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Abstract 
The main purpose of text mining techniques is to 

identify common patterns through the observation of 
vectors of features and then to use such patterns to 
make predictions. Vectors of features are usually 
made up of weighted words, as well as those used in 
the text retrieval field, which are obtained thanks to 
the assumption that considers a document as a "bag 
of words". However, in this paper we demonstrate 
that, to obtain more accuracy in the analysis and 
revelation of common patterns, we could employ 
(observe) more complex features than simple 
weighted words. The proposed vector of features 
considers a hierarchical structure, named a mixed 
Graph of Terms, composed of a directed and an 
undirected sub-graph of words, that can be 
automatically constructed from a small set of 
documents through the probabilistic Topic Model. 
The graph has demonstrated its efficiency in a classic 
"ad-hoc" text retrieval problem. Here we consider 
expanding the initial query with this new structured 
vector of features. 

 
 

1. Introduction  
 

The widespread use of digital technologies in all 
aspects of daily life has improved knowledge about 
the behavior of the individual entities involved in a 
complex system. This has increased both conscious 
and unconscious collaborative modes of 
information/knowledge sharing/exchange: consider 
information systems like Amazon, e-bay, Twitter, 
Facebook, Wikis, e-marketplaces, Myspace, blogs 
and so on.  

As a consequence, Intelligent Systems have been 
introduced to assist and augment this natural social 
process and so help people sift through available 
books, articles, web pages, movies, music, 
restaurants, jokes, grocery products, etc, to find the 
most interesting and valuable information for them. 

All the existing intelligent systems are based on data 
mining methods that also include collaborative 
filtering and text mining techniques. These methods 
are memory-based, model-based, content-based or 
hybrids.  

While the memory and model-based methods 
make use of the records contained in structured data 
(User X is quite interested in product Y) to make 
predictions, the content-based methods analyze the 
content of textual information to match and find 
patterns. Leaving aside the memory and model-based 
methods, we focus only on the content-based ones 
that, thanks to the widespread user participation in 
product reviews, are becoming of great interest.  

Content analysis is possible thanks to the 
findings obtained in the fields of text mining, text 
classification and text categorization as well as in 
sentiment analysis and detection, thus exploiting all 
the text retrieval theories. In the field of text retrieval 
the main problem is: “How can a computer tell which 
documents are relevant to the query, and more 
importantly, which results are more relevant than 
others? ” 

There is of course no definitive answer, and all 
the existing approaches to solve this problem 
consider a different Information Retrieval model to 
represent a document in the document collection. We 
can divide all the existing methods into several 
categories: set-theoretic (including boolean) models, 
algebraic models and probabilistic models [1][2]. 
Although each method has its own properties, there is 
a common denominator: the term frequency-inverse 
document frequency (tf-idf) model to create term 
weights.  

The tf-idf is a bag of words weighting model 
used to give weights to the terms in a document 
collection by measuring how often a term is found 
within a document (term frequency), offset by how 
often the term is found within the entire collection 
(inverse document frequency). The “bags of words” 
assumption claims that a document can be considered 
as a feature vector where each element in the vector 
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indicates the presence (or absence) of a word, so that 
the information on the position of that word within 
the document is completely lost [1]. A query is 
considered as a document and so it is represented as a 
vector of weighted words.  

In this paper we argue that a vector of weighted 
words, due to the inherent ambiguity of language 
(polysemy etc.), is not capable of discriminating 
between documents in the case of ad-hoc text 
retrieval tasks. Here the aim is to find the documents 
that best match the performed query (that is a topic).  

The ambiguity, in fact, can be reduced if we give 
more importance to words that convey concepts and 
that contribute to specify a topic, and if we assign 
less importance to those words that contribute to 
specify concepts and that, due to the fact that they 
can be more plausibly shared between concepts, can 
increase the ambiguity.  

This leads to a hierarchical structure that we call 
a mixed Graph of Terms and that can be 
automatically extracted from a set of documents  
using a global method for term extraction based on a 
supervised Term Clustering technique weighted by 
the Latent Dirichlet Allocation implemented as the 
Probabilistic Topic Model. 

We have employed the mixed Graph of Terms in 
a query expansion method based on explicit 
relevance feedback that expands the initial query with 
this new structured query representation. The 
evaluation of the method has been conducted on a 
web repository collected by crawling a huge number 
of web pages from the website ThomasNet.com. We 
have considered several topics and performed a 
comparison with two less complex structures: one 
represented as a set of pairs of words and another 
which is a simple list of words. The results obtained, 
independently of the context, show that a more 
complex representation is capable of retrieving a 
greater number of relevant documents achieving a 
mean average precision of about 50%. 

 
2. Query expansion techniques 
 

It is well documented that the query length in 
typical information retrieval systems is rather short 
(usually two or three words [3], [4]), which may not 
be long enough to avoid the inherent ambiguity of 
language (polysemy etc.). This makes text retrieval 
systems that rely on a term-frequency based index 
suffer generally from low precision, or a low quality 
of document retrieval. 

Therefore, the idea of taking advantage of 
additional knowledge, by expanding the original 
query with other topic-related terms, to retrieve 

relevant documents has been largely discussed in the 
literature, where manual, interactive and automatic 
techniques have been proposed [5][1][2].  

The idea behind these techniques is that, in order 
to avoid ambiguity, it may be sufficient to better 
specify “the meaning” of what the user has in mind 
when performing a search, or in other words “the 
main concept” (or a set of concepts) of the preferred 
topic in which the user is interested. A better 
specialization of the query can be obtained with 
additional knowledge, which can be extracted from 
exogenous (e.g. ontology, WordNet, data mining) or 
endogenous knowledge (i.e. extracted only from the 
documents contained in the repository) [6, 7, 1].  

In this paper we focus on those techniques that 
make use of the “Relevance Feedback” (in the case of 
endogenous knowledge) that takes into account the 
results that are initially returned from a given query 
and so uses the information about the relevance of 
each result to perform a new expanded query. In the 
literature we can distinguish between three types of 
procedures for the assignment of the relevance: 
explicit feedback, implicit feedback, and pseudo 
feedback [2]. 

The feedback is obtained from assessors (or 
other users of a system) indicating the relevance of a 
document retrieved for a query. If the assessors know 
that the feedback provided is interpreted as relevance 
judgments then the feedback is considered as explicit; 
otherwise it is implicit. On the contrary, the pseudo 
relevance feedback automates the manual part of the 
relevance labeling by assuming that the top “n” 
ranked documents, after the initial query, are relevant 
and then performing relevance feedback as before 
based on this assumption.  

Most existing methods, due to the fact that the 
human labeling task is enormously annoying and 
time consuming [8], [9], make use of the pseudo 
relevance feedback. Nevertheless, fully automatic 
methods suffer from obvious errors when the initial 
query is intrinsically ambiguous.  

As a consequence, in recent years, some hybrid 
techniques have been developed which take into 
account minimal explicit human feedback [10], [11] 
and use it to automatically identify other topic related 
documents. The performance achieved by these 
methods is usually of medium quality with a mean 
average precision of about 30% [10]. 

However, whatever the technique that selects the 
set of documents representing the feedback, the 
expanded terms are usually computed by making use 
of well known approaches for term selection as 
Rocchio, Robertson, CHI-Square, Kullback-Leibler 
etc [12][13].  
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In such cases the reformulated query consists in 
a simple (sometimes weighted) list of words. 
However, although such term selection methods have 
proven their effectiveness in terms of accuracy and 
computational cost, several more complex alternative 
methods have been proposed. These usually consider 
the extraction of a structured set of words so that the 
related expanded query is no longer a list of words, 
but a weighted set of clauses combined with suitable 
operators [14], [15], [16]. 

 
3. The proposed approach 

 
The vector of features needed to expand the 

query is obtained as a result of an interactive process 
between the user and system. The user initially 
performs a retrieval by inputting a query into the 
system and later identifying a small set  of 
relevant documents from the hit list of documents 
returned by the system, which is considered as the 
training set (the relevance feedback).  

Existing query expansion techniques principally 
use the relevance feedback of both relevant and 
irrelevant documents. Usually they obtain the term 
selection through the scoring function proposed in 
[17], [13] which assigns a weight to each term 
depending on its occurrence in both relevant and 
irrelevant documents. In contrast, in this paper we do 
not consider irrelevant documents and the vector of 
features extraction is performed through a method 
based on a supervised Term Clustering technique. 

Precisely, the vector of features, that we call 
mixed Graph of Terms, can be automatically 
extracted from a set of documents  using a method 
for term extraction based on a supervised Term 
Clustering technique [18] weighted by the Latent 
Dirichlet Allocation [19] implemented as the 
Probabilistic Topic Model [20].  

The graph is composed of a directed and an 
undirected sub-graph (or level). We have the lowest 
level, namely the word level, that is obtained by 
grouping terms with a high degree of pairwise 
semantic relatedness; so there are several groups 
(clusters), each of them represented as a cloud of 
words connected to their respective centroids 
(directed edges), alternatively called concepts (see 
fig. 1(b)). In addition, we have the second level, 
namely the conceptual level, obtained by inferring 
semantic relatedness between centroids, and so 
between concepts (undirected edges, see fig. 1(a)).  

The general idea of this technique is supported 
by previous works [21] that have confirmed the 
potential of supervised clustering methods for term 
extraction, even in the case of query expansion [22], 
[23]. 

3.1.  Extracting a mixed Graph of Terms 
 

A mixed Graph of Terms (mGT ) is a hierarchical 
structure composed of two levels of information 
represented through a directed and an undirected sub-
graph: the conceptual and word levels.  

We consider extracting it from a corpus 
of M documents (that we call 

the training set), where each document is, following 
the Vector Space Model [1], a vector of feature 
weights , where  is 
the set of features that occur at least once in at least 
one document of , and 0 ≤ wkj ≤ 1 represents how 
much the feature tk contributes to the semantics of 
document wj. We choose to identify features with 
words, that is the bags of words assumption, and in 
this case tk=vk, where vk is one of the words of a 
vocabulary .  

The word level is composed of a set of words vs 
that specify through a directed weighted edge the 
concept ci (see fig. 1(b), tab. 1 and fig. 2(a)), or better 
the centroid of such a set (group or cluster), which is, 
therefore, still lexically denoted as a word. The 
weight ρis can measure how far a word is related to a 
concept, or how much we need such a word to 
specify that concept, and it can be considered as a 
probability: ρis = P(ci | vs ). The resulting structure is 
a sub-graph rooted on ci. 

Alternatively, the conceptual level is composed 
of a set of interconnected, through undirected 
weighted edges, concepts ci (see fig. 1(a), tab. 1 and 
fig. 2(a)), so forming a sub-graph of pairs of 
centroids. The weight ψ ij can be considered as the 
degree of semantic correlation between the two 
concepts and it can be considered as a probability:  
ψ ij = P(ci ,cj ) .  

 
3.1.1.  Graph drawing A mGT  is well determined 
through the learning of the weights, the Relation 
Learning, and through the learning of the three 

 
(a)    (b)  

Figure 1. Theoretical representation of the 
Graph of Terms levels. 1(a) The conceptual 
level. 1(b) The word level. 
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parameters, the Parameter Learning, that is 
Λ = (H ,τ ,μ)  which specifies the shape of the graph. 
In more details, we have:  

1. H : the number of concepts (namely the 
number of clusters) of the corpus ;  

2. μi : the threshold that establishes for each 
concept the number of edges of the directed 
sub-graph, and so the number of concept/word 
pairs of the corpus . An edge between the 
word s and the concept i can be saved if 
ρis ≥ μi . We consider, to simplify the 
formulation, μi = μ , ∀i ;  

3. τ : the threshold that establishes the number of 
edges of the undirected sub-graph, and so the 
number of concept/concept pairs of the corpus 

. An edge between the concept i and concept 
j can be saved if ψ ij ≥ τ .  

 
3.1.2.  Relations Learning Due to the fact that each 
concept is lexically represented by a word of the 
vocabulary, then we have that 
ρis = P(ci | vs ) = P(vi | vs ), and ψ ij = P(ci ,cj ) = P(vi ,vj ) .  
As a result, we can obtain each possible relation by 
computing the joint probability P(vi ,vj ) , 
which can be considered as a word association 
problem and so can be solved through a smoothed 
version of the generative model introduced in [19] 
called Latent Dirichlet allocation, which makes use 
of Gibbs sampling [20]1.  
                                                 
1 The authors reported the mathematical formulation that leads 
from the Latent Dirichlet Allocation to P(vi ,vj )  in [24] 

 
3.1.3.  Parameters Learning Given a corpus , 
once each ψ ij and ρis  is known ∀i, j, s , letting the 
parameters assume a different set of values Λt , we 
can observe a different graph mGTt , where t is 
representative of different parameter values.  
A way of proving that a mGT  is the best possible for 
that set of documents is to demonstrate that it 
produces the maximum score attainable for each of 
the documents when the same graph is used as a 
knowledge base for querying in a set containing just 
those documents which have fed the mGT   builder. 

Each graph mGTt  can be represented, following 
again the Vector Space Model [1], as a vector of 
feature weights, that we call qt  and is defined as 

, where  represents the total 
number of pairs. We have that each feature 
tk = (vi ,vj ) , which is not the simple bags of words 
assumption, and ′wkj  being the weight calculated 
thanks to the tf-idf model applied to the pairs 
represented through tk, and with the addition of the 
boost bk  which is the semantic relatedness between 
the words of each pair, at both the conceptual and the 
word level, namely  ψ ij and ρis .  

You will recall that both  ψ ij and ρis  are real 
values (probabilities) of the interval [0,1], and so to 
distinguish the relevance between the three cases, the 
traditional case ( bk = 1), the concept/word pair and 
the concept/concept pair, we have distributed such 
values with a wider interval. Specifically:  

   
       (a)             (b)                     (c)   

Figure 2: Vector of features for the topic Storage Tanks. 2(a) A mixed Graph of Terms. 2(b) A 
Graph of Terms. 2(c) A List of Terms. 
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1. bk = 1being the lowest level of relatedness;  
2. bk ∈[ρmin , ρmax ]  with ρmin ≥ 1 and (ρmax − ρmin ) = 1; 
3. bk ∈[ψ min ,ψ max ]withψ min > ρmax and 

(ψ max −ψ min ) = 1. 
In the experiments we have chosen ρmin = 1 and 

ψ min = 3  (see table 1).   
At this point, a document w j  can be viewed as a 

vector of weights in the space , and so the 
general formula of each weight is: 

                           (1) 

The score for each graph at time t, namely St , 
can be computed following the cosine similarity 
model in the space , and so we have  

                           (2) 

Finally for the graph at time t we have a score for 
each document,  

As a result, to compute the optimum set of 
parameters Λt  we can maximize the Fitness ( ),  

 

where . Em  
is the mean value of all elements of  St  and  σ m  is 
the standard deviation.  

Since the space of possible solutions could grow 
exponentially, we have limited the space to 

, ∀t . Furthermore, we have reduced the 
remaining space of possible solutions by applying a 
clustering method, that is the K-means algorithm, to 
all ψ ij and ρis values, so that the optimum solution 
can be exactly obtained after the exploration of the 
entire space. This reduction allows us to compute a 
mGT   from a repository composed of a few 
documents in a reasonable time (e.g. for 3 documents 
it takes about 3 seconds with a Mac OS X based 
computer and a 2.66 GHz Intel Core i7 CPU and a 
8GB RAM).  

It is important to make clear that the mixed 
Graph of Terms can not be considered as a co-
occurrence matrix. In fact, the core of the graph is the 
probability P(vi ,vj ) , which we regard as a word 
association problem, which in the topic model is 
considered as a problem of prediction: given that a 
cue is presented, which new words might occur next 
in that context?  It means that the model does not take 
into account the fact that two words occur in the 
same document, but that they occur in the same 
document when a specific topic (and so a context) is 
assigned to that document [20]. 

Furthermore, in the field of statistical learning, a 
similar structure has been introduced, with the name 
Hierarchical Mixture of Experts [25]. Such a 
structure is employed as a method for supervised 
learning and it is considered as a variant of the well 
known tree-based methods. The similarity between 
such a structure and the proposed graph can be 
obtained by considering the "experts" as "concepts". 
Nevertheless, the mixed Graph of terms is not a tree 
structure, and more importantly is not rigid but is 
dynamically built depending on the optimization 
stage. Moreover, the Hierarchical Mixture of Experts 
does not consider relations between experts which is, 
on the other hand, largely employed in the mixed 
Graph of Terms. Notwithstanding this, we will 
explore further connections between these two 
structures in future works. 

 
4.  Extracting a simpler representation 
from a mGT 
 

From the mixed Graph of Terms we can select 
different subsets of features and so obtain simpler 
representations (see figs. 2(b) and 2(c)). Before 

Table 1. An example of a mGT  for the topic 
Storage Tank. 

Conceptual Level 

Concept i Concept j Relation Factor (ψ ij ) 

tank roof 4,0 
tank water 3,37246 
tank liquid 3,13853 
... ... ... 

liquid type 3,43828 
liquid pressur 3,07028 

... ... ... 
Word Level 

Concept i Word s Relation Factor ( ρis ) 
tank larg 2,0 
tank construct 1,6 
... ... ... 

liquid type 1,21123 
liquid maker 1,11673 
liquid hose 1,06024 
liquid fix 1 

... ... ... 
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discussing this in detail, we recall that ρis = P(vi | vs ) 
and ψ ij = P(vi ,vj )  are computed through the Topic 
Model which also computes the probability for each 
word ηs = P(vs ) . 

 
4.1.  Graph of Terms 
 

We can obtain a simpler representation by firstly 
selecting all the distinct possible pairs from the mGT    

(see table 1 for an illustrative example) and secondly 
by uniforming all their weights. Note that even if 
both ψ ij and ρis  are real values of the interval [0,1], 
they are not comparable because the former is a joint 
probability and the latter is a conditional. Therefore, 
in order to make them comparable we consider the 
product ρis ⋅ηs instead of each ρis .  

Finally, to uniform all weights we do not shift 
each ψ ij  and ρis ⋅ηs  value from [0,1] to [ψ min ,ψ max ] 
and [ρmin , ρmax ]  respectively, which means that we 
compress the conceptual over the word level. 
Following this procedure we obtain a single level 
representation named the Graph of Terms (GT ), 
composed of weighted pairs of words as in fig. 2(b). 

 
4.2.  List of Terms 
 

We can obtain the simplest representation by 
selecting from the mGT all the distinct terms and 
associating them with their respective weight 
ηs = P(vs )  computed through the Topic Model. We 
name this representation the List of Terms (LT ), see 
fig. 2(c).  

 
5.  Experiments 

 
We have compared 3 different query expansion 

methodologies based on different vectors of features: 
the mixed Graph of Terms (mGT ), the Graph of 
Terms (GT ) and the List of Terms (LT ). We have 
embedded all the techniques in an open source text-
based search engine, Lucene from the Apache 
project.  

The score function  is based on the 
standard vector cosine similarity discussed in Eq. 2, 
used in a Vector Space Model combined with the 
Boolean Model [1] which takes into account the 
boost factor bk  whose default value is 1, and this is 

assigned to the words that compose the original 
query2. 

Such a score function permits the assignment of 
a rank to the documents w that match a query q and 
permits the transformation of each vector of features, 
that is the mGT , GT  and LT, into a set of Boolean 
clauses.  

For instance, in the case of the mGT , since it is 
represented as pairs of related words (see Table 1), 
where the relationship strength is described by a real 
value (namely ψ ij  and ρis , the Relation factors), the 
expanded query is: 

 
((tank AND roof)4.0) OR ((tank AND larg)2.0)... 
 
As a consequence we search the pair of words 

tank AND roof with a boost factor of 4.0 OR the pair 
of words tank AND larg with a boost factor of 2.0 
and so on. For all the experiments we have 
considered ρmin = 1 and ψ min = 3  (table 1). 

As we have discussed in depth in section 3, using 
the mixed Graph of Terms as a vector of features 
could represent each document. Unfortunately, it 
would require a high computational cost to compute 
the entire index considering feature tk = (vi ,vj )  
instead of tk = vk  (that is the “bags of words” 
assumption).  

However, using the Boolean Model, the mixed 
graph of terms can be converted into a structured 
query, which is easily supported by a classic 
information retrieval system based on the tf-idf index. 
In this way we do not need to compute the index and 
we can still consider each document as a “bag of 
words”, that clearly reduces the computational cost.  

 
5.1.  Data Preparation 
 

The evaluation of the method has been 
conducted on a web repository collected at University 
of Salerno by crawling 154,243 web pages for a total 
of about 3.0 GB using the website ThomasNet 
(http://www.thomasnet.com) as an index of URLs, 
the reference language being English3. ThomasNet, 
known as the “big green books” and “Thomas 
Registry”, is a multi-volume directory of industrial 
product information covering 650,000 distributors, 
manufacturers and service companies within 67,000-
plus industrial categories. We have downloaded 
webpages from the company websites relating to 150 

                                                 
2 We have used the Lucene version 2.4 and you can find further 
details on the similarity at http://lucene.apache.org 
3 The repository will be public on our website to allow further 
investigations from other researchers. 
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categories of products (considered as topics), 
randomly chosen from the ThomasNet directory. 
Note that even if the presence or absence of 
categories in the repository depends on the random 
choices made during the crawling stage, it could 
happen that webpages from some business companies 
cover categories that are different from those 
randomly chosen. This means that the repository is 
not to be considered as representative of a low 
number of categories (that is 150) but as a reasonable 
collection of hundreds of categories. In this work we 
have considered 50 test questions (queries) extracted 
from 50 out of the initial 150 categories (topics). 
Each original query corresponds to the name of the 
topic; for instance if we search for information about 
the topic "generator" the query will therefore be 
precisely "generator".  

Obviously, all the initial queries have been 
expanded through the methodologies explored in 
section 4. Here we show the summary results 
obtained on all the 50 topics and the results obtained 
on the first 10 examples, that are: 1. Lubricant, 2. 
Pump, 3. Adhesive, 4. Generator, 5. Transformers, 6. 
Inverter, 7. Valve, 8. LAN Cable, 9. Storage Tank, 10. 
Extractor. 

Before indexing, we have performed the removal 
of function words (i.e. topic-neutral words such as 
articles, prepositions, conjunctions, etc.) and we have 
performed the stemming procedure (i.e. grouping 
words that share the same morphological root). 
Although stemming has sometimes been reported to 
damage effectiveness, the recent tendency is to adopt 
it, as it reduces both the dimensionality of the term 
space and the stochastic dependence between terms. 
For this reason in 2(c), 2(b) and 2(a) we can find 
some labels of words in the form of their 
morphological roots. 

 
5.2.  Evaluation measures 

 

For each example the procedure that obtains the 
reformulation of the query is explained as follows. A 
person, who is interested in the topic "generator", 
performs the initial query "generator", so 
interactively choosing 3 relevant documents for that 
topic, which represents the minimal positive 
feedback. From those documents the system 
automatically extracts the three vectors of features. In 
table 2 we show the average size of the list of terms 
and the list of pairs, that is 55 and 72 respectively for 
each topic. The user has interactively assigned the 
relevance of the documents by following an xml 
based schema coding his intentions and represented 
in Fig. 3. 

The expanded queries have been again 
performed and for each context we have asked 
different humans to assign graded judgments of 
relevance to the first 100 pages returned by the 
system. Due to the fact that the number of 
evaluations for each topic, and so the number of 
topics itself, is small, the humans have judged, in 
contrast to the Minimum Test Collection method 
[26], all the results obtained.  

The assessment is based on three levels of 
relevance, high relevant, relevant and not relevant, 
assigned, to avoid cases of ambiguity, by following 
the xml based schema coding the user intentions, as 
introduced before. The accuracy has been measured 
through standard indicators provided by [1] and 
based on Precision and Recall,  

  eAP = 1
ER

xi

ii=1

k

� +
xi x j

jj>i
�             (3)  

 ePrec@k = eP@k =
1
k

xi
i=1

k

�           (4) 

 ERprec =
1

ER
xi

i=1

ER

�             (5) 

 ER = xi
i=1

n

�              (6) 

where eAP indicates the average precision on a 
topic, xi  and x j  are Boolean indicators of relevance, 
k is the cardinality of the considered result set 
(k=100) and ER is a subset of relevant documents4.  

The factor ERprec is the precision at the level 
ER, while the measure eMAP is the average of all 
eAPs over topics. The measure eP@k is the precision 
at level k (for instance eP5 is the precision calculated 
by taking the top 5 results). Further we have 
considered other standard measures of performance, 

                                                 
4 Note that, ER =| RmGT ∪ RGT ∪ RLT − RmGT ∩ RGT ∩ RLT | , where  
Rvf is the set of relevant and high relevant documents obtained for 

a given topic and vf=vector of features. 

Table 2. Number of terms and pairs for each 
mGT. 

Topic  Query   of terms   of pairs  
1 Lubricant 54 69 
2 Pump 63 70 
3 Adhesive 45 67 
4 Generator 58 68 
5 Transformers 67 82 
6 Inverter 62 84 
7 Valve 47 66 
8 LAN Cable 69 85 
9 Storage Tank 51 66 

10 Extractor 53 71 
Average Size 55 72 
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which take into account the quality of the results 
related to the position in which they are presented. 
We have considered the Cumulative Gain (CG), the 
Discounted Cumulative Gain (DCG), the normalized 
Discontinued Cumulative Gain (nDCG), and the 

Ideal DCG, that is nDCGx =
DCGx

IDCGx

. Specifically:  

CGx = r
i=1

k

� eli              (7) 

   

DCGx = 2reli −1
log2(1+ i)i=1

k

� .                   (8) 

where we have considered rel=2, rel=1 and 
rel=0 in the cases of High Relevant, Relevant and 
Not Relevant documents respectively.  

 
5.3.  Discussion 
 

In table 3 we present all the measures for each 
topic while in table 4 we present the summary results 
across topics; both tables report results for each 
vector of features. The overall behavior of the mGT  
method is better than both the GT and LT , especially 
in the case of the topics 2, 3 and 7. In fact, in these 
cases the proposed method has listed 62, 67 and 76 
relevant or high relevant documents in the top 100, 
that is about 68% (see also the column Rel of table 
5). However, in the case of topics 4, 6 and 8 the 
number of relevant documents is comparable 
between the systems, with the percentage of relevant 
documents retrieved being about 30%, which is less 
than half of the worst value obtained for the topic 2. 
This suggests that the systems are comparable only if 
the total number of relevant documents returned by 
both systems is less than 50%. This probably happens 
due to the fact that the documents feeding the vector 
of features builder have not covered, in terms of 

subtopics, all the examples present in the repository. 
Notwithstanding this, the most important fact is that, 
when the graph is added to the initial query, the 
search engine shows a better performances than in 
the case of both a graph of word pairs and a simple 
word list. As we can see in Table 5, the results on 
topics 4, 6 and 8 are the worst cases, while topics 2, 
3, 5, 7, 9 and 10 are the best, as confirmed by 
previous discussions on table 3.  

 
6. Conclusions 

In this work we have demonstrated that a mixed 
Graph of Terms based on a hierarchical 
representation is capable of retrieving a greater 
number of relevant documents than representations 
less complex based on either a simple interconnected 
pairs of words or a list of words, even if the size of 
the training set is small and composed of only 
relevant documents.  

These results suggest that our approach can be 
employed in all those text mining tasks that consider 
matching between patterns represented as textual 
information, in text categorization and classification 
tasks as well as in sentiment analysis and detection 
tasks. The proposed approach computes the expanded 
queries considering only endogenous knowledge. It is 
well known that the use of external knowledge, for 
instance WordNet, could definitely improve the 
accuracy of information retrieval systems; we 
consider this to be a future work. 

 
References 
 
[1] P. R. Christopher D. Manning and H. Schtze, Introduc- 
tion to Information Retrieval. Cambridge University, 2008. 
 
[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Informa- 
tion Retrieval. ACM Press, New York, 1999. 
 
[3] B. J. Jansen, A. Spink, and T. Saracevic, “Real life, real 
users, and real needs: a study and analysis of user queries 
on the web,” Information Processing & Management, vol. 
36, no. 2, pp. 207–227, 2000. 
 
[4] B. J. Jansen, D. L. Booth, and A. Spink, “Determining 
the informational, navigational, and transactional intent of 
web queries,” Information Processing & Management, vol. 
44, no. 3, pp. 1251 – 1266, 2008. 
 
[5] E. N. Efthimiadis, “Query expansion,” in Annual Re- 
view of Information Systems and Technology, M. E. 
Williams, Ed., 1996, pp. 121–187. 
 
[6] J. Bhogal, A. Macfarlane, and P. Smith, “A review of 
ontology based query expansion,” Information Process- ing 
& Management, vol. 43, no. 4, pp. 866 – 886, 2007. 
 

 
Figure 3: The xml based schema used for 
the evaluation phase. 

1077



[7] S. Piao, B. Rea, J. McNaught, and S. Ananiadou, 
“Improving full text search with text mining tools,” in 
Natural Language Processing and Information Systems, ser. 
Lecture Notes in Computer Science, Springer Berlin / 
Heidelberg, 2010, vol. 5723, pp. 301–302. 
 
[8] Y. Ko and J. Seo, “Text classification from unlabeled 
documents with bootstrapping and feature projection 
techniques,” Inf. Process. Manage., vol. 45, pp. 70–83, 
2009. 

 
[9] I. Ruthven, “Re-examining the potential effectiveness 
of interactive query expansion,” in Proceedings of the 26th 
annual international ACM SIGIR’03., pp. 213–220. 
 
[10] M. Okabe and S. Yamada, “Semisupervised query ex- 
pansion with minimal feedback,” IEEE Transactions on 
Knowledge and Data Engineering, vol. 19, pp. 1585– 1589, 
2007. 
 

Table 3. Indices of performance on different topics. 

Topic eR eAP eR pr eP5 eP10 eP20 eP30 eP100 
 mGT 64 0.594 0.703 1.000 0.778 0.737 0.586 0.546 

1 GT 64 0.517 0.625 1.000 0.778 0.684 0.552 0.495 
 LT 64 0.330 0.406 0.750 0.667 0.737 0.655 0.354 
 mGT 76 0.561 0.592 1.000 1.000 0.737 0.690 0.626 

2 GT 76 0.481 0.500 1.000 1.000 0.684 0.690 0.566 
 LT 76 0.254 0.395 0.750 0.667 0.632 0.552 0.374 
 mGT 75 0.740 0.720 1.000 1.000 1.000 0.793 0.667 

3 GT 75 0.626 0.693 1.000 1.000 1.000 0.759 0.576 
 LT 75 0.366 0.440 0.500 0.778 0.895 0.621 0.444 
 mGT 73 0.501 0.589 1.000 0.667 0.842 0.862 0.485 

4 GT 73 0.534 0.603 1.000 0.667 0.842 0.862 0.525 
 LT 73 0.683 0.658 0.750 0.889 0.947 0.828 0.616 
 mGT 49 0.484 0.469 1.000 0.889 0.842 0.552 0.364 

5 GT 49 0.439 0.429 1.000 0.889 0.790 0.517 0.333 
 LT 49 0.299 0.429 1.000 0.556 0.368 0.379 0.313 
 mGT 39 0.575 0.590 0.750 0.778 0.842 0.724 0.333 

6 GT 39 0.580 0.590 0.750 0.778 0.842 0.690 0.343 
 LT 39 0.657 0.667 0.750 0.889 0.895 0.724 0.354 
 mGT 100 0.615 0.760 1.000 0.889 0.842 0.828 0.758 

7 GT 100 0.633 0.780 1.000 0.778 0.790 0.828 0.788 
 LT 100 0.392 0.570 1.000 0.667 0.632 0.621 0.566 
 mGT 28 0.318 0.321 0.500 0.556 0.316 0.345 0.242 

8 GT 28 0.327 0.357 0.500 0.556 0.316 0.345 0.242 
 LT 28 0.465 0.393 1.000 0.556 0.474 0.379 0.273 
 mGT 45 0.735 0.667 1.000 1.000 0.895 0.793 0.434 

9 GT 45 0.679 0.600 1.000 1.000 0.947 0.759 0.404 
 LT 45 0.146 0.156 0.750 0.556 0.368 0.241 0.162 
 mGT 63 0.584 0.693 0.999 0.768 0.727 0.576 0.536 

10 GT 63 0.507 0.615 0.999 0.768 0.674 0.542 0.485 
 LT 63 0.320 0.396 0.740 0.657 0.727 0.645 0.344 

 
Table 4. Average values of performance. 

run eMAP eRprec eP5 eP10 eP20 eP30 eP100 
mGT 0.569 0.601 0.917 0.840 0.784 0.686 0.495 
GT 0.535 0.575 0.917 0.827 0.766 0.667 0.475 
LT 0.399 0.457 0.806 0.691 0.661 0.556 0.384 

 

1078



[11] S. Dumais, T. Joachims, K. Bharat, and A. Weigend, 
“SIGIR 2003 workshop report: implicit measures of user 
interests and preferences,” SIGIR Forum, vol. 37, no. 2, pp. 
50–54, 2003. 
 
[12] S. E. Robertson and S. Walker, “On relevance weights 
with little relevance information,” in Proceedings of the 
20th annual international ACM SIGIR’97. pp. 16– 24. 
 
[13] C. Carpineto, R. de Mori, G. Romano, and B. Bigi, 
“An information-theoretic approach to automatic query 
expansion,” ACM Trans. Inf. Syst., vol. 19, pp. 1–27, 
January 2001.  
 
[14]J.Callan,W.B.Croft,andS.M.Harding,“Theinquery 
retrieval system,” in In Proceedings of the Third 

International Conference on Database and Expert Systems 
Applications. Springer-Verlag, 1992, pp. 78–83. 
 
[15] K. Collins-Thompson and J. Callan, “Query expansion 
using random walk models,” in Proceedings of the 14th 
ACM international conference on Information and 
knowledge management, ser. CIKM ’05. New 
York, NY, pp. 704–711 
 
[16] H. Lang, D. Metzler, B. Wang, and J.-T. Li, 
“Improved latent concept expansion using hierarchical 
markov random fields,” in Proceedings of the 19th ACM 
CIKM ’10, USA: ACM, 2010, pp. 249–258 
 
[17] S. E. Robertson, “On term selection for query expan- 
sion,” J. Doc., vol. 46, pp. 359–364, January 1991. 
 
[18] F. Sebastiani, “Machine learning in automated text 
categorization,” ACM Comput. Surv., vol. 34, pp. 1–47, 
March 2002. 
 
[19] D.M.Blei,A.Y.Ng,andM.I.Jordan,“Latent dirichlet 
allocation,” Journal of Machine Learning Research, vol. 3, 
no. 993–1022, 2003. 
 
[20] T.L.Griffiths,M.Steyvers,andJ.B.Tenenbaum,“Top- ics 
in semantic representation,” Psychological Review, vol. 
114, no. 2, pp. 211–244, 2007. 
 
[21] S. Noam and T. Naftali, “The power of word clusters 
for text classification,” in In 23rd European Colloquium on 
Information Retrieval Research, 2001. 
 
[22] G. Cao, J.-Y. Nie, J. Gao, and S. Robertson, “Selecting 
good expansion terms for pseudo-relevance feedback,” in 
Proceedings of the 31st annual international ACM SIGIR. 
2008, pp. 243–250. New York, NY, 
 
[23] C.-J. Lee, Y.-C. Lin, R.-C. Chen, and P.-J. Cheng, 
“Selecting effective terms for query formulation,” in 
Information Retrieval Technology, ser. Lecture Notes in 
Computer Science, Springer Berlin / Heidelberg, 2009, vol. 
5839, pp. 168–180. 
 
[24] F. Clarizia, L. Greco, and P. Napoletano, “An adap- 
tive optimisation method for automatic lightweight 
ontology extractions,” in Lecture Notes in Business 
Information Processing, Springer-Verlag Berlin 
Heidelberg, 2011, p. 357-371. 
 
[25] T. Hastie, R. Tibshirani, and J. Friedman, The 
Elements of Statistical Learning, Springer, 2009. 
 
[26] B. Carterette, J. Allan, and R. Sitaraman, “Minimal 
test collections for retrieval evaluation,” in 29th In- 
ternational ACM SIGIR Conference on Research and 
development in information retrieval, 2008. 

Table 5. Cumulative Gain (CG), Discounted 
Cumulative Gain (DCG), Normalized 
Discounted Cumulative Gain (nDCG). 

Topic Rel CG DCG IDCG nDCG
1 mGT 55 80 25.536 30.030 0.850 
  GT 49 74 24.528 28.985 0.846 
  LT 35 42 15.502 17.421 0.890 

2 mGT 62 81 24.257 28.577 0.849 
  GT 57 75 22.654 27.271 0.831 
  LT 37 55 17.053 23.690 0.720 

3 mGT 67 76 18.568 24.288 0.764 
  GT 57 64 16.320 21.385 0.763 
  LT 44 50 12.048 18.435 0.654 

4 mGT 48 63 19.330 24.267 0.797 
  GT 52 67 20.361 24.970 0.815 
  LT 61 74 21.352 25.495 0.837 

5 mGT 36 60 23.714 26.175 0.906 
  GT 33 55 22.325 24.728 0.903 
  LT 31 44 16.330 20.072 0.814 

6 mGT 33 39 10.698 16.366 0.654 
  GT 34 40 10.823 16.561 0.654 
  LT 35 41 11.069 16.754 0.661 

7 mGT 76 98 25.405 32.205 0.789 
  GT 78 100 25.696 32.522 0.790 
  LT 57 85 23.748 31.621 0.751 

8 mGT 24 32 11.817 15.826 0.747 
  GT 24 32 11.943 15.826 0.755 
  LT 27 35 12.369 16.457 0.752 

9 mGT 43 60 20.977 24.336 0.862 
  GT 40 55 19.763 22.814 0.866 
  LT 16 20 8.775 11.229 0.781 

10 mGT 54 79 24.436 29.920 0.818 
  GT 48 73 23.428 27.885 0.840 
  LT 34 41 14.402 16.321 0.882 

1079


