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We experimentally demonstrate that in the presence of an in-plane magnetic field the voltage-current

curve of a Nb thin strip having plano-convex cross section exhibits considerable asymmetry of the

critical current. The observed behavior can be accounted for by the magnetic field component normal

to the top convex surface of the strip. Such a component is inhomogeneous, changes sign in the

middle of the strip and affects the three-dimensional vortices that in this system have sections locally

perpendicular to the top convex surface, though the magnetic field is applied parallel to the bottom

flat surface. These sections play the most significant role in the generation of the observed

asymmetry. A maximum asymmetry ratio of about 300% at 4.2 K is observed when the strip is in the

mixed state and can be ascribed to the balance of the magnetic force due to the inhomogeneous field

component and the polarity dependent Lorentz force associated to the transport current. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3692809]

I. INTRODUCTION

Asymmetric voltage-current [V(I)] curves exhibited by

superconducting devices are at the base of superconducting

rectifiers, or superconducting diodes,1–12. A superconducting

diode is the dual of a semiconducting diode, as the role of

current and voltage are interchanged. It exhibits zero or finite

resistance depending on the sign of the bias current. Com-

pared to a semiconducting diode, this kind of diode is a

rather low impedance device that can support and rectify

very high current densities even near the absolute zero.

Recently, asymmetric V(I) curves have been reported6–12 in

ferromagnet-superconductor hybrids on the micron scale.

The asymmetry in the critical13 currents in these hybrids has

often been attributed6–12 to the inhomogeneous stray mag-

netic fields generated by the ferromagnet.

Here we demonstrate experimentally that a marked

asymmetry in the critical currents can be also exhibited by a

single thin superconducting strip having plano-convex cross

section when subjected to a homogeneous magnetic field

applied parallel to the substrate. Unlike the ferromagnet-

superconductor hybrids, this kind of rectifier does not

undergo hysteresis or the bistability phenomena normally

associated to a ferromagnetic film, that, though desirable for

some applications (e.g., memory elements), could be

unwanted in some other applications. Our strip is made of a

type II superconductor,13 niobium, in the dirty limit regime.

Here we report measurements on V(I) curves and asymmetry

ratios as function of the applied magnetic field and tempera-

ture, besides an example of rectification of an AC current.

From the physical point of view, here we are concerned

with the magneto-transport properties of a superconducting thin

strip with curved and asymmetric cross section, a subject

relatively unexplored until now. We will show, with the help of

numerical simulations performed in the framework of the full

three-dimensional (3D) time dependent Ginzburg Landau

(TDGL) model, that the asymmetry can be mainly accounted for

by the magnetic field component normal to the convex top sur-

face. Such a component is inhomogeneous, being antisymmetric

with respect to the middle of the strip, and affects the flux entry

and flux exit. Here the flux consists of 3D vortices that have sec-

tions locally perpendicular to the top convex surface, though the

bulk section, when present, is parallel to the applied magnetic

field and to the bottom flat surface. These sections play the most

significant role in the generation of the observed asymmetry. We

anticipate that the result of the analysis can be summarized as

follows. At low magnetic fields (Meissner state) the asymmetry

comes from the balance of the normal component of the mag-

netic field and the polarity dependent self-field of the transport

current. At larger magnetic fields (mixed state) the asymmetry

comes from the balance of the magnetic force due to the inhomo-

geneous normal component of field and the polarity dependent

Lorentz force associated to the transport current.

The work is organized as follows. In Sec. II, after a brief

description on how the Nb strip with plano-convex section is

fabricated, we report the main experimental results on asym-

metry of critical currents as well as an example of rectifica-

tion of an AC current. In Sec. III the observed asymmetry in

magneto-transport properties of the superconducting strip is

explained with the help of numerical simulations performed

in the framework of time-dependent Ginzburg Landau equa-

tions,13 that are reliably used14–19 whenever direct computa-

tion of voltage-current curves of a type II superconductor in

the presence of magnetic field is needed. A brief summary of

main results is given in Sec. IV.

II. EXPERIMENTAL RESULTS

We fabricated a Nb thin strip with convex upper surface

by means of rf-sputter deposition through a bilayer resista)Electronic mail: giocar@sa.infn.it.
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shadow mask20 [see Fig. 1(a)] made by electron beam lithog-

raphy (EBL). The resist bilayer consisted of a 0.2 lm

thick layer of polymethylmethacrylate (PMMA) and a

0.7 lm thick layer of PMMA-copolymer (PMMA/MA). A

1 lm wide strip is patterned on the bilayer with an area dose

of 100 lC/cm2. Due to the remarkable difference in sensitiv-

ity between the two resist layers, a large undercut in the

PMMA/MA layer below the PMMA layer is obtained after

development, so that the bilayer can work as a shadow mask

[see Fig. 1(a)]. To enhance resistance to plasma, after devel-

opment the mask is further baked at 130 �C for 30 min in a

convection oven. Moreover, to minimize resist contamina-

tion,20 prior to the deposition of the strip a 10 nm thick Nb

passivation layer is first sputtered and allowed to relax to

passivate the resist surface. Due to the isotropy of the sputter

process, the Nb is smeared under the window formed by the

top layer of resist, resulting in a smoothly graded profile for

the Nb deposited on the Si/SiO2 substrate, as sketched in

Fig. 1(a). The profile of the Nb strip recorded with an

atomic force microscope (AFM) confirms the expected

plano-convex (bottom surface is flat and top surface is con-

vex) shape, as shown in Fig. 1(b). The sample has a four con-

tact geometry, with voltage pads 10 lm apart. The Nb strip is

2 lm wide and is 100 nm thick in the middle [see Fig. 1(b)].

In Fig. 2(a) we show the V(I) curve of the strip recorded at

T¼ 4.2 K (Tc¼ 6.0 K) with a magnetic field l0 H¼ 0.2 T

applied parallel to the substrate and perpendicular to the trans-

port current, as sketched in the inset. In the reference frame

shown in the inset, the magnetic field is directed as the x-axis,

H¼ (H, 0, 0), and the current density as the y-axis, J¼ (0, J, 0).

The positive and the negative depairing currents13 [IDP and IDN,

the current values at which the transition to the fully normal state

takes place, see arrows in Fig. 2(a)] are found to be moderately

different and the positive and negative critical currents13

[ICP and ICN, the current values corresponding to the transition

V¼ 0! V=0, see arrows in the bottom panel of Fig. 2(a)] are

found to be remarkably different, as emphasized in the bottom

panel of Fig. 2(a). The V(I) curves are mirrored with respect to

the origin when the magnetic field polarity is reversed

[Fig. 2(b)], therefore, in the following we will show data con-

cerning only the positive magnetic fields. The critical currents,

estimated using a 0.2lV criterion, and the depairing currents as

a function of magnetic field are shown in Fig. 2(c). The maxi-

mum asymmetry ratio [Fig. 2(d)] for the depairing currents is

100� ðIDP � jIDNjÞ=jIDN j ¼ 40% and is 100� ðICP � jICN jÞ=
jICNj ¼ 300% for the critical currents.

From Fig. 2(c) we notice that, at the chosen polarity of

magnetic field, the positive critical current ICP is always

larger than the negative critical current ICN. Moreover,

though at large magnetic field values the positive critical cur-

rent is depressed as the magnetic field is increased, at low

magnetic fields an opposite behavior is observed, i.e., the

critical current is enhanced with respect to the zero magnetic

field value. The enhancement, that at 4.2 K is of about 30%

reaches 60% at lower temperatures as can be appreciated in

Fig. 3(a), where we compare the V(I) curve at zero field with

the one at l0 H¼ 0.18 T, both recorded at 0.3 K. The critical

currents and their asymmetry ratio as a function of magnetic

field at this temperature are plotted in Fig. 3(b). The asym-

metry ratios in Figs. 2(d) and 3(b) indicate that maximum

asymmetry is always achieved at relatively high magnetic

field values, where both critical currents are depressed with

respect to the zero field value. Nevertheless, the qualitative

difference in the positive critical current trend at low fields

with respect to the large fields values suggests that there can

be two different mechanisms at the origin of the asymmetry,

depending on the field range. In Fig. 3(c) we show some V(I)
curves recorded near the critical temperature Tc¼ 6.0 K at a

fixed value of the applied magnetic field. A considerable

asymmetry is observed in a large temperature range,

FIG. 1. (Color online) (a) A sketch (not on scale) of the bilayer resist mask

used to sputter Nb. (b) AFM profile of the Nb strip along its width.

FIG. 2. (Color online) (a) V(I) curve of the strip with the identification of

the depairing currents. The magnetic field is applied as sketched in the inset.

In the bottom panel the magnification of the low voltage region emphasizes

the difference between the critical currents. The arrows indicate the history

of the voltage-current loop. (b) V(I) curves at magnetic fields of opposite

polarities. Positive and negative depairing and critical currents [(c)], and

asymmetry ratio [(d)] as a function of magnetic field.
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reaching vanishingly small values only at T/Tc � 0.98, as

can be better appreciated in Fig. 3(d), where we plotted the

critical currents as function of reduced temperature T/Tc at a

fixed field.

Finally, the asymmetry is practically absent if the mag-

netic field is applied perpendicular to the substrate, as shown

in the Fig. 4(a), where we report some V(I) curves recorded

at different magnetic fields at 4.2 K. For this field orientation,

besides some vanishingly small asymmetry of the voltages

probably accounted for by the not perfect symmetry of the

strip profile around its middle point [see Fig. 1(b)], the criti-

cal currents are found to be reasonably symmetric within

10% accuracy, as can be appreciated in Fig. 4(b).

Due to the asymmetry of depairing or critical currents,

our strip in parallel magnetic field can exhibit a zero or finite

resistance depending on the direction of the bias current.

This behavior is evidenced in Fig. 5(a), where we plot the

V(I) curve of the strip recorded at l0 H¼ 0.5 T: at I¼ 1 mA

the resistance is zero, while at I¼�1 mA the resistance is fi-

nite (though quite low, few percent of RN ’ 17 X). The

curve in Fig. 5(a) was recorded at T¼ 4.2 K driving the strip

with a low frequency triangular current I(t) with amplitude

�ICN< IAC< ICP [see top panel of Fig. 5(b)], measuring the

voltage V(t) [see bottom panel of Fig. 5(b)], then eliminating

the time. The time average of the current is < I(t) >¼ 0 but

the time average of the output voltage is < V(t) >= 0, i.e.,

our strip behaves as a current rectifier. It is worth noticing

that the current density here is rather large, of the order of 10

GA/m2, as should be expected for a superconducting device.

A way to characterize the rectification capability3,5 of

the strip is to plot the time average of the output voltage

< VðtÞ >� VDC as a function of the amplitude IAC of AC

driving current. An example of such a VDC(IAC) curve at

l0 H¼ 0.5 T is shown Fig. 5(c). This curve is recorded driv-

ing the device with a sinusoidal signal at 1 kHz with ampli-

tude IAC while stepping to progressively larger values of IAC

and measuring the voltage at each amplitude with a DC

nano-voltmeter. In this case, the VDC is in the lV range and

it is achieved for jICNj < IAC < ICP, due to the difference in

the critical currents. In Fig. 5(d) the field is l0 H¼ 0.3 T and

the AC current amplitude is in a wider range. Here rectifica-

tion when VDC increased up to the mV range occurs for

jIDNj < IAC < IDP, because now the finite resistance involved

is the normal state resistance RN. Notice that, though the nor-

mal state is approached with high current density, dissipative

heating is minimized, because the sample is immersed in liq-

uid helium and is in the resistive state only during a small

fraction of the signal cycle.

III. NUMERICAL RESULTS AND DISCUSSION

From the profile shown in Fig. 1(b) we notice that the

top surface of the strip can be approximated by a cylindrical

surface having a curvature radius R ’ 4 lm. In the experi-

ment the magnetic field is applied parallel to the cord of the

FIG. 3. (a) V(I) curve of the strip in zero magnetic field compared with the

curve at l0 H¼ 0.18 T, emphasizing enhancement of positive critical current

(almost coincident with the positive depairing current). The temperature is

0.3 K. (b) Positive and negative critical currents (top panel), and asymmetry

ratio (bottom panel) as a function of magnetic field, at T¼ 0.3 K. (c) V(I)
curves recorded near the critical temperature Tc at a fixed magnetic field.

(d) Positive and negative critical currents (top panel), and asymmetry ratio

(bottom panel) as a function of temperature, at fixed field l0 H¼ 0.27 T.

FIG. 4. (Color online) (a) V(I) curves at T¼ 4.2 K at different magnetic

fields applied perpendicular to the substrate, as shown in the inset. (b) Criti-

cal currents as a function of magnetic field applied as in (a), at 4.2 K.

FIG. 5. (a) V (I) curve of the strip at 4.2 K subjected to an in-plane magnetic

field of l0 H¼ 0.5 T. (b) Time traces of forcing current and output voltage

corresponding to V(I) curve in (a). (c) DC voltage output as a function of the

amplitude of a sinusoidal driving current of 1 kHz. (d) Same as in (c), but

the range of the AC current amplitude is larger and the field is l0 H¼ 0.3 T.
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arc, as shown in the inset of Fig. 2(a). Though the applied

magnetic field H is homogeneous, both the component Hn

normal and the component Ht tangent to the top surface are

inhomogeneous, but the Hn is qualitatively different, because

it changes sign in the middle of the strip and can probably

explain the asymmetry. In fact, the analysis we present

below substantially confirms this hypothesis.

From the slope close to Tc of the upper critical field

l0Hc2(T) we estimate21 for our sputtered Nb thin film a co-

herence length nð0Þ ’ 9 nm. This value is much smaller

than the BCS coherence length of Nb, n0¼ 39 nm, so the

sample is in the dirty limit regime with an electron mean free

path l ¼ 1:38nð0Þ2=n0 ’ 2:8 nm. In the dirty limit regime

the Ginzburg-Landau parameter can be estimated by

j ¼ 0:72kL=l ’ 10, with kL¼ 40 nm the London penetration

depth of Nb. This result implies that the investigated sample

is a type-II superconductor. The Ginzburg-Landau London

penetration depth is k(0)¼ jn(0)¼ 90 nm, that is of the order

of the thickness d of our strip at its middle. Normalized rele-

vant physical dimensions of the strip are W ’ 222nð0Þ; d ’
11nð0Þ; L ¼ 5W and R ’ 2W.

To gain insight in the origin of asymmetric magneto-

transport properties of our super- conducting strip with

plano-convex section, we performed numerical simulations

in the framework of the time-dependent Ginzburg-Landau

(TDGL) model14–19 in the full three- dimensional version

(3D model). The full 3D model with realistic parameters is

computationally very expensive. Hence, we have used this

model only as a guide to individuate the main mechanism

for the asymmetry.

The celebrated three-dimensional time-dependent

Ginzburg-Landau (TDGL) model14–19 reads:

u
@w
@t
¼ ðr � iAÞ2wþ ð1� T � jwj2Þw;

@A

@t
¼ 1

2i
ðw�rw� wrw�Þ � jwj2A

(1)

�j2r� ðr � A�HÞ: (2)

Here w ¼ wðx; y; zÞ is the complex order parameter, A¼ (Ax,

Ay, Az) is the vector potential, H is the applied magnetic field,

T is the temperature, j is the Ginzburg-Landau parameter and

the coefficient u¼ 5.79 controls the relaxation of w. All

physical quantities are measured in dimensionless units:

the coordinates are in units of the coherence length

nð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�hD=8kBTc

p
, with Tc the critical temperature, and D

is the diffusion constant. Temperature is in units of Tc. Time

is measured in units of the relaxation time s(0)¼ 4prnk(0)2/c2

(rn is the normal-state conductivity, k(0)¼jn(0) the magnetic

field penetration depth, with j the G-L parameter). The order

parameter is in units of Dð0Þ ¼ 4kBTc
ffiffiffi
u
p

=p, i.e., the super-

conducting gap at T¼ 0 which follows from Gor‘kov’s deriva-

tion of the Ginzburg-Landau equations. The vector potential is

measured in units U0=2pnð0Þ (U0 ¼ ch=2e is the quantum of

magnetic flux). In these units the magnetic field is scaled with

Hc2ð0Þ ¼ U0=2pnð0Þ2 and the current density with j0ð0Þ
¼ cU0=8p2kð0Þ2nð0Þ. We use the model as stated in Ref. 15,

but our normalization is relative to the variables at T¼ 0. This

results in the explicit inclusion of normalized temperature T in

the first equation, as found, e.g., in Refs. 18 and 19. The first

equation governs the relaxation of the superconducting order

parameter w and the second equation is the Maxwell equation

for magnetic induction field B ¼ r� A.

Equations (1) and (2) are integrated in the three-

dimensional rectangular domain shown in Fig. 6(a), with

external boundary @ �X. The superconducting material occupies

the plano- convex cylindrical region X and its is surrounded

by vacuum. The boundary @X of X is the interface between

the superconductor and the vacuum. As in the experiment, in

the Cartesian reference frame shown in Fig. 6(a) the applied

magnetic field is directed as the x-axis, H¼ (H, 0, 0), and the

transport current density as the y-axis, J¼ (0, J, 0). Notice

that in this reference frame, is r�H ¼ 0 and the applied

magnetic field only appears in the boundary condition of the

vector potential. This condition is chosen such that magnetic

induction field B ¼ r� A on the outer boundary goes to the

applied field H when the outer boundary is chosen reason-

ably far from the superconductor, meaning that screening

current does not modify sensibly the applied field at large

distances from the superconductor. Mathematically, the con-

dition reads:16,22 ðr � AÞj@ �X ¼ H. When a transport current

is present, we add16 to the applied magnetic field H also the

field HJ induced by the bias density current J, calculated

using the Biot-Savart law. For the order parameter, we use

the superconductor-insulator boundary conditions, i.e., we

set the normal component of the supercurrent across the

boundary @X to zero13: ðr � iAÞw � nj@X ¼ 0, where n is the

outward normal unit to the surface @X. Finally, to simulate a

infinite length strip, we apply periodic boundary conditions

FIG. 6. (a) Sketch the superconducting strip placed in an insulating (vac-

uum) rectangular box. (b) and (c) show the vector plots of the magnetic

induction field for two values of j, when a weak magnetic field is applied

parallel to the bottom surface. (d) Component of the magnetic induction field

along the outer normal of the convex surface (Bn) compared the same com-

ponent of applied magnetic field (Hn).
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in the y-direction: wðx; y� K=2; zÞ ¼ wðx; yþ K=2; zÞ and

Aðx; y� K=2; zÞ ¼ Aðx; yþ K=2; zÞ, where K is the spatial

period along y-direction.

To numerically solve the system of Eqs. (1) and (2) we

apply a finite-difference representation for the order parame-

ter and vector potential on a uniform Cartesian space grid

with step size 0.5 and we use the link variable approach15,16

and the simple Eulero method23 with time step Dt¼ 0.002 to

find w and A. Initial conditions are jwj ¼ 1 in the region X,

jwj ¼ 0 outside, and A¼ 0 everywhere. The behavior of the

system is studied on a large time scale when time-averaged

values no longer depend on time. In our calculations we

choose parameters j¼ 5, T¼ 0.8, W¼ 122, R¼ 1.6 W, thick-

ness at middle d¼ 12, and the spatial period along y-direc-

tion K ¼ 20. These parameters, comparable though not the

same as in the experiment, were chosen to take into account

the efficiency of our computing tools while saving the rele-

vant features. Here we are only interested on main physical

mechanism accounting for the observed asymmetry and we

are not interested in quantitative fitting of experimental data

with numerical data. Moreover, we remark that reduced tem-

perature T/Tc¼ 0.8, chosen to qualitatively account for most

significant experimental results summarized in Fig. 2, though

relatively far from Tc, is not beyond the range of validity of

Ginzburg-Landau theory, because18 we are concerned with a

type II superconductor in the dirty limit, compelling a large

j parameter.

In Figs. 6(b) and 6(c) we show the vector plots of the cal-

culated magnetic induction field B for two type-II supercon-

ductors of same dimensions but with different j subjected to a

magnetic field applied parallel to the bottom surface. In both

cases we are in the Meissner state. When j is small [see

Fig. 6(b), j¼ 1] the magnetic field is completely expelled

from the bulk of the superconductor (full Meissner screening),

and the field lines near the external surface of the strip follow

the profile of the strip. Increasing j, the magnetic field almost

completely penetrates the superconductor (very weak screen-

ing) and the field lines are almost aligned with the applied

magnetic field [see Fig. 6(c), j¼ 5]. This is not surprising if

we remember that the strips have different thickness in units

of magnetic penetration length k. At the used temperature

T¼ 0.8 the thickness of the strip with j¼ 1 is d � 6k, allow-

ing a substantial screening of the external magnetic field. Con-

versely, for the strip with j¼ 5 is d � 1k (our experimental

strip at this temperature is also more thin, d � 0.5k), and

screening of applied magnetic field is very weak. In Fig. 6(d)

the component of magnetic induction normal to the convex

top surface, Bn, is compared with the normal component of

the applied magnetic field, Hn. Consistently, the screening of

this component is rather evident when j¼ 1 and very weak

when j¼ 5. Moreover, the modification of the induction field

(here an enhancement at the edges of the strip) with respect to

the applied field, commonly described with a geometry-

dependent demagnetizing factor, is quite noticeable in the

strip with low j but almost absent in the other strip. In the fol-

lowing we always use j¼ 5, more comparable with the exper-

imental one, i.e., j¼ 10.

In Fig. 7(a) there is shown the contour plot of

the squared order parameter at H¼ 0.11. For this critical

magnetic field value the strip is at onset of the mixed state.

Flux enters the strip as 3D vortices that have the bulk section

parallel to the applied field, but the lateral sections are per-

pendicular to the convex top surface, in qualitative agree-

ment with reported numerical results16 on flux penetration in

cylindrical superconductors with field applied perpendicular

to the cylinder axis. Moreover, there is also a qualitative

agreement with the analytic results on a problem dual with

respect to the one we are addressing here, i.e., flux penetra-

tion in the case of flat strips with magnetic field tilted with

respect to the surface. Also in that case, the vortex was

found24 to penetrate perpendicular to the surface despite of

tilting, as it happens in our top convex surface, that is locally

tilted with respect to the applied field. In Fig. 7(a) only the

3D vortex at section y¼ 0 it is shown, for the sake of sim-

plicity. By feeding a transport current density J in the strip,

the 3D vortex can be moved by the Lorentz force FL. In

panel (b) we show the effect of a negative transport current

density corresponding to the onset of stationary flux motion

with associated dissipation, i.e., we are at the negative criti-

cal current density J¼ JCN. At this current value, vortex

shown in panel (a) is ejected upward because of the FL and

flux enters again as an antivortex (Av) at the left edge and a

vortex (V) at the right edge of the strip as shown in panel (b).

FIG. 7. Contour plots of the squared order parameter at a magnetic field

value allowing the first entrance of vortices. Here the section at y¼ 0 is

shown. In (a) there is no bias current. In (b) is J¼ JCN. In (c) is

J ¼ jJCN j < JCP. The white arrows indicate direction of the magnetic flux

line at the core of the vortex. (d) Local magnetic force acting on the entering

piece (�U0, left side of the convex surface of the strip) and exiting piece

(þU0, right side of the convex surface of the strip) of the full 3D vortex.
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This time the bulk section is not present and the 3D V and

3D Av are perpendicular to both top curved surface and bot-

tom flat surface. Under the action of FL, the V and Av move

inward until they join together to form again a vortex as the

one in the panel (a). Again, this vortex is expelled from the

top surface, continuing the ever dynamic process. In panel

(c) we show the effect of application of a positive current

density of same modulus as the negative critical current den-

sity, J ¼ jJCNj. This time the Lorentz force merely shifts

down and slightly deforms the 3D vortex of panel (a), but no

stationary flux motion is established, meaning no dissipation.

To establish dissipation we must feed a positive current

larger than the negative critical current. In other words is

JCP > jJCNj, as in the experiments. However, stationary flux

motion is achieved at large enough positive current, J¼ JCP,

and consists of expulsion of the 3D vortex shown in panel

(c) from the bottom of the strip followed by entrance of a

new vortex from the top of the strip and so on.

We notice that as seen from the top convex surface, the

3D vortex shown in Fig. 7(a) would be equivalent to a 2D

antivortex �2D vortex pair, with flux entering at the left

(�U0, 2D antivortex) and exiting at the right (U0, 2D vor-

tex). The portion of the 3D vortex near the top curved sur-

face is always perpendicular to the surface, though the field

is applied parallel to the bottom surface. Differently from the

bulk portion, these pieces of the total 3D vortex experience

the component of magnetization Mn � Bn � Hn that is nor-

mal to the curved surface. This component is inhomogene-

ous, being both Bn and Hn inhomogeneous [see Fig. 6(d)],

and, hence, generates a magnetic force FM that rivals the cur-

rent polarity dependent Lorentz force FL. The component of

magnetic force tangent to the top surface acting on the enter-

ing piece of the 3D vortex (�U0) on the left side can be

approximately estimated as F
ðAvÞ
M / þrxMnðxÞ and the one

acting on the exiting piece (U0) as F
ðVÞ
M ðxÞ / �rxMnðxÞ. An

example of spatial dependence of such a force as extracted

from the calculated Bn and Hn of Fig. 6(d) is shown in Fig.

7(d) and also qualitatively sketched by arrows in panels (a)

and (c). As it is seen, the magnetic force always opposes the

displacement of the �U0 and þU0 pieces from their equilib-

rium position [as it is the one in panel (a)] but the force is

weaker if a displacement toward the interior of the strip is

involved. This explains the asymmetry of the critical cur-

rents in the mixed state. In fact, at negative critical current

density J¼ JCN the FL moves the �U0 and þU0 pieces to-

ward the interior of the strip overcoming the weak FM oppos-

ing the displacement, and eventually the whole 3D vortex

exits from the top of the strip (�U0 and þU0 pieces annihi-

late) giving onset to dissipation. Conversely, at positive cur-

rent density J ¼ jJCNj, the FL moves the pieces toward the

exterior but this time its strength is not enough to overcome

the more strongly opposing FM and the whole 3D vortex is

only displaced, not ejected, as shown in panel (c). Hence, to

eject the vortex and to establish dissipation a current density

J ¼ JCP > jJCN j corresponding to a FL>FM should be

supplied.

In Fig. 8 we analyze the situation at a low magnetic

field, H¼ 0.07, for which we are again in the Meissner state.

In panel (a) is J¼ 0. In panel (b) we are at the negative criti-

cal current density, J¼ JCN. The dynamical process account-

ing for dissipation is very similar to the one we discussed

above, but for the initial stage. Here flux was not preexisting,

and it enters the strip as a 3D antivortex at the left and a 3D

vortex at the right. Under the action of FL, the 3D V and 3D

Av move inward until they joint to form again a vortex as

the one in the Fig. 7(a). This vortex is expelled from the top

surface, continuing the ever dynamic process. In Fig. 8(c) is

J ¼ jJCN j. As it is seen, no flux is present and no dissipation

is established. Hence, also starting with the strip in the

Meissner state we again observe JCP > jJCN j, as in the

experiment. At positive critical current, a 3D vortex enters

from the top of the strip and the same dynamical process as

the one we described above when the strip is in the mixed

state and J¼ JCP is again established.

Inspection of panels (b) and (c) of Fig. 8 suggests that in

the Meissner state the main mechanism of asymmetry

involves the current polarity dependent self-field associated

to the transport current density J. In panel (d) we show the

normal component of the induction field, Bn, when the bias

current density is negative, positive or zero. As it is seen,

when J< 0 the self field cooperates with the applied field

Hn(x), so that the magnetic induction field Bn(x) is larger

than what the applied field Hn(x) would generate by itself

and at J¼ JCN< 0 the Bn(x) at the edges of the strip is large

FIG. 8. Contour plots of the squared order parameter in the Meissner state.

(a) J¼ 0. (b) Bias current corresponding to negative critical current, J¼ JCN.

(c) J ¼ jJCN j < JCP. (d) Normal component of magnetic induction field Bn

at positive, negative, and zero transport current density J. The external mag-

netic field is H¼ 0.025, falling in the Meissner regime.
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enough to nucleate a 3D antivortex at left and a 3D vortex at

right, as shown in panel (b), with onset of dissipation. Con-

versely, when the bias current density is positive, the self-

field opposes to the external field Hn(x), producing a Bn(x)

lower than what Hn(x) would generate [see panel (d)]. This

allows a positive bias current density JCP > jJCN j to be fed

into the strip before that, as discussed above, a 3D vortex

enters from the top of the strip at the positive critical current

density J ¼ JCP > jCN j, with associated onset of dissipation.

From the above analysis we conclude that in the Meissner

state the asymmetry is mainly due to the balance of polarity

dependent self fields and the inhomogeneous normal compo-

nent of external magnetic field.

IV. SUMMARY

Summarizing, we have reported the experimental and

numerical investigation of magneto- transport properties of a

Nb thin strip with plano-convex section. The strip exhibits a

considerable asymmetry in the critical currents when the

magnetic field is applied parallel to the substrate. An asym-

metry ratio of critical currents as large as 300% has been

observed at 4.2 K, that makes the single superconducting

thin strip with tailored section possibly interesting for appli-

cations as a superconducting current rectifier at micron scale.

The observed asymmetry has been ascribed to the inhomoge-

neous (antisymmetric) magnetic field component normal to

the convex top surface of the strip. At low applied fields, the

normal component can enhance or weaken the polarity de-

pendent self-field of the bias current. At larger magnetic

fields the asymmetry comes from the balance of the magnetic

force due to the inhomogeneous normal component of

applied field and the polarity dependent Lorentz force associ-

ated to the transport current.
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