydrodistillation yielded 0.02% of a pale yellow oil (on a dry mass basis). The volatile components of the essential oil and their percentages are shown in Table **19**: fourty-four compounds were identified, accounting for 90.0% of the total oil. Sesquiterpenes represented 74.3% of the total oil, while the monoterpenoid fraction accounted only for 1.1%. Oxygenated sesquiterpenes (73.6%) prevailed, being the major constituents *iso*-italicene epoxide (16.8%), β -costol (7.5%) and (*Z*)- α -transbergamotol (4.7%).

Tables **20** and **21** report the effects of this oil against germination (Table **20**) and initial radicle elongation (Table **21**) of radish and garden cress: that did not appear significantly sensitive to the essential oil. At doses ranging between of 2.5 and 0.25 μ g/mL the essential oil significantly inhibited the radicle elongation of radish of about 30%. The roots were probably more sensitive than shoots to the phytotoxic activity of the oil: the process of germination was active while the oil probably affected the elongation process.

Consequently, we decided to study the activity of single monoterpenoids, main constituents of previous cited essential oils, in order to evaluate their biological activity linked to their chemical features, towards germination and radicle elongation of selected seeds [24]. The assayed compounds belonged to different chemical groups, e.g., alcohols, phenols, aldehydes, ketones, acetates, hydrocarbons and ethers. We tested the potential phytotoxic activity of each compound on seed germination and growth of the primary

 Table 14. Effects of Different Doses of Essential Oils of T. arduini, T. maghrebinum, T. montbretii ssp. heliotropiifolium and T. polium ssp. capitatum on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

		Raphanus sativus		
		Germinated Seeds		
	T. arduini T. maghrebin		T. montbretii ssp. heliotropiifolium	T. polium ssp. capitatum
Control	6.2±1.2	6.2±1.2	6.2±1.2	6.2±1.2
0.06 μg/mL	4.3±1.2	6.3±0.6	5.0 ± 1.0	5.0±1.0
0.125 μg/mL	4.0±1.7	5.0±1.0	5.3 ± 1.2	4.3±1.2
0.25 μg/mL	6.3±1.2	5.3±0.6	4.7 ± 3.1	4.7±0.6
0.625 μg/mL	4.7±0.6	7.0±1.0	5.0 ± 0.0	5.7±1.5
1.25 μg/mL	5.3±1.5	5.7±1.2	6.7 ± 1.2	3.7±0.6*
2.5 μg/mL	6.0±1.0	3.7±3.2	6.7 ± 0.6	5.7±0.6
		Lepidium sativum		
		Germinated Seeds		
	T. arduini	T. maghrebinum	T. montbretii ssp. heliotropi- ifolium	T. polium ssp. capitatum
Control	9.2±0.8	9.2±0.8	9.2±0.8	9.2±0.8
0.06 μg/mL	8.7±2.3	9.3±0.6	9.0±1.0	9.3±1.2
0.125 μg/mL	9.0±1.0	8.0±0.0	9.0±1.0	9.7±0.6
0.25 μg/mL	10.0±0.0	8.3±0.6	9.0±1.0	8.3±1.2
0.625 μg/mL	8.0±2.0	9.3±0.6	9.3±0.6	9.3±0.6
1.25 μg/mL	8.0±1.0	9.3±0.6	9.7±0.6	9.0±1.7
2.5 μg/mL	7.7±0.6*	9.3±0.6	9.3±0.6	9.3±0.6

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 15. Effects of Different Doses of Essential oils of T. arduini, T. maghrebinum, T. montbretii ssp. heliotropiifolium and T. poliumssp. capitatum on Radical Elongation of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean ofThree Replicates ± SD

Raphanus sativus									
Radicle Length (cm ± SD)									
T. arduini T. maghrebinum T. montbretii ssp. heliotropiifolium T. polium ss									
Control	0.5±0.3	0.5±0.3	0.5±0.3	0.5±0.3					
0.06 μg/mL	0.3±0.2	0.2±0.2***	0.4 ± 0.2	0.5±0.2					
0.125 μg/mL	0.4±0.1	0.4±0.3	0.4 ± 0.2	0.5±0.3					
0.25 μg/mL	0.4±0.2	0.4±0.2	0.5 ± 0.3	0.6±0.3					
0.625 µg/mL	0.3±0.2*	0.5±0.3	0.4 ± 0.2	0.3±0.2*					
1.25 μg/mL	0.3±0.2*	0.4±0.2	$0.4 \pm 0.2*$	0.4±0.2					
2.5 μg/mL	0.3±0.2*	0.4±0.2	0.4 ± 0.3	0.4±0.2					

(Table 15) Contd....

Lepidium sativum									
Radicle Length (cm ± SD)									
T. arduini T. maghrebinum T. montbretii ssp. heliotropi- ifolium T. polium ssp. cap									
Control	2.2±1.2	2.2±1.2	2.2±1.2	2.2±1.2					
0.06 μg/mL	2.4±1.1	1.7±1.2*	2.1±1.1	2.3±1.1					
0.125 µg/mL	2.3±0.9	1.9±1.0	2.2±0.9	2.7±1.2					
0.25 μg/mL	2.2±1.1	2.1±1.1	2.4±1.3	1.8±0.9*					
0.625 µg/mL	2.3±1.2	2.4±1.0	2.5±0.9	2.2±1.0					
1.25 μg/mL	2.4±1.0	1.9±0.9	2.2±1.1	1.9±1.1					
2.5 μg/mL	1.7±1.0*	2.3±1.0	2.2±0.9	2.5±0.9					

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 16. Essential oil Compositions (%) of H. perforatum, H. hircinum and H. perfoliatum

Compound	Ki ^a	Ki ^b	H. perforatum ^c %	H. hircinum %	H. perfoliatum %	Identification^d
<i>n</i> -Octane	801	804		0.2	0.8	1,2
2-Methyloctane	860		5.2		0.2	1,2
<i>n</i> -Nonane	903	908	1.0	10.2	9.4	1,2
α-Pinene	938	1032	0.3	2.2	25.3	1, 2, 3
Verbenene	951	1753			t	1, 2
Camphene	953	1076		0.4	0.1	1, 2, 3
3-Methyl-nonane	971	965		0.4	0.5	1, 2
β-Pinene	980	1118	2.8	4.3	2.0	1, 2, 3
6-Methyl-5-hepten-2-one	984	1319			t	1,2
β-Myrcene	993	1174	0.3	0.2	0.8	1, 2, 3
<i>n</i> -Decane	1000	1051	0.2		0.3	1, 2, 3
α-Terpinene	1012	1188			0.1	1, 2, 3
<i>p</i> -Cymene	1025	1280	0.7	0.3	0.2	1, 2, 3
Limonene	1030	1203	0.4	5.1	0.5	1, 2, 3
1,8-Cineole	1034	1213			3.9	1, 2
Z-(β)-Ocimene	1039	1246			t	1, 2
(<i>E</i>)-β-Ocimene	1049	1280	0.3	0.1	t	1, 2, 3
Benzeneacetaldehyde	1052			0.1		1, 2
γ-Terpinene	1057	1255		0.1	0.2	1, 2, 3
Terpinolene	1086	1265		0.2	0.1	1, 2
<i>p</i> -Cymenene	1092		0.2			1, 2, 3
2-Nonanone	1094	1428	-	0.1		1, 2

Compound	Ki ^a	Ki ^b	H. perforatum ^c %	H. hircinum %	H. perfoliatum %	Identification ^d
Linalool	1097	1553	0.6	0.1	0.1	1, 2, 3
β-Fenchol	1098	1120		0.1	t	1,2
<i>n</i> -Undecane	1100	1100	6.3	2.0	3.8	1, 2, 3
n-Nonanale	1105			0.3	0.1	1, 2, 3
α-Campholene aldehyde	1126			0.1		1, 2
Campholenal	1128	1497	0.5			1, 2
trans-Pinocarveol	1138	1654	0.2	1.5	0.2	1, 2
trans-Limonene oxide	1139	1442		t		1, 2
Camphor	1145	1532		0.2	0.1	1, 2, 3
Pinocarvone	1165	1587	0.1	0.3	-	1,2
Borneol	1167	1719		0.1	t	1, 2, 3
iso-Nonanol	1171		0.3			1, 2
Terpinen-4-ol	1176	1611	0.4	0.2		1, 2, 3
p-Cimen-8-ol	1185	1864	0.2			
α-Terpineol	1189	1706	0.3	1.2	0.4	1, 2, 3
Myrtenal	1193	1648		1.7		1, 2
Myrtenol	1196	1804	0.1	0.7		1, 2
n-Decanale	1210			0.2	0.1	1,2
trans-Carveol	1217	1845		0.6		1, 2
Verbenone	1218	1717		0.5		1, 2
cis-Carveol	1226	1878	0.5	0.3		1,2
Carvone	1241	1752	0.1	0.4		1, 2, 3
Geraniol	1255	1857	t	0.5		1, 2
Anethole	1262	1780	0.1			1, 2, 3
2-Methyldodecane	1266		0.1			1, 2
Thymol	1293	2198			15.8	1, 2, 3
<i>n</i> -Tridecane	1300	1312	1.1			1, 2
α-Cubebene	1352	1466	0.1			1, 2
α-Longipinene	1355		0.2		0.7	1,2
Cyclosativene	1363	1492			t	1,2
α-Ylangene	1372	1493			t	1, 2
β-Patchoulene	1377	1488		-	t	1,2
α-Copaene	1377	1497	0.3	0.5	1.0	1, 2
Isoledene	1382	1367		0.2		1, 2
β-Bourbonene	1385	1535	0.1	0.5	0.1	1, 2
β-Elemene	1387	1600	0.1		0.2	1,2

De Martino et	al.
---------------	-----

Compound	Ki ^a	Ki ^b	H. perforatum ^c %	H. hircinum %	H. perfoliatum %	Identification ^d
β-Maaliene	1392	2161		0.2		1,2
α-Gurjunene	1408	1529		4.0	0.2	1,2
α-Caryophyllene	1444	1680	0.3			1, 2
β-Caryophyllene	1418	1612	12.3	3.0	1.1	1,2
β-Copaene	1426	1430	0.3			1, 2
β-Gurjunene	1432	1612	0.2	1.9	t	1, 2
Aromadendrene	1437	1628	0.8	0.1	0.6	1, 2
α-Himachalene	1440		0.9			1,2
(<i>E</i>)-β-Farnesene	1452	1673	7.0	1.3		1, 2
α-Humulene	1455	1689	1.0	0.3	1.1	1, 2
allo-Aromadendrene	1463	1661		0.8	0.5	1,2
trans-Cadina-1(6),4-diene	1472			1.7		1, 2
γ-Gurjunene	1473	1687		0.2		1, 2
Dodecanol	1474	1973	1.8			
β-Selinene	1475	1715	0.2	0.4		1,2
Germacrene D	1477	1726	17.1		2.1	1,2
γ-Muurolene	1478	1704	11.1	1.0	1.0	1, 2
<i>E</i> -(β)-Ionone	1482	1957			1.0	1,2
δ-Selinene	1486			11.4		1, 2
<i>cis</i> -β-Guajene	1490	1694		27.5		1,2
Viridiflorene	1491	1695			1.0	1, 2
Biciclogermacrene	1492	1756	4.9		t	1, 2
α-Selinene	1498	1744	1.0	0.4		1,2
α-Muurolene	1503	1740	0.6		0.5	1, 2
(<i>E</i> , <i>E</i>)-α-Farnesene	1508	1758	0.2	0.7	0.2	1, 2
γ-Cadinene	1515	1776	0.6		0.9	1, 2
δ-Cadinene	1526	1773	0.4	0.2	2.1	1, 2
α-Cadinene	1532	1745			t	1, 2
(Z)-3-Exenil-benzoate	1533		0.4			1, 2
Cadina-1,4-diene	1538	1799			t	1, 2
α-Calacorene	1541	1941			0.4	1, 2
Ledol	1565	2057			0.4	1,2
β-Calacorene	1566	1942		0.1		1,2
trans-Nerolidol	1566	2050	0.7		0.2	1, 2
Spathulenol	1578	2150	3.8		1.4	1,2
Caryophyllene oxide	1580	2008	0.4	3.2	2.1	1,2

(Table 10) Contu	(Table	16)	Contd
------------------	--------	-----	-------

Compound	Kiª	Ki ^b	H. perforatum ^c %	H. hircinum %	H. perfoliatum %	Identification ^d
iso-Aromadendrene epoxide	1590				0.4	1, 2
Viridiflorol	1591	2104		0.9		1, 2
allo-Aromadendrene oxide	1595	2054			0.9	1, 2
Humulene epoxide	1605	2011	1.7			1, 2
δ-Cadinol	1618	2233	-		0.1	1,2
1-epi-Cubenol	1625	2088	0.6			1, 2
τ-Cadinol	1640	2187			11.5	1, 2
α-Muurolol	1643	2233			t	1, 2
Cubenol	1644	2080			0.4	1, 2
α-Cadinol	1649	2255			0.9	1, 2
α-Bisabolol	1668	2219			0.2	1, 2
<i>n</i> -Tetradecanol	1676	2179	3.5			1, 2
8-Cedren-13-ol	1687	2359			0.2	1, 2
Benzyl benzoate	1767	2563	0.1			1, 2
n-Hexadecanol	1879	2342	0.3			1, 2
n-Nonadecane	1900	1900	0.2			1, 2
epi-Cubebol	1900	1914			0.3	1, 2
Total			96.5	93.7	98.7	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c --- = absent; t = trace, less than 0.05%; ^d: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

Table 17. Effects of Different doses of Essential oils of H. perforatum, H. perfoliatum and H. hircinum on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus							
	Germin	ated Seeds						
	H. perforatum H. perfoliatum H. hircinum							
Control	9.3±1.0	9.3±1.0	9.3±1.0					
0.06 μg/mL	10.0±0.0	8.7±0.6	7.0±1.5					
0.125 μg/mL	9.7±0.6	8.0±1.0	7.0±2.0					
0.25 μg/mL	9.0±1.0	9.3±1.2	7.9±1.5					
0.625 μg/mL	9.7±0.6	9.0±1.0	9.0±2.0					
1.25 μg/mL	9.3±0.6	9.7±0.6	7.9±3.0					
2.5 μg/mL	8.7±0.6	9.3±1.5	7.5±1.0					
	Lepidiu	m sativum						
	Germin	ated Seeds						
	H. perforatum	H. perfoliatum	H. hircinum					
Control	8.7±1.2	8.7±1.2	8.7±1.2					
0.06 μg/mL	10.0±0.0	9.0±1.0	8.7±2.3					

42 Current Bioactive Compounds 2012, Vol. 8, No. 1

(Table 17) Contd....

Lepidium sativum						
Germinated Seeds						
0.125 μg/mL	9.7±0.6	9.7±0.6	9.0±1.0			
0.25 μg/mL	10.0±0.0	9.3±0.6	10.0±0.0			
0.625 μg/mL	10.0±0.0	8.9±0.6	8.0±2.0			
1.25 μg/mL	10.0±0.0	10.0±0.0	8.0±1.0			
2.5 μg/mL	10.0±0.0	9.7±0.6	7.7±0.6*			

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's t test.

Table 18. Effects of Different Doses of Essential oils of H. perforatum, H. perfoliatum and H. hircinum on Radicle Elongation of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus						
Radicle Length (cm ± SD)							
	H. perforatum	H. perfoliatum	H. hircinum				
Control	9.0±4.6	9.0±4.6	9.0±4.6				
0.06 µg/mL	8.4±4.7	8.3±4.0	5.4±0.2*				
0.125 μg/mL	9.4±4.7	10.4±4.7	7.2±0.2				
0.25 μg/mL	7.9±4.5	9.2±4.0	7.2±0.2				
0.625 μg/mL	6.8±3.6*	5.3±3.3***	5.4±0.2*				
1.25 μg/mL	8.2±3.8	8.5±4.9	5.4±0.2*				
2.5 μg/mL	6.3±3.9*	7.2±3.9	5.4±0.2*				
Lepidium sativum							
	Radicle Leng	th (cm \pm SD)					
	H. perforatum	H. perfoliatum	H. hircinum				
Control	7.5±2.8	7.5±2.8	7.5±2.8				
0.06 µg/mL	8.3±3.2	7.2±3.1	8.1±1.1				
0.125 μg/mL	7.1±3.2	7.1±3.0	7.8±0.9				
0.25 μg/mL	6.2±3.0	7.3±2.6	7.8±1.1				
0.625 μg/mL	7.6±2.3	7.2±2.9	7.8±1.2				
1.25 µg/mL	7.4±2.7	7.5±2.8	8.2±1.0				
2.5 μg/mL	7.3±3.1	5.8±3.2*	5.8±1.0*				

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

radicle elongation of radish and garden cress (Tables **22** and **23**). Generally, the germination of radish seeds is more affected by monoterpenes than garden cress seeds. In particular, at 10^{-3} M, a rather high concentration in the field of natural compounds, the substances provoked, in a significant way, inhibition on germination with this order of potency: geraniol > carvone > borneol > β -citronellol > α -terpineol > camphor > menthol > menthone > limonene > citral. Carvone and geraniol affected the germination of radish seeds with a 96% inhibition.

Menthone, limonene, carvone and camphor also inhibited, in a significant way, the germination of these seeds at 10^{-4} M. At the lowest doses assayed, the radish seeds were significantly inhibited only by 1,8-cineole. The germination of garden cress was less sensitive to inhibition by monoterpenes. In the matter of radicle elongation, monoterpenes affected both seeds, in a similar way. At 10^{-3} M, carvone, borneol, limonene and camphor were the most active compounds in inhibition of radish seedling growth, provoking an inhibition from 44% (camphor) to 79% (carvone). Carvone,

Table 19. Essential Oil Composition (%) of Helichrysum italicum spp. italicum

Compound		Ki ^b	Helichrysum italicum spp. italicum %	Identification ^c	
Menthol	1165	1652	1.1	1,2,3	
Tetradecene	1391	1433	0.7	1,2	
(Z)-Caryophyllene	1408	1666	0.1	1,2	
Pentadecane	1499	1500	0.9	1,2	
α-Bisabolene	1504	1743	0.6	1,2	
iso-Italicene epoxide	1510	2022	16.8	1,2	
cis-Cadinene ether	1551		0.5	1,2	
(E)-Nerolidol	1565	2050	0.5	1,2	
Caryophyllenyl alcohol	1568	2001	1.4	1,2	
<i>n</i> -Tridecanol	1572	2077	1.4	1,2	
Neryl isovalerate	1581	1871	0.5	1,2	
Caryophyllene oxide	1585	2008	1.4	1,2	
Octanedioic acid, diethyl ester	1588		0.9	1,2	
Hexadecene	1592	1654	9.8	1,2	
Guaiol	1600	2108	2.3	1,2	
cis-Isolongifolanone	1609	9 1.4		1,2	
Isolongifolan-7-α-ol	1615		0.9	1,2	
10- <i>epi</i> -γ-Eudesmol	1617	2127	0.9	1,2	
(Z)-Bisabolol-11-ol	1620		1.4	1,2	
1,10-di-epi-Cubenol	1627	2250	2.3	1,2	
γ-Eudesmol	1635	2185	1.4	1,2	
allo-Aromadedrene epoxide	1641		2.3	1,2	
β-Eudesmol	1648	2258	1.4	1,2	
α-Eudesmol	1655	2250	0.9	1,2	
4α-H-Eudesm-11-en-4-ol	1657	2274	1.4	1,2	
α-Betulenol	1662		1.8	1,2	
(E)-Bisabol-11-ol	1668		0.5	1,2	
14-Hydroxy-9- <i>epi</i> -(<i>E</i>)-caryophyllene	1670	2357	0.5	1,2	
β-Bisabolol	1675	2170	0.5	1,2	
(Z)-Nerolidyl acetate	1678		2.3	1,2	
epi-a-Bisabolol	1682	2400	0.9	1,2	
8-Cedren-13-ol	1688		4.2	1,2	
(Z)-a-trans-Bergamotol	1697	2247	4.7	1,2	
Selin-7(11)-en-4-ol	1699	2273	1.4	1,2	
Amorpha-4,9-dien-14-al	1704		2.8	1,2	
Sesquiterpene	1709		1.4	1,2	

44 Current Bioactive Compounds 2012, Vol. 8, No. 1

(Table 19) Contd....

Compound	Kiª	Ki ^b	Helichrysum italicum spp. italicum %	Identification ^c
(2E,6Z)-Farnesal			1.4	1,2
(E)-Nerolidyl acetate			0.9	1,2
Guaiol acetate	1726		0.5	1,2
6 <i>S</i> ,7 <i>R</i> -Bisabolone	1750		2.3	1,2
2,6-Bisaboladien-12-ol	1758	2580	2.3	1,2
β-Costol	1768	2606	7.5	1,2
Total			90.0	

The analyses were carried out in triplicate; ^a: Kovats retention index on HP-5 MS column; ^b: Kovats retention index on HP Innowax; ^c: Identification based on: 1 = Kovats retention index, 2 = mass spectrum, 3 = coinjection with authentic compound.

Table 20. Effects of Different doses of Essential oil of Helichrysum italicum spp. italicum on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

Raphanus sativus					
Germinated Seeds					
	Helichrysum italicum ssp. italicum				
Control	9.3 ± 1.0				
0.06 µg/mL	8.3 ± 0.6				
0.125 µg/mL	9.3 ± 2.1				
0.25 µg/mL	9.0 ± 1.0				
0.625 µg/mL	8.0 ± 1.0				
1.25 µg/mL	9.0 ± 0.0				
2.5 μg/mL	9.7 ± 0.6				
	Lepidium sativum				
	Germinated Seeds				
Control	8.7 ± 1.2				
0.06 µg/mL	9.3 ± 1.2				
0.125 μg/mL	9.7 ± 0.6				
0.25 μg/mL	8.7 ± 0.6				
0.625 μg/mL	9.7 ± 0.6				
1.25 μg/mL	9.7 ± 0.6				
2.5 μg/mL	8.7 ± 0.6				

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

limonene and *p*-cymene inhibited the radicle elongation of garden cress also at 10^{-4} M. At 10^{-3} M, borneol, thymol, carvacrol, citronellol and camphor affected the radicle growth of garden cress, in a significant way; carvone inhibited significantly the seedling growth of these seeds both at 10^{-3} M and 10^{-4} M; also at 10^{-6} M, this compound provoked a 36% inhibition of seedling growth. As well as for the rad-

ish, at the lowest concentrations, 1,8-cineole inhibited, in a significant way, the primary root growth.

Alcohols (borneol, citronellol, geraniol, α -terpineol) appeared as the most inhibitory compounds (10^{-3} M), followed by ketones (carvone, menthone, camphor) and aldehydes, against germination of tested seeds. Alcohols and ketones were the most inhibitory on both radish and garden cress

Table 21. Effects of Different doses of Essential Oil of Helichrysum italicum spp. italicum on Radicle Elongation of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus				
Radicle Length (cm ± SD)					
	Helichrysum italicum ssp. italicum				
Control	9.0 ± 4.6				
0.06 μg/mL	8.4 ± 4.1				
0.125 μg/mL	8.6 ± 4.0				
0.25 μg/mL	6.6 ± 4.7 *				
0.625 μg/mL	7.6 ± 3.7				
1.25 μg/mL	6.5 ± 3.3 *				
2.5 μg/mL	6.4 ± 3.5 **				
Lepidium sativum					
	Radicle Length (cm ± SD)				
	Helichrysum italicum ssp. italicum				
Control	7.5 ± 2.8				
0.06 μg/mL	7.0 ± 2.5				
0.125 μg/mL	6.5 ± 3.3				
0.25 μg/mL	6.7 ± 3.0				
0.625 μg/mL	6.2 ± 3.3				
1.25 μg/mL	6.4 ± 1.6				
2.5 μg/mL	6.2 ± 2.6				

The values, followed by * (*p < 0.05; **p < 0.01, ***p < 0.001), are statistically different according to the Student's *t* test.

Table 22. Effects of Different Concentrations of Monoterpenes on Germination of Raphanus sativus and Lepidium sativum. The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus				Lepidium sativum			
	Germinated Seeds				Germinated Seeds			
	[10 ⁻⁶] M	[10 ⁻⁵] M	[10 ⁻⁴] M	[10 ⁻³] M	[10 ⁻⁶] M	[10 ⁻⁵] M	[10 ⁻⁴] M	[10 ⁻³] M
Control	12.4 ± 1.4	12.4 ± 1.4	12.4 ± 1.4	12.4 ± 1.4	14.4 ± 0.5	14.4 ± 0.5	14.4 ± 0.5	14.4 ± 0.5
(-)-Borneol	10.0 ± 0.0	10.5 ± 2.1	12.5 ± 2.1	$2.0\pm0.0^{\ast\ast\ast}$	14.0 ± 1.4	13.5 ± 0.7	13.5 ± 0.7	13.5 ± 0.7
(±)-Camphor	13.5 ± 2.1	13.0 ± 0.0	$9.0 \pm 1.4*$	6.0 ± 1.4**	15.0 ± 0.0	$12.5 \pm 0.7 **$	13.5 ± 0.7	$13.0 \pm 1.4*$
(±)-Citronellal	11.5 ± 0.7	10.5 ± 0.7	13.0 ± 1.4	11.0 ± 1.4	14.5 ± 0.7	14.0 ± 1.4	15.0 ± 0.0	15.0 ± 0.0
(±)-Menthol	11.0 ± 4.2	11.5 ± 2.1	11.0 ± 2.8	6.5 ± 2.1**	13.5 ± 0.7	13.5 ± 2.1	14.5 ± 0.7	14.0 ± 1.4
(±)-β-Citronellol	10.5 ± 0.7	10.0 ± 1.4	13.0 ± 1.4	3.5 ± 2.1***	15.0 ± 0.0	14.0 ± 1.4	15.0 ± 0.0	13.0 ± 1.4
(R)-(-)Carvone	10.5 ± 0.7	9.0 ± 2.8	$8.0 \pm 2.8*$	0.5 ± 0.7***	14.5 ± 0.7	13.5 ± 0.7	14.5 ± 0.7	9.5 ± 2.1***
1,8-Cineole	9.5 ± 0.7	12.5 ± 0.7	10.5 ± 0.7	11.0 ± 2.8	14.0 ± 1.4	14.0 ± 1.4	13.5 ± 0.7	14.0 ± 1.4
Camphene	10.0 ± 2.8	11.5 ± 2.1	11.5 ± 0.7	13.5 ± 2.1	13.5 ± 0.7	13.5 ± 0.7	13.0 ± 1.4	13.5 ± 0.7
Carvacrol	11.5 ± 3.5	12.5 ± 2.1	13.0 ± 1.4	10.5 ± 0.7	14.0 ± 1.4	15.0 ± 0.0	14.0 ± 0.0	13.5 ± 0.7

(Table 22) Contd....

		Rapha	enus sativus		Lepidium sativum			
	Germinated Seeds				Germinated Seeds			
	[10 ⁻⁶] M	$[10^{-5}]$ M	[10 ⁻⁴] M	[10 ⁻³] M	[10 ⁻⁶] M	[10 ⁻⁵] M	[10 ⁻⁴] M	[10 ⁻³] M
Citral	11.5 ± 0.7	11.0 ± 1.4	12.5 ± 0.7	$8.0 \pm 1.4*$	15.0 ± 0.0	15.0 ± 0.0	14.5 ± 0.7	15.0 ± 0.0
Estragole	12.5 ± 0.7	12.0 ± 2.8	12.5 ± 0.7	11.5 ± 2.1	12.5 ± 2.1	15.0 ± 0.0	14.0 ± 1.4	15.0 ± 0.0
Geraniol	9.5 ± 0.7	12.5 ± 0.7	10.0 ± 0.0	0.5 ± 0.7***	14.5 ± 0.7	15.0 ± 0.0	15.0 ± 0.0	6.0 ± 1.4***
Geranyl acetate	10.5 ± 0.7	11.5 ± 0.7	11.0 ± 0.0	9.5 ± 2.1	13.5 ± 2.1	14.5 ± 0.7	14.5 ± 0.7	13.5 ± 0.7
Limonene	11.5 ± 2.1	8.5 ± 4.9	$8.0 \pm 2.8*$	7.0 ± 1.4**	$13.0 \pm 1.4*$	14.5 ± 0.7	15.0 ± 0.0	11.5 ± 3.5*
Linalool	12.0 ± 2.8	9.5 ± 2.1	10.5 ± 2.1	10.0 ± 1.4	14.5 ± 0.7	13.0 ± 1.4	13.5 ± 0.7	14.0 ± 0.0
Linalyl acetate	13.0 ± 0.0	11.5 ± 3.5	12.5 ± 0.7	11.0 ± 1.4	14.0 ± 1.4	15.0 ± 0.0	14.0 ± 0.0	15.0 ± 0.0
Menthone	10.0 ± 0.0	11.0 ± 1.4	$7.0 \pm 1.4 **$	6.5 ± 2.1**	13.5 ± 2.1	13.5 ± 0.7	14.0 ± 1.4	13.5 ± 0.7
Myrcene	13.0 ± 1.4	14.0 ± 1.4	14.0 ± 1.4	14.0 ± 0.0	14.0 ± 0.0	14.5 ± 0.7	14.5 ± 0.7	14.5 ± 0.7
<i>p</i> -Cymene	13.0 ± 2.8	10.5 ± 2.1	11.5 ± 2.1	13.0 ± 1.4	14.0 ± 0.0	14.0 ± 0.0	13.5 ± 2.1	13.5 ± 0.7
Thymol	11.5 ± 2.1	13.5 ± 0.7	12.0 ± 1.4	10.5 ± 0.7	15.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0	7.0 ± 1.4
a-Phellandrene	11.0 ± 0.0	12.5 ± 0.7	11.5 ± 2.1	13.0 ± 0.0	15.0 ± 0.0	14.5 ± 0.7	15.0 ± 0.0	14.0 ± 0.0
α-Pinene	13.0 ± 1.4	13.0 ± 1.4	11.5 ± 0.7	12.5 ± 0.7	15.0 ± 0.0	14.5 ± 0.7	15.0 ± 0.0	14.5 ± 0.7
α-Terpinene	13.0 ± 2.8	12.0 ± 0.0	13.0 ± 0.0	13.0 ± 0.0	15.0 ± 0.0	14.5 ± 0.7	14.5 ± 0.7	15.0 ± 0.0
α-Terpineol	12.5 ± 2.1	13.5 ± 2.1	14.0 ± 0.0	$5.0 \pm 0.0 ***$	15.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0	14.5 ± 0.7
α-β Thujone	12.0 ± 0.0	12.0 ± 1.4	12.0 ± 1.4	10.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0
β-Pinene	13.5 ± 2.1	13.0 ± 1.4	11.0 ± 0.0	12.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0	15.0 ± 0.0
γ-Terpinene	11.0 ± 1.4	14.0 ± 1.4	14.5 ± 0.7	14.0 ± 0.0	15.0 ± 0.0	14.5 ± 0.7	14.5 ± 0.7	14.5 ± 0.7

The values, followed by * (*p < 0.05; ** p < 0.01, *** p < 0.001), are statistically different according to the Student's *t* test.

radicle growth. On the whole, different degrees of inhibition were observed when compared with control groups, whereas oxygenated monoterpenes have more potent herbicidal effects on seed germination as compared with monoterpene hydrocarbons. As shown in Tables 22 and 23, monoterpene hydrocarbons have less or no phytotoxic effects on the seed germination of two seeds. Moreover, alcohol derivatives of oxygenated monoterpenes were more phytotoxic than their acetate derivatives. In some cases, monoterpenes did not affect radicle elongation of two seeds assayed, but they inhibited only seed germination: in fact, geraniol, α -terpineol, menthone, menthol, citral, at the highest concentrations tested, inhibited significantly germination of seeds. On the other hand, carvacrol, thymol, p-cymene and 1,8-cineole inhibited the seedling growth of the seeds, but they did not affect their germination.

In several cases, some doses of the same oil are inhibitory, other stimulatory. The concept of a generalized "lowdose stimulation-high dose inhibition" or "hormesis" was gradually supported by field observations [30]. There is evidence that exposure to novel environments or a toxic substance increases the variance of phenotypic traits such as enzyme activity, morphological features and growth. However, the reasons for such increases and their adaptive implications remain unclear [27]. Our data agree with the literature on inhibitory activity exerted by essential oils of Mediterranean species on seed germination and radical elongation and in general on vegetation pattern. It has been documented that some essential oils isolated possess potent herbicidal effects on weed germination and seedling growth of various plant species [16, 31-34].

Dudai and coworkers [35] reported that monoterpenes act on seeds at very low levels, and that their content in various parts of wheat seeds differs. In particular, among the Lamiaceae family, many species release phytotoxic monoterpenes that hinder the development of herbaceous species among which β -pinene, limonene, *p*-cymene, 1,8-cineole [16]. A dramatic example of zones free of annual herbs, influenced by terpenoids, was before demonstrated by Muller [12], in California chaparral, in the areas surrounding patches of Salvia leucophylla L. (Labiatae) and Artemisia californica Lee. Volatile monoterpenoids emanating from leaves of Salvia leucophylla L. are responsible for anatomical and physiological changes occurring in herb seedlings which were exposed to vapors [36]. The absence of a variety of intact organelles and the presence of membrane fragments indicate that structural breakdown and decomposition occur within inhibited roots [37].

 Table 23. Effects of Different Concentrations of Monoterpenes on Radical Elongation of Raphanus sativus and Lepidium sativum.

 The Data are Expressed as Mean of Three Replicates ± SD

	Raphanus sativus				lepidium sativum			
	Radicle Length (cm ± SD)				Radicle Length (cm ± SD)			
	[10 ⁻⁶] M	[10 ⁻⁵] M	[10 ⁻⁴] M	[10 ⁻³] M	[10 ⁻⁶] M	[10 ⁻⁵] M	[10 ⁻⁴] M	[10 ⁻³] M
Control	1.8 ± 0.4	1.8 ± 0.4	1.8 ± 0.4	1.8 ± 0.4	1.9 ± 0.2	1.9 ± 0.2	1.9 ± 0.2	1.9 ± 0.2
(-)-Borneol	1.6 ± 0.8	1.6 ± 1.1	1.9 ± 1.1	$0.5 \pm 0.1 **$	1.3 ± 0.7	$1.1\pm0.6*$	1.6 ± 0.7	$0.2\pm0.1^{\ast\ast\ast}$
(±)-Camphor	1.6 ± 1.0	2.1 ± 0.9	1.2 ± 0.8	$1.0 \pm 0.5*$	1.6 ± 0.9	1.7 ± 0.7	1.5 ± 0.6	$1.1 \pm 0.5 **$
(±)-Citronellal	1.8 ± 1.1	1.5 ± 0.8	2.0 ± 1.2	1.7 ± 1.4	2.1 ± 0.6	2.0 ± 0.7	2.0 ± 0.7	1.8 ± 0.7
(±)-Menthol	1.9 ± 0.7	1.9 ± 0.8	1.7 ± 1.0	1.5 ± 0.8	1.6 ± 1.0	1.9 ± 0.7	1.8 ± 0.9	1.4 ± 0.6
(±)-β-Citronellol	1.5 ± 0.9	1.4 ± 0.7	1.4 ± 0.7	1.1 ± 0.8	2.0 ± 1.2	1.6 ± 0.8	1.7 ± 0.6	$0.7 \pm 0.5^{***}$
(R)-(-)Carvone	$1.0 \pm 0.5 **$	1.4 ± 0.8	$0.9 \pm 0.5 **$	$0.1 \pm 0.1 ***$	$1.3 \pm 0.6*$	1.2 ± 0.7	$0.8 \pm 0.4 ***$	$0.4 \pm 0.2^{***}$
1,8-Cineole	$0.9 \pm 0.5 **$	$0.9\pm0.6^{\ast\ast}$	1.1 ± 0.8	1.2 ± 0.7	$1.2 \pm 0.5 **$	$1.2\pm0.6*$	1.5 ± 0.8	1.8 ± 1.0
Camphene	1.6 ± 0.8	1.6 ± 1.2	1.5 ± 0.7	1.2 ± 0.8	1.3 ± 0.7	2.1 ± 0.9	1.7 ± 0.8	1.9 ± 0.9
Carvacrol	2.2 ± 1.6	2.0 ± 1.3	2.0 ± 1.3	1.8 ± 1.0	2.1 ± 0.7	1.8 ± 0.8	1.7 ± 0.8	$0.6 \pm 0.3^{***}$
Citral	$1.3 \pm 0.4*$	2.3 ± 1.3	2.1 ± 1.1	1.3 ± 0.8	1.7 ± 0.7	1.7 ± 0.9	1.9 ± 0.7	1.4 ± 0.6
Estragole	1.3 ± 0.7	1.4 ± 0.9	1.3 ± 0.9	1.3 ± 0.8	1.5 ± 1.0	1.6 ± 0.8	1.3 ± 0.6	1.3 ± 0.9
Geraniol	1.4 ± 0.7	1.8 ± 0.9	1.7 ± 0.9	0.3 ± 0.5	2.1 ± 0.6	1.5 ± 0.7	1.6 ± 0.8	0.8 ± 0.4
Geranyl acetate	1.4 ± 0.8	1.4 ± 0.8	1.3 ± 0.5	1.2 ± 0.4	1.8 ± 0.7	1.3 ± 0.7	1.6 ± 0.8	1.5 ± 0.7
Limonene	1.4 ± 0.7	1.9 ± 1.1	$0.9 \pm 0.5 **$	$0.9 \pm 0.4 **$	1.2 ± 0.8	1.5 ± 0.6	1.3 ± 0.9	1.8 ± 0.8
Linalool	1.4 ± 0.6	1.2 ± 0.7	1.5 ± 0.7	1.4 ± 1.1	1.7 ± 0.8	1.4 ± 0.7	2.0 ± 0.9	1.6 ± 0.7
Linalyl acetate	1.5 ± 0.7	1.6 ± 0.8	1.6 ± 1.0	1.1 ± 0.6	1.4 ± 0.6	1.9 ± 0.7	1.4 ± 0.6	1.7 ± 0.6
Menthone	1.6 ± 0.8	1.4 ± 0.7	1.4 ± 0.6	1.2 ± 0.6	1.8 ± 1.0	2.4 ± 0.9	1.6 ± 0.8	1.4 ± 0.8
Myrcene	1.7 ± 1.2	1.9 ± 1.2	2.4 ± 1.8	2.5 ± 1.6	2.0 ± 0.6	1.6 ± 0.6	2.0 ± 0.8	1.8 ± 0.6
<i>p</i> -Cymene	1.5 ± 0.8	1.3 ± 0.6	$1.1 \pm 0.6*$	1.7 ± 0.9	2.6 ± 1.1	1.9 ± 0.9	1.7 ± 0.7	2.3 ± 0.8
Thymol	1.7 ± 0.9	2.5 ± 1.4	2.1 ± 1.3	1.5 ± 0.9	1.9 ± 0.8	2.1 ± 0.7	1.9 ± 1.1	$0.5 \pm 0.1^{***}$
α-Phellandrene	1.4 ± 0.8	1.4 ± 0.8	2.0 ± 1.2	1.7 ± 0.8	2.2 ± 0.8	2.0 ± 0.8	1.8 ± 1.0	1.8 ± 1.0
α-Pinene	1.4 ± 0.8	1.7 ± 0.7	1.5 ± 0.8	1.4 ± 0.9	2.2 ± 0.9	1.6 ± 0.6	1.6 ± 0.7	1.6 ± 0.6
α-Terpinene	1.9 ± 1.3	1.7 ± 1.4	1.9 ± 1.4	1.5 ± 0.6	2.0 ± 1.0	1.8 ± 0.7	2.0 ± 0.6	1.9 ± 0.8
α-Terpineol	2.0 ± 1.2	2.0 ± 1.7	2.3 ± 1.3	2.1 ± 1.0	1.7 ± 0.7	2.2 ± 0.6	2.2 ± 0.5	1.7 ± 0.5
α-β Thujone	1.7 ± 0.9	1.6 ± 1.2	1.8 ± 1.1	1.5 ± 1.3	2.2 ± 0.9	1.8 ± 0.9	1.9 ± 0.9	1.7 ± 0.6
β-Pinene	1.4 ± 0.8	1.3 ± 0.6	1.5 ± 0.9	1.3 ± 0.6	1.8 ± 0.8	1.7 ± 0.8	2.0 ± 0.8	2.0 ± 0.8
γ-Terpinene	1.9 ± 1.4	1.7 ± 1.3	2.2 ± 1.3	1.7 ± 1.2	2.0 ± 0.8	1.7 ± 0.5	1.9 ± 0.9	1.6 ± 0.5

The values followed by * (* p < 0.05; **p < 0.01; ***p < 0.001), are statistically different according to the Student's *t* test.

A lot of studies showed that essential oils isolated from various plant species, on the whole, and specifically monoterpenes, exert potent herbicidal effects on weed germination and primary root growth of several other species [16, 38-41].

Although the mechanisms of essential oil action against germination is still unclear, it reported that volatile oils,

monoterpenoids and also sesquiterpenoids inhibit cell division and induce structural breaks and decomposition in roots [23, 40]. In agreement with our results, several Authors [38, 42] previously reported that 1,8-cineole and camphor have strong phytotoxic effects against various plant species; citronellal, citronellol, linalool [43, 44], α -pinene [38, 44] and limonene [38] are known as high inhibitors of seed germination and seedling growth. Monoterpenes have been reported for their effects on mitochondrial respiration [45] and for disruption of cellular membranes [46]. A structure-activity relationship for some monoterpenes has been proposed by Asplund [47, 48]. Both monoterpenoids and sesquiterpenoids appear to be involved in phytotoxic effects: infact, sesquiterpenoid compounds, as β -maaliene, α -isocomene, β isocomene, δ -cadinene, 5-hydroxy-calamenene and 5methoxycalamenene were recently shown to inhibit the seedling growth of associated native vegetation, and thus possibly help in successful invasion in the introduced sites [23, 49]. Moreover, in several papers, monoterpene hydrocarbons showed to posses lower inhibitory activity than oxygenated compounds [39, 42, 43]. Also in our study [24], some oxygenated monoterpenes showed high inhibitory activity on germination and radicle elongation of radish and garden cress seeds: it is well known that these compounds have phytotoxic effects that may cause anatomical and physiological changes in seedlings: reduction in some organelles such as mitochondria, accumulation of lipid globules in the cytoplasm, may be due to inhibition of DNA synthesis or disruption of membranes [40, 50]. Batish and coworkers [51] reported that the oil from E. citriodora inhibited root growth by suppressing of mitotic activity. Singh and coworkers [13] reported that the oil of Artemisia scoparia inhibited germination and plant root growth through generation of ROSinduced oxidative stress. Kordali and coworkers [42] reported that β -citronellol, nerol and terpinen 4-ol completely inhibited seed germination and seedling growth of tested plants. Similar results were found in our study. Moreover, our data showed that the tested alcohols, phenols and ketones were more active than others classes.

The different degrees of biological activity could be related to the composition of the essential oils: in particular, the presence of monoterpenoids [23] could explain the biological activity.

Generally, the roots were probably more sensitive than shoots to the phytotoxic activity of the oil: the process of germination was active while the oil probably affected the elongation process.

The effect of an essential oil on seed germination and seedling growth is often explained in terms of the individual effects of some main constituents. However, an essential oil is a mixture of many compounds in different proportions, and it is often not known whether and how they might interact synergistically. In addition, there is considerable variability in the composition of the essential oil of a certain plant species; this variability may be seasonal or infraspecific, between different populations of the same species, or even between individuals of the same population [39]: differences in the composition between our sample and those reported in literature can be explained by various factors, e.g., the harvest time, local, climatic, geographical, seasonal factors [52]. Generally, chemotypes can determine "biochemical varieties" or "physiological forms" in botanical species, each of which has a specific enzymatic equipment. These species are genetically codified and direct their biosynthesis to the preferential formation of a definite compound. The characterization of habitat is of fundamental importance to understand species distribution. In a definite geographical area, the factors that weight heavily on chemotypes differentiation are mainly related to intrinsic factors such as sexual polymorphism or genetic mechanism, but for the essences, environmental conditions are able to influence biosynthetic pathway. Given this variability, the overall effect of the essential oil of an aromatic plant cannot be predicted, unless we know both its exact composition and the type of interactions among its constituents.

Recently, 1,4-cineole, a natural analog of 1,8-cineole with lower occurrence, has been reported as a potent inhibitor of asparagines-synthetase [17]. The synthetical analogue of 1,4-cineole, cinmethylin, was use as commercial herbicide for its physiochemical properties (it was less volatile and more handy than 1,4-cineole).

In this perspective, the *in vitro* inhibition on radish and cress germination by the tested essential oils appears to be important, considering the possible use of the oils or their main constituents as potential bio-herbicides in development of sustainable agriculture practices and as lead structures for the development of new, potentially safe and ecocompatible pesticides. Further studies will be needed to investigate costs, selectivity, safety and mode of action of these mono-terpenes.

CONFLICT OF INTEREST

None.

ACKNOWLEDGEMENT

None.

REFERENCES

- [1] Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. *Phytother. Res.*, **2007**, *21*, 308-323.
- [2] Bakkali, F.; Averbeck, S; Averbeck, D.; Idaomar M. Biological effects of essential oils - A review. *Food Chem. Toxicol.*, 2008, 46, 446-475.
- [3] Rice, E.L. Allelopathy, 2nd ed.; Academic Press: New York, **1984**.
- [4] Harborne J.B. Introduction to Ecological Biochemistry; Academic Press: London, UK, 1988.
- [5] Inderjit. Plant phenolics in allelopathy. Bot. Rev., 1996, 62, 186-202.
- [6] Seigler, D.S. Chemistry and mechanisms of allelopathic interactions. Agron. J., 1996, 88, 876-885.
- [7] Arminante, F.; De Falco, E.; De Feo, V.; De Martino, L.; Mancini, E.; Quaranta E. Allelophatic activity of essential oils from mediterranean Labiatae. *Acta Horticult.*, 2006, 723, 347-352.
- [8] Muller, C.H. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club, 1964, 92, 38-45.
- [9] Muller, W.H.; Muller, C.H. Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club, 1964, 91, 327-330.
- [10] Muller, C.H.; Muller, W.H.; Haines, B.L. Volatile growth inhibitors produced by aromatic shrubs. *Science*, **1964**, *143*, 471-473.
- [11] Muller, W.H.; Lorber, P.; Haley, B. Volatile growth inhibitors produced by *Salvia leucophylla*: Effect on seedling growth and respiration. *Bull. Torrey Bot. Club*, **1968**, 95, 415-522.
- [12] Muller, W.H.; Lorber, P.; Haley, B.; Johnson, K. Volatile growth inhibitors produced by *Salvia leucophylla*: Effects on oxygen uptake by mitocondrial suspensios. *Bull. Torrey Bot. Club*, **1969**, *96*, 89-95.
- [13] Singh, H.P.; Kaur, S.; Mittal, S.; Batish, D.R.; Kohli, R.K. Essential oil of *Artemisia scoparia* inhibits plant growth by generating reactive oxygen species and causing oxidative damage. *J. Chem. Ecol.*, 2009, 35, 154-162.

- [14] Tellez, M.R.; Kobaisy, M.; Duke, S.O.; Schrader, K.K.; Dayan, F.E.; Romagni, J. Terpenoid based defense in plants and other organisms. In: *Lipid Technology*; Kuo, T.M., Gardner, H.W., Eds. Marcel Dekker: New York, NY, USA, **2002**; p. 354.
- [15] Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural products as sources of herbicides: current status and future trends. *Weed Res.*, 2000, 40, 99-111.
- [16] Angelini, L.G.; Carpanese, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Flamini, G. Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem., 2003, 51, 6158-6164.
- [17] Duke, S.O.; Oliva, A. Mode of action of phytotoxic terpenoids. In: Allelopathy. Chemistry and Mode of Action of Allelochemicals; Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Cutler, H.G., Eds. CRC Press: Boca Raton, FL, USA, 2004; pp. 201-206.
- [18] Azirak, S. & Karaman, S. Allelopathic effect of some essential oils and components on germination of weed species. *Acta Agric. Scand. Sect. B*, 2008, 58, 88-92.
- [19] Vokou, D. The Allelophatic potential of aromatic shrubs in phryganic (East Mediterranean) ecosystems. In: *Allelopathy: Basic and Applied Aspects*; Rizvi, S.J.H., Rizvi, V., Eds.; Chapman & Hale: London, UK, **1992**; pp. 303-320.
- [20] Vokou, D.; Margaris, N.S. Variation of volatile oil concentration of Mediterranean aromatic shrubs *Thymus capitatus* Hoffmagg et Link, *Satureja thymbra L., Teucrium polium L., and Rosmarinus* officinalis. Int. J. Biometeorol., **1986**, 30, 147-155.
- [21] Mancini, E.; Arnold, N.A.; De Feo, V.; Formisano, C.; Rigano, D.; Piozzi, F.; Senatore, F. Phytotoxic effects of essential oils of *Nepeta curviflora* Boiss. and *Nepeta nuda* L. subsp. *albiflora* growing wild in Lebanon. *J. Plant Intercat.*, **2009**, 4(4), 253-259.
- [22] Mancini, E.; Arnold, N.A.; De Martino, L.; De Feo, V.; Formisano, C.; Rigano, D.; Senatore, F. Chemical composition and phytotoxic effects of essential oils of *Salvia hierosolymitana* Boiss. and *Salvia multicaulis* Vahl. var. *simplicifolia* Boiss. Growing wild in Lebanon. *Molecules*, **2009**, *14*, 4725-4736.
- [23] De Martino, L.; Roscigno, G.; Mancini, E.; De Falco, E.; De Feo, V. Chemical composition and antigerminative activity of the essential oils from five *Salvia* species. *Molecules*, **2010**, *15*(2), 735-746.
- [24] De Martino, L.; Mancini, E.; Rolim de Almeida, L.F.; De Feo, V. The antigerminative activity of twenty-seven monoterpenes. *Molecules*, 2010, 15, 6630-6637
- [25] De Martino, L.; Roscigno, G.; Mancini, E., De Falco, E.; De Feo V. Chemical composition and antigerminative activity of the essential oils from five *Salvia* species. *Molecules*, **2010**, *15*, 735-746.
- [26] De Martino, L.; Formisano, C.; Mancini, E.; De Feo, V.; Piozzi, F.; Rigano, D.; Senatore, F. Chemical composition and phytotoxic effects of essential oils from four *Teucrium* species. *Nat. Prod. Commun.*, **2010**, *5*(12), 1969-1976
- [27] Rolim de Almeida, L.F.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic activities of Mediterranean essential oils. *Molecules*, 2010, 15, 4309-4323
- [28] Mancini, E.; De Martino, L.; Marandino, A.; Scognamiglio, M. R.; De Feo, V. Chemical Composition and Possible *in vitro* Phytotoxic Activity of *Helichrsyum italicum* (Roth) Don ssp. *Italicum. Molecules*, 2011, 16, 7725-7735.
- [29] Marandino, A.; De Martino, L.; Mancini, E.; Milella, L.; De Feo, V. Chemical composition and possible *in vitro* antigermination activity of three *Hypericum* essential oils. *Nat. Prod. Commun.*, **2011**, 6(11), 1735-1738.
- [30] Stebbing, A.R.D. Hormesis-the stimulation of growth by low levels of inhibitors. *Sci. Total Environ.*, **1982**, 22, 213-234.
- [31] Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oils as allelochemicals and their potential use as bioherbicides. *J. Chem. Ecol.*, **1999**, *25*, 1079-1089.
- [32] Tworkoski, T. Herbicide effects of essential oils. Weed Sci., 2002, 50, 425-431.
- [33] Isman, M.B.; Machial, C.M.; Miresmailli, S.; Bainard, L.D. Essential oil-based pesticides: new insights from old chemistry. In: Pesticide Chemistry; Ohkawa, H.; Miyagawa, H.; Lee, P.; Eds. Wiley-VCH, Weinheim, 2007; pp. 201-209.

- [34] Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated fromTurkish *Origanum acutidens* and its three components, carvacrol, thymol and *p*-cymene. *Bioresour. Technol.*, 2008, 99, 8788-8795.
- [35] Dudai, N.; Larkov, O.; Putievsky, E.; Lerner, H.R.; Ravid, U.; Lewinsohn, E.; Mayer, A.M. Biotransformation of constituents of essential oils by germinating wheat seed. *Phytochemistry*, 2000, 55, 375-382.
- [36] Lorber, P.; Muller, W.H. Volatile growth inhibitors produced by Salvia leucophylla: Effects on seedling root tip ultrastructure. Am. J. Bot., 1976, 63, 196-200.
- [37] Scrivanti, L.R.; Zunino, M.P.; Zygadlo, J.A. *Tagetes minuta* and *Schinus areira* essential oils as allelopathic agents. *Biochem. Syst. Ecol.*, 2003, 31, 563-572.
- [38] Abrahim, D.; Braguini, W.L.; Kelmer-Bracht, A.M.; Ishii-Iwamoto, E.L. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. *J. Chem. Ecol.*, 2000, 26, 611-624.
- [39] Vokou, D.; Douvli, P.; Blionis, G.J.; Halley, J.M. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol., 2003, 29, 2281-2301.
- [40] Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by *Salvia leucophylla*: inhibition of cell proliferation and DNA synthesis in the root apical meristem of *Brassica campestris* seedlings. J. Chem. Ecol., 2005, 31, 1187-1203.
- [41] Salamci, E.; Kordali, S.; Kotan, R.; Cakir, A.; Kaja, Y. Chemical composition, antimicrobial and herbicidal effects of essential oils isolated Turkish *Tanacetum aucheranum* and *Tanacetum chiliophyllum* var. chiliophyllum. Biochem. Syst. Ecol., 2007, 35, 569-581.
- [42] Kordali, S.; Cakir, A.; Sutay, S. Inhibitory effects of monoterpenes on seed germination and seedling growth. Z. Naturforsch. C, 2007, 62, 207-214.
- [43] Singh, H.P.; Batish, D.R.; Kaur, S.; Ramezani, H.; Kohli, R.K. Comparative phytotoxicity of four monoterpenes against *Cassia* occidentalis. Ann. Appl. Biol., 2002, 141, 111-116.
- [44] Singh, H.P.; Batish, D.R.; Kaur, S.; Arora, K.; Kohli R.K. *a*-pinene inhibits growth and induces oxidative stress in roots. *Ann. Bot.*, 2006, 98, 1261-1269.
- [45] Abrahim, D.; Francischini, A.D., Pergo, E.M., Kelmer-Bracht, A.M.; Ishii-Iwamoto, E.L. Effect of α-pinene on the mitochondrial respiration of maize seedlings. *Plant Physiol. Biochem.*, 2003, 41, 985-991.
- [46] Lorber, P.; Muller, W.H.. Volatile growth inhibitors produced by Salvia leucophylla: effects on cytological activity in mitochondrial suspensions. Comp. Physiol. Ecol., 1980, 5, 68-75.
- [47] Asplund, R.O. Monoterpenes; relation between structure and inhibition of germination. *Phytochemistry*, **1968**, 7, 1995-1997.
- [48] Asplund, R.O. Quantitative aspects of the phytotoxicity of monoterpenes. Weed Sci., 1969, 17, 454-455.
- [49] Ens, E.J.; Bremner, J.B.; French, K.; Korth, J. Identification of volatile compounds released by roots of an invasive plant, bitou bush (*Chrysanthemoides monilifera* spp. *rotundata*), and their inhibition of native seedling growth. *Biol. Invasions*, 2008, 11, 275-287.
- [50] Zunino, M.P.; Zygadlo J.A. Effect of monoterpenes on lipid oxidation in maize. *Planta*, 2004, 219, 303-309.
- [51] Batish, D.R.; Lavanya, K.; Singh, H.P.; Kohli, R.H. Phenolic allelochemicals released by *Chenopodium murale* affect the growth, nodulation and macromolecule content in chickpea and pea. *Plant Growth Regul.*, 2007, 51, 119-128.
- [52] Morone-Fortunato, I.; Montemurro, C.; Ruta, C.; Perrini, R.; Sabetta, W.; Blanco, A.; Lorusso, E.; Avato, P. Essential oils, genetic relationships and *in vitro* establishment of *Helichrysum italicum* (Roth) G. Don ssp. *italicum* from wild Mediterranean germplasm. *Ind. Crop. Prod.*, **2010**, *32*, 639-649.