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Ini Kontext einer wohlbekannten Theorie f i r  endliche Deformationen. won porijs-elastzschen Materialien werden, einige Satze 
iiher Eindeutigkeit und die stetige Abhiingigkeit von den Daten f i r  sowohl dynamische als auch statische (nichtlineare) Pro- 
b1em.e beuiesen. Es ward einpotentiell unbeschninktes Gebiet imphysikalischen Rai~mf i i r  das betreffende Material betruchtet. 

In the context of a well known theory for finite deformations of porous elastic materiab, some theorems on uniqueness 
and continuous dependence on data are proved for both the dynamic and the static (nonlinear) problems. A possibly 
unhovnded domain of the physical space is considered for  the material in concern. 
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1. Introduction 

This paper is devoted to study some well-posedness questions regarding finite deformations of p o r o u s  elastic materi- 
als. More precisely, we consider both the dynamic and the static mixed problems, with non-linear constitutive equa- 
tions, and aim to prove theorems of uniqueness and continuous dependence on data for (regular) solutions to these. We 
allow 11 n b o u n d e d  n e s s for the physical domain filled by the porous material, what seems to be well connected with 
the geological ambit in which this type of elastic material attains some importance. 

An exhaustive theory for porosity in a continuum context was introduced by NUNZIATO and COU~IN in [I]. R,esort- 
ing to some ideas on granular materials given by GOODMAN and COWIN in [2], the above authors model the presence of 
small pores (or voids) in the elastic medium by assigning an additional degree of freedom to each material particle. 
namely. the fract,ion of (elementary) volume which is possibly found void of matter. As is customary for all theories on 
elastic microst.ruct,iires [3, 4; 51, higher order stress and body force terms are needed to describe the dynamical effect,s 
associated with the changes in volume fraction (with respect to a referential value); additional balance law and consti- 
tutive equations are accordingly introduced [l, 21. 

As shown in [I, 6-14], the theory of NUNZIATO and COWIN has proved its mechanical consistency with respect tjo 
various elastic phenomena involving porous bodies; we should also remark that CAPRIZ and PODIO-GUIDUGLI 1151 have 
included materials with voids in the (wider) frame of their materials with spherical structure. An account of the con- 
crete materials possibly falling in the field of application of the present theory, can be found in the just cited papers. 

Some general t.heorems for the mixed problems of nonlinear elasticity with voids in a bounded context: among 
which existence, uniqueness, and stability of solutions, have been given in [16-181; c o e r c i v e  properties as integral 
inequalities between stress and strain measures are crucial for these results. By using similar inequalities in suitably 
extended integral forms, we will prove our well-posedness theorems on assuming the body t.o fill an unbounded domain 
of the physical space. In this connection, it is worth remarking that: firstly, we do not propose nor expect to find 
conditions leading to g l o b a l  uniqueness in the solution space [19]; however, this doesn’t prevent us to look for suita- 
ble subclasses of it in which uniqueness (or else continuous dependence) may hold good. Secondly, we exclude assump- 
tions on t.he asymptot,ic behaviour that would be able, by themselves, to assure the basic integral equations over a 
bounded domain, to hold s i c  e t s i m p  1 i c i t e r over an unbounded domain. Rather, the concerned asymptotic condi- 
tions will permit simultaneous increase for all relevant fields; moreover, these conditions will be connected - in some 
cases - with the above coercive inequalities. As an alternative, we shall also consider summability conditions. 

The details of the paper are as follows. In Section 2 we state the equations governing the mixed problems of finite 
elasticity with voids. along with the basic definitions, In Section 3 we derive the energy equalities of interest and introduce the 
main assumptions (of coercive type): both of these are given in integral forms suitable for unbounded domains. In Section 4 
we consider the dynamic problem, and prove a theorem of continuous dependence for regular solutions with respect to initial- 
boundary data and external loads; w e i g h t  e d  La-norms are involved as metrics for the difference motion (the difference 
data will be measured - throughout - by sup-norms). In Section 5 we consider the static problem; a continuous dependence 
theorem involving weighted L,-norms ( p  > 1) is firstly given, then followed by two uniqueness theorems in wider classes. 

2. Basic equations and definitions 

Throughout the paper, we use the standard vectorial notation: small (or capital), small boldface and capital boldface 
letters will denote scalars, vectors, and tensors of any order (2  2), respectively. Typical notations for differential and 
algebraic operations upon them are employed. 
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Let Q denote the smooth domain of the physical space (=lRy) filled by the porous body in a fixed reference 
configuration, and z a positive number. We intend to identify the body with Q. In the Lagrangian (referential) formu- 
lation, the following local balances of m o m e n t u m  and of equilibrated force govern the dynaniic problem of finite elasti- 
city with voids [l, 181: 

Div T + eb = Q V ,  
Div h + y +el = e k p ,  

in Q, zz Q x (0, z) . 

In these equations, T is the first Piola-Kirchhoff stress tensor, h the equilibrated stress vector and y the intrinsic 
equilibrated body force; moreover, b and 1 are the external body force and the extrinsic equilibrated body force, respec- 
tively, while e denotes the bulk mass density and k the (positive) equilibrated inertia. We refer to [l, 2, 6, 151 for 
comments on all fields connected to the porous structure. Finally, v and iy are the kinematic variables of the theory, 
that is, the displacement and the volume fraction fields, respectively. 

In view of the classical interpretation of system (l), we shall assume that 

(i) T, h E C1."(J&) ; (ii) y ,  b, 1 E Co,'(fir) ; 

(iii) e, k E C"(sZ) ; (iv) v, iy E ~ ' ~ ' ( ( s z ~ ) .  

Pairs of fields (v, i y )  as in (iv) will be called admissible strain,s for the body. Vv, w and V y  give the strain measures [l]. 
In this connection, once that an orthonormal frame of reference e, has been introduced in R3, we can specify all 

differential operators under the above concern as follows : 

where (x. t )  E Q, (x = ziei is the Lagrangian vector posit,ion, t the time), and ,f and f = fiei stand for any (smooth) 
scalar and vector fields over this domain. 

Denote now by Lin the class of all second-order tensors. Regarding the constitutive equations for (l), we shall 
consider T, h and y as unspecified functions of the above strain measures [1, 181: 

T = W V ,  w1 VV) , h = m v ,  w ,  Vw) Y = Y P V ,  w ,  Ow) ,  ( 2 )  

and assume T, L, 7 E C2(Lin x R x R3) with ViT, Vih, O$ E C"~'(l2,) and V,V,-T, ViV,h, ViV# E 6'~"(QT); 
i ,  j = 1, 2, 3, and Vi denotes the partial gradient with respect to the i-th argument in (2).  We put: 

A = V1T (a fourth-order tensor field), 

B = V3h (second-order) , 
c' = -037 (a vector field) , 

A' = V3T (third-order) , 
B' 5 V2F (second-order) , 

c 3 027 (a scalar field). 
(3) 

The strain concerned in the above derivatives will be pointed out by writing A(v, w )  and likewise for the remainder. 
As shown in [1, 181, a balance law for a (smooth) internal energy E = E(Vv, y ,  Vy) could be invoked to yield 

T = VIE, h = VyE, y = -VzE. (4) 

017 = -B' , V& = C' . ( 5 )  

This of course implies 

In component form, the following symmetries also are simple consequences of (4) : 

We should remark that the considered constitutive equations, as well as the previously mentioned coercive 
properties, a r e  n o t  objective in the sense of the principle of material indifference u n l e s s  t h e y  r e g a r d  a one- 
dimensional problem [19-221; so, the ambit of application of the present mathematical model should be accordingly 
reduced. 

For suitable pairs (u, 9)  of vector and scalar fields over Q,, the following quadratic form will be of interest: 

where C:D = C,,D, for all C ,  D E Lin. We note that, when the response functions T, h, j j  are linear in their argu- 
ments (see equations (2)) and v, y/ reduce to the referential fields - as usually assumed in the infinitesimal theory - 
the above form attains the meaning of a potential  energy density for the body along the strain (u, p), cf. [6]. 
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L$+lSZ}, i = 1, 3, denote two pairs of complementary and disjoint subsets of the boimdary an, 
and 11 the outward unit normal to this. Appended to equations (1, 2), we shall consider the following system of mixed 
initial-boundary conditions: 

Let now 

. .  
v = v ( ) .  v = v g ,  w = t y 0 ,  3 / = 1 ) ~  i n Q x { o } ;  (8) 
v = vz inS1 T n =  tz in S2, y =  I,U= i n & ,  h . n  = hz in S,, (9) 

wherc S, = a,Q x [O; r] ,  i = 1, 2, 3, 4. The right-hand terms above denote (sufficiently smooth) prescribed fichls; 
aloiig with the external loads b and 1, these are the data of the mixed problem in concern. An admissible strain 
that meets all equations (1. 2: 8, 9), for some assignment of the data, will be referred to as a regulu,~ solution 
thereof. 

We will also consider the corresponding static problem: it consists in the search of fields v. y E C’(fi) that 
satisfy equations (1) in Q (with vanishing i;, (2) and boundary conditions (9) for Si =&a. We shall retain, with 
obvious modifications, the definitions of admissible strain, data, and regular solution. 

3. Energy equalities and main assumptions 

Consider first the dynamic  problem. Let (v, u / )  and ( v f u ,  w +  p) be two regular solutions corresponding to the 

yP + Q ~ .  hz + hz)% respectively. Of course, the dzfference strain (u, p) is admissible and solves the following mzxetf 
probl ern : 

data (b. 1. VO, GO, yo ,  k0, VP, tz, wz, hz) and (b + h, 1 + 1, vo + UO, +O + GI, wo + pg. Po + vlo, vz + UP, t z  + iz, 

I 
I 

Div (T’ - T) +- pb = p u ,  

D i v ( h ’ - h ) + ( y ’ - y ) + $ = p k @  inQ,;  

u = q ,  l i = u o ,  p = p o ,  @ = &  inQx{O};  

u =  uz i n s I  q =qL. inS3, 

(T’ - T) n = i, in S, , (h’ - h) . n = i z  in 84, 

where (henceforth) : 

T’ = T(Ov + Vu. II/ + p, Vw + Vp) , T = T(Vv, w ,  Ow) ,  

h‘ = h(0v + Vu. w + rp, Vw + Vp) , h = ~ ( V V ,  v / ,  Ow),  

y’ I jqvv + V U ,  y + 9% Vy/ + Vp) , y = j p v ,  (u, Ow). 
^ ^  

In equations ( lo) ,  b, 1, Ug, Go, qo, &, uz, iz; pz, /& are the difference data. 
iVe now assume Q to be an exterior domain ,  that is, SZ = lR3 - Qo, where Q o  is compact; of course: aJZ,, = 3Q 

(Other examples of unbounded domains, such a s  the whole or the half-space, can be handled with minor modifications 
[23]). Suitable assumptions on the asymptotic behaviour of the relevant fields in would enable to derive an 
integral equation of mechanical energy balance in the conventional manner. Aiming to avoid such (rather restrictive) 
assumptions, we apply a well known method for unbounded domains by GALDI and RIONERO [23]. In our context. this 
consists in multiplying equations (10)’,2 by g u  and g@, respectively, where g E C’.’(Q,) is a positive function rapidly 
decreasing with distance from as ,  then integrating over D and finally adding member to member. Whatever the 
behaviour of the integrand fields may be, the weight f unc t ion  g can always be chosen such as to get meaningful t>hc: 
following wezgh.ted form of the quoted integral equation: 

+ 1 g i z . u d Z +  5 g(h’-h).n@,dZ+ 1 g i x @ d Z  

- 1 [(T’ - T) : G 8 Vg + (h’ - h) . @ V g ]  dS2 , 

&Q an a, n 

n 
where E(li ,  @) = e(zi2 $- rCQ2). (a @ a’),] = a,a> for any vectors a, a’ 
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Concerning the static problem, similar arguments can be used to arrive at the following weighted integral equa- 
tion of virtual work type: 

J g[(T’ - T) : VU + (h’ - h) . Vp - (y’ - y )  p] dQ 
52 

= Jgp(6.u+iq)dQ+ s g(T’-T)n-uzdZ+ J g i z - u a  
B alSz azo 
+ J g(h’-h).np,d2+ s g & p d 2 -  J[(T’-T):u@Vg+(h’-h).qVg]dQ. (13) aJz a4n n 

In this equation, we have taken g E C’(Q); of course, the difference strain and data are time-independent fields on a. 
For the uniqueness of solutions in the static problem, we shall also use a (non-weighted) integral equation hold- 

ing over any compact (smooth) subdomain D of 52 (surrounding Q,). This can be formally deduced from (13) by 
putting 52 = D, g = 1 and all difference data equal zero: 

J [(T’ - T) : Vu+ (h’- h) . Vq - (7’- y )  q] dD = J [(T’- T) n .  u +  (h’- h) .nq] d2. (14) 
D ao - aB,, 

Equations (12, 13, 14) are the starting points of our well-posedness theorems. We now have to define the sub- 
classes of regular solutions in which these results will be proved. To this end, let us introduce the class 42 of all pairs of 
smooth displacement and volume fraction fields verifying the boundary conditions (10)d (S ,  = &Q for the static prob- 
lem), and the following &-norms ( p  > 1): 

II . IIL,(D) = 

( 1  . ( ( L p ( Q ; g )  = (d g1 . 1’ dQ) l’’ (for suitable weight function g) . [24] 

s I ’ I P  dD (for compact D c $2) , 
(i, yp 

In what follows, where it appears, G denotes the set of all weight functions that make the involved integrals 
finite. We recall equations (7, 11) and give 

D e f i n i t i o n  1: Let % denote the class of dynamic admissible strains (v, y) such that there exists K > 0 so 
that for all (u, q)  E 92, and all g E G, in [O,  Z] holds 

(15) 
2 J gp(”,,)(u, cp) dQ 2 KIIIvUIIL,(R;g) + Ilv~ll~2(o;g) + l l ~ l l ~ , ( J z ; g ) l ~  

D 

D e f i n i t i o n  2: Let Ap denote the class of static admissible strains (v, y )  such t,hat there exist K > 0 and 
p > 1 so that for all (u, p) E Q and all g E G, holds 

s g[(T’ - T) vu + (h’ - h) ’ VP - (Y’ - Y) YI dQ 2 KIIIv~ll;p(Q;,, + llV~ll$(n;g) + II~lIpLp(Q;,)l . 

s [P’ - T) : vu + (h’ - h) . VP, - (Y’ - Y) VI dQ 2 K”~UII;p(Q,, + I 1 w P , p ( R , )  + I141pLp(R,,l 1 

(16) 
R 

D e f i n i t i o n  3: Let MP denote the class of static admissible strains (v, ty) such that there exist R, K > 0 and 
p > 1 so that for all R 2 R and all (u, p) E 92, holds 

(17) 
QR 

where S Z R  is the intersection of 9 with a sphere B(R) of radius R centered in do and containing 9 0 .  

We note that Np contains Ap. 
Coercive integral inequalities as above are usually considered in various items of finite elasticity; we refer to 

[19-22, 251, where thorough investigations of their merits and flaws are carried out. Cf. also [26] for a modern mathe- 
matical approach. From a physical standpoint, these inequalities assert that the i n c r e m e n t  a 1 work of the internal 
stresses from suitable strains is positive definite with respect to L,-norms of the incremental strain measures; thus, 
they should be interpreted in the frame of the criteria for s t a t i c  s t a b  i 1 i t  y of such strains [27]. 

We recall that coercive properties of similar type form the basis of well-known theorems for existence and/or 
uniqueness of solutions in bounded context [20, 28, 291. We also note that, in the linear theory as described above after 
equation (7), the integrand fields in (16), (17) coincide with that in (15), which in turn becomes the potential energy of 
the body; so, in that theory, the quoted inequalities reduce to we a k forms of the positive definiteness property usually 
assigned to this potential energy [6]. 

4. A continuous dependence theorem for the dynamic problem 

Henceforth, r will denote the modulus of ,  the position vector x from some fixed origin in do; the letters C, Ci, 
i = 1,2 ,  . . . , will denote computable positive constants, not necessarily the same on each occasion. Moreover, 2 = (1/r) x. 
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T h e o r e m  1 : Let D be an unbounded porous elastic body such that 

577 
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(i) Iv~TI! ( v ~ L I ,  l ~ i y l  = O ( r " ) ,  (ii) Iv~v~TI, I v ~ v ~ L I ,  / ~ i ~ j j j  = o(T'*),  

(iii) l/e, l / k  = o(rE3),  (iv) l(VtT)'l, l(ViQ.1, I(VA'I = O(Trn),  

as r - +cc (uniformly in  [O: 4; a ,  j = 1, 2 ,  3), where el ,  E Z ,  E Q ,  m > 0. Let 2 be a subclass of 2 such that for all 
(v. w). (v + u. II/ + cp) E R, 

(v) PUl, Id, Pcpl = O(?') I ( 4  IVfil, 1 @ 1 ,  lWl = O(rn) , 
(vii) leal. = O(rI') 

as r + +oc, (uniforndy in [O.  4; i ,  j = 1, 2, 3), where n, p ,  ~4 > 0. 
Assume 

(viii) E I  + ~3 5 1 ,  EZ + ~3 + ~4 5 1.  

Then,. zf there exists in  2 a regular solution to the dynamic problem, it depends continuously on the data in  the 
weighted L.J-n,orm: 

l l f l lL2(R:g) > f = Jut, 14, lcpl: I@l, IW, IVcpIl 

where g = g(r) = exp ( -a@) r-2E:t and a ,  /3 are positive constants. 

Proof :  Let (v, W )  and (v + u, 

By second-order Taylor expansions in the constitutive equations ( 2 ) ;  we get, recalling (3, 5, 11): 

+ cp) E 9 be two regular solutions as in Section 3. Of course: the pair 
(u, p) E @. Consider the weighted equation (12) and choose g = g(r, t )  = exp [-(t + to)"$], a,  P, to > 0. 

T' - T = A(v, W )  VU + B'(v, W )  P, + A'(v, W )  Vp + V ,  

h' - h = Vih(v, v / )  VU + c'(v, W )  cp + B(v, W )  Vp + d ,  

J y' - y = -B'(v, W )  : VU - C(V, W )  cp - c'(v, W )  . VP, + Z ,  

where, in view of (ii), 

.4s a consequence, by the symmetry equations (6), 

+B'(v, iy)cp:Vu+c'(v, v)v , .Vrp  g ( V : V u + d . V @ - z + ) d D  
R 

where (iv) and (vi) have been finally used. Further, by (18), (19), (i), (v), 

- J [( T' - T) : U @ Vg + (h' - h) . @Vg] dS2 = - J (ag/&) [ (T' - T) : U @ X + (h' - h) . @XI dQ 
R n 

5 P(t  + to)" J g + - l ( c l T e l  + C27-e2+E4) (IVUI + lcpl + IVcpI) (lul + lull) d Q ,  
Y 

that, gives, by Cauchy's inequality ab 5 a 2 / ( 2 5 )  + 5b2/2 for all > 0, 

- f [(T' - T) : U 8 Vg + (h' - h) . $091 dQ 
R 

I P(t + to)" C1 J d - 1 + E 1 [ ( I V u / 2  + 1qI2 + IVqI2) 2 + E(u, @) 

+B(t + to)" 6 2  

dS2 
52 

g&'+'2tf4[((V~(2 + (q(' + (VcpI2) y" + E(u, 4 )  r2cn-p] dS2 (for all 1, p E W) 
R 

39 Z. angrw. \lath. hlech., Bd 76. H. 10 
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Note also that 

d 
dt 5 -- 1 gp(",,)(u, v) d Q +  1 [--GIK(t+tO)a-l g@(IVul2 + I d  + lVVI"1 d Q ,  

5 1 g[JqU, @) + P(Ul (P)1 dQ 

n I2 

since (v, w )  E 2 (with gra as weight function in (15)). 
Take t o ,  f l  1 1. Therefore, from equation (12) we deduce (omitting the indication of (v ,  w )  at P ) :  

dt 
R 

)] E(u. @) d 0  5 g[-a(t + 

+ g[-aK(t + to)" - 

+P( t  + to)" Cl ( r -+& l+2&3-k  + @- 1 + E2 +er  + 2E3 - p  

+ ,p - 1 + 91 + A  + @ - 1 + E2 + E4 +p  11 (IVUl2 + lv? + IWI2) dQ + P(t + to)" cz (T" + rc2 + 

5 
.r 
9 

R 

P s {L a2-Q a3-Q a, Q 'td ..) . IUzl a+ Ifzl a+ l+zl a+ + C, gr83+p(lbl + lil) dSZ + C d  

Assume now that 00 2 B(l), and consider (viii); on choosing 

-1 + E ~  + 2 ~ ~  I A 5 1 - E ~ ,  -1 + E2 f 2 E 3  + Eq 5,!4 5 1 - E z  - E 4 ,  

P 2 max (1, m, n + 8 2 1 ,  a 2 P(r + t o )  max {XI, (4/K) CZ} 
(where C1 and C2 are just the constants appearing in the foregoing equation), the first two integrals in the right hand 
side above are non-positive. An integration with respect to time then yields 

s d 4  (& + @@'? + K(IVu12 + Id2 + IOql')] dQ I J g[E(u, @) + p(u, P)] dQ 
52 P 

where go = g ( r ,  0 )  and PO = P(vo~Vo). 
Of course, u2(t)  5 22 zi2(s) ds + 2 4  for all t E [0, 21, and a similar relation also holds for q2(t) ;  moreover, 

TI 
g(r, r )  I g(r ,  I g(r, 0) for all t E I07 4. 

The thesis is then achieved by noting that 

max SUP(Ib1, Ill), SUP (1U0l2, lv0l2, lliOl2? /@)Ol2,  IvuOl2, IV%I2), SUP (IUzl, IfzL Icbzl, l&l) < 6 
an x [O, T] I { 127 9 

implies 
J g(u2 + q2 + ti2 + @' + I V U ~ ~  + I0ql2) d 0  I Cd in (0, 4 ,  
n 

for 5 = g(r) = g(T, 2) r-'Q = exp [-(Z + to)* '81 T - ~ ~ ~  and some computable constant C > 0. Q.E.D. 

R e m a r k  1 : The asymptotic conditions (iii) of Theorem 1 enable e and k to be infinitesimal with distance from dQ. 

5. Continuous dependence and uniqueness for the static problem 

We begin to prove the continuous dependence on data. 

T h e o r e m  2:  Let 0 be an  unbounded porous elastic body such that asymptotic conditions (i) and (ii) of Theo- 
rem 1 hold, and further 

(iii) e = O(rn) ,  as  T .+ +m (n > 0 ) .  
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Let .J<) be a subclass of 4 ( p  > 1) such that, for all (v, v / ) ,  (v + u, v/ + p) E 

(iv) 14 Id = O(TE3) 7 (v) IVUI, IVqI = O(TEd) > 

(vi) m = max {&I + ~ 3 ,  E Z  + ~3 + ~ 4 ,  EZ + 2 ~ 3 )  < ( 3 / p )  - 2 

as r -+ +x. ,where ~ g ,  E? > 0. Assume 

Then,. if there exists in dki a regular solution to the static problem, at depends continuously on the data in the weighted 
L,, -noTnt, : 

llfllL,,(Qg) ? f = IVUL I d  IVvl * 

ushere i j (r)  = exp ( - r ) .  

P r o o f :  Let (v> v / )  and (v + u, v/ + p) E dp be two regular solutions, and consider the weighted equation (13) 
(in which b3 *1. uz. iz, q2, 61 are the corresponding difference data). Choose g = g(T; a )  = exp (-ar), a E (0, 11. Since 
the pair (u, q)  E d&. inequality (16) applies to the first integral of this equation. Further, by Taylor expansions in the 
last integral (as in Theorem 1 - equations (18)1,2), we deduce from (13): 

I(J g[IVu(p+ lplP + IVp\”] dQ F CI J g ~ ‘ ~ + ~ ( l b l  + li\) dQ 
Q n 

l u z l G +  J lhldI:+ J / p z I U +  s /&lG 
a2Q a,Q a, R 

- f [(AVU + B’p + A’Vp + V) : u 8 Vg + (VlhVu + C’V + BVp + d) . pVg] d Q ,  
R 

where Vg = -a,$. (Indication of (v, v / )  at the right hand side of A, B’, etc., is understood.) By (19) and Young‘s 
inequality. ab 5 uP/(pc) + Eq//”(l/q) b* (q  = p / ( p  - l), for all 6 > O), 

K 1 g[IVuIp + Iq’jp + I ~ q f ]  dQ I CI J ~ ~ ~ + y l b l +  lit) dQ 
n R 

where we have called w each one of the fields 

Equat,ion (23) gives 

J’ exp (-7) [/Bulp + lqjp + (Vqlp] dQ 5 C[a-(”+E71+3)6 + 6 + a‘q] for all a E (0, 11. (24) 
n 

The proof is then achieved, since for  a n y  6 E (0, 1) we can take a = Qv with 0 < q < l/(n + ~3 + 3), so as to obtain 

J exp (-7) [lVuIp + / ~ p / ~  + IVqI’] dQ I C d  
R 

for some computable C, f l >  0. Q.E.D. 
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R e m a r k  2 : Note that, for p < 3 /2 ,  the asymptotic conditions of Theorem 2 allow simultaneous increase of all 
relevant fields. 

R e m a r k  3 :  For p > 3 /2 ,  assumption (vi) of Theorem 2 can be alternatively replaced by the following summabi- 
lity conditions: 

( V V  w E L ( Q )  1 s E ( P / ( P  - I ) ,  3P/(2P - 3 ) )  1 

where w denotes each one of the same fields as in (22).  We call d-b the corresponding subcluss of dip ( p  > 3 /2 ) .  
Indeed, the terms of type aQ @ dSZ in equation (21),  q < 3, can be majorized by Hiilder’s inequality as follows 

( l / t  + 1/z = 1 ) :  Q 

Taking t > 3 /q  implies z < 3 / ( 3  - q ) ,  so that s E qz < 3q/ (3  - q)  = 3p/(2p - 3); of course, z > 1 implies s > q 
= p / ( p  - 1).  Equation (24) holds for E = ( q  - 3 / t ) /q .  

As a corollary, the foregoing theorem implies u n i q u  e n e s s of solutions in the classes kp and A;. However, 
uniqueness can be proved in wider classes, as shown in the following two theorems. The first one again uses weighted 
techniques. 

T h e o r e m  3:  Let B be an  unbounded porous elastic body such that asymptotic conditions (i) and (ii) of Theo- 

Let dp be a subclass of dp  ( p  > 3 /2 )  such that for all (v, i y ) ,  (v + u, iy + p) E dp the asymptotic conditions (iv) 
rem 1 hold. 

and (v) of Theorem 2 hold (for any ~ 3 ,  ~4 > 0) ,  and further one of the following summability conditions holds: 

(iii)’ w/(log 4’ E LdQ) 7 s E ( P / ( P  - 11, 3P/(2P - 3 ) )  5 1 < 1 ,  
(iii)” w/(log r)’ E L,(B) , s = 3p/(2p - 3), 1 < 2 / 3 ,  

where w denotes each one of the_ same fields us in equation (22).  
Then, if there exists in kp a regular solution to the static problem, it is unique. 

P r o o f :  Let (v, ty) and (v + u, ry + q)  E ip (2 A;) be two regular solutions corresponding to the same data. 
In equation (13) we now choose g = g(r; 8) = exp ( - c d ) ,  a > 0, P E (0, 11; inequality (16) and Taylor expansions lead 
to equation (20), in which now all difference data vanish and Vg = -c~bg&~k. 

1 g[IVulp + IpIp + IVq,Ip] d B  i Cpq 1 grq(p-l)wq dSZ 

By means of Young’s inequality (as in Theorem 2) ,  and then of Holder’s inequality, we easily get 

R R 

where q = p / ( p  - 1) < 3, l / t  + 1/z = 1. 

(iii)” holds. We assume that Szo 2 B(1) and use the simple inequality 
Now, the term ( . ) ‘ I t  = G(P) above can be majorized in one of the following ways according to whether (iii)’ or 

exp (-a’@) (log I CP-Vr-nP for a’ 2 n + 1, T,I > 0 .  

If (iii)’ holds, we take t > 3/q,  n = qt (>3) and a 2 4, so that 

in this case z < 3 / ( 3  - q) and s = qz < 3q/ (3  - q) = 3p/(2p - 3); of course, z > 1 implies s :> p / ( p  - 1). 
If (iii)” holds, we take t = 3 / q ,  n > qt (= 3) and a 2 4, so that now 

in this case, z = 3 / ( 3  - q)  and s = 3p/(2p - 3).  
In both cases, by equation (25) (where g = g(r; P )  2 g(r; 1) for all /3 E (0, 11 on the left hand side), we finally get 

g(r; 1) [IVulp + Iv71p + IVqlp] d B  I CBp for all /3 E (0, 11 (p > 0 ) ,  
R 

what implies the thesis by letting /3 -+ 0. Q.E.D. 
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By using the non-weighted integral equation (14) together with a method for unbounded domains that traces 
back to GRAFFl [30]: we finally prove uniqueness in the class Np (containing Ap, p > 1); some asymptotic conditioiis 
are  avoided. 

T h e o r e m  4: Let 52 be an unbounded porous elastic body such that the asymptotic conditions (ii) of Theorern 1 
hold. Let -G be a subclass o f N P  ( p  > 1) such that for all (v, w ) ,  (v + u, w + q) E gP, 

(i) /IwllL,(SR) = O(f’(R)-”P) > as R -+ +m (q  = P / ( P  - SR = aB(R)) > 

where uj denotes each one of the same fields as in equation (22) and f ( R )  is any smooth, positive. and increasing 
function with R. 

Thrn. af there exists in .J$ a regular solution to the static problem, it is unique. 

Proof .  Let (v, y )  and (v + u, ty + q) E Jp be two regular solutions corresponding to the same data. Consider 
( R  sufficiently large - see Definition 3). Inequality (17) and Taylor expansion rapidly lead equation (14) with D = 

t.0 

F(R)  = [//VUIIP,p(n,) + / l ~ ~ l l ~ p ( Q , )  + l l~ l l” , (QRj l  

5 $ 1 [(AVu + B’q + A’Vp + V) n .  u + (VlhVu+ c’q + BVyj + d) . nq] dZ. 
3, 

By (19) and Holder’s inequality, we get 

F ( R )  c[IIVuIl,p(sR) + IIVpllLp(sH) + ~ l ~ ~ l L p ( s ~ j l  II7’II3!,,(SR) ’ 

Of course. by basic calculus. 

and then. using (i). there obtains 

F ( R ) p  5 C[l/f’(R)] d F ( R ) / d R  = dF(R)/df(R) for all R 2 R .  

On integrating between any R1, R2 such that R:! > R1 > R, we get 

F(Rl)”-’ 5 C [ l / ( p  - l ) ]  [f(Rz) - f(R1)I-l for all R1 > R, and all R2 > R1 , 

Q.E.D. whence the thesis follows by letting R2 + +m. 

K e m a r  k 4: We notice that the asymptotic conditions of Theorem 2 (even for m = 3 / p  - 2, see (vi)) imply the 
asymptotic conditions (i) of Theorem 4 above (on taking f(R) = log R). Then. -% 3 Ap and Remark 2 to that theo- 
rem also applies to Theorem 4. 
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