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Abstract. Suppose 35 is a topological space, (Y,O) a proximity space, fn, 
L.C. 

fare in yX where n is in a directed set D. We sayfn ~ f(Leader Convergence) iff 
for each A c X, B c Y , f (A)  r B implies eventually, f n (A) ~ B. L.C. is a generalization 
of U.C. (Uniform Convergence). In this paper we study L.C. and various generaliza- 
tions and prove analogues of the classical results of Arzel~, Dini and others. 

1. Introduction. It is well known that the pointwise limit f ,  of  a 
sequence of  continuous functions (fn : n e N), need not  be continuous. 
In 1841 Weierstrass discovered uniform convergence which provides a 
sufficient condition f o r f t o  be continuous. A search was conducted for 
necessary and sufficient conditions by several mathematicians Arzelfi, 
Dini, Hobson ,  Seidel, Stokes and others. Concerning all this informa- 
tion, we have "Hobson ' s  Choice" **, namely the monumental  work  of  
E. W. HOBSON [3]. Later on some of  these ideas were generalized in the 
setting of  uniform spaces discovered by WEIL [7]. For  their importance 
in Functional  Analysis, especially the results of  Arzelfi and Dini, see 
BARTLE [ 1 ]. 

Our aim in this paper is to study necessary and/or  sufficient 
conditions for a net of  continuous functions (fn : n e D) to converge to a 
continuous function f i n  the setting of  proximity spaces. LEADER [4] 
was one of  the first mathematicians who attempted this in 1960. 
Leader generalized Weierstrass' uniform convergence to "conver- 
gence in proximity" when the range space is EF and showed that it is 
sufficient to preserve p-continuity as well as continuity. Uniform 

* This research was partially supported by an operating grant from NSERC 
(Canada) and a visiting professorship under CNR (Italia). 

** The Concise Oxford Dictionary defines it as "to take it or leave the one offer". 
7 Monatshefte ffir Mathematik, Bd. 103/2 



94 A. DI CONCILIO and S. A. NAIMPALLY 

convergence implies convergence in proximity;  the reverse implication 
holds when the range space is totally bounded  or (fn) is a sequence. 
NJASTAD [6] generalized these results, to generalized uni form structu- 
res. 

Al though  it is possible to work in more  general spaces, we will 
suppose that  all our  spaces are T~. Consider  the following axioms on 
the relation 0 on the power  set of  a nonempty  set X: 

(a) A 0 B implies A 4= 0, B r 0, 
(b) A ~ B implies B ~ A, 
(c) A n B -r 0 implies A ~ B, 
(d) A 6 ( B u  C) iff AdB or A6C, (1.1) 
(e) A ~ B and b ~ C for each b ~ B implies A d C, 
(f) p ~ B implies there is an E c X such that  p r E and (X - E) ~ B. 
(g) A ~ B implies there is an E c X such that  A ~ E and (X - E) ~ B. 

(1.2) Definitions. A relation 0 on the power  set of  X 

(a) is called a LO-proximity iff it satisfies (1.1) (a)--(e);  
(b) is called an R-proximity iff it satisfies 1.1 (a)--(d) and (f); 
(c) is called an EF-proximity iff it satisfies 1.1 ( a ) I ( d )  and (g). 

It is known  that  EF implies R and LO but  LO and R are independent .  

(d) I f  X is a topological  space with closure - then ~ is compatible 
with - iff for each p~X, A c X, pdA iff p ~ A - .  

Every T~-space X has a compatible  LO-proximity given by 

A~oB i f f A -  r i B -  r 0 (1.3) 

and a compatible  R-proximity given by 

AOrB i f f (A n B - )  u ( A -  n B )  r 0 .  (1.4) 

Every Tychonof f  space X has a compatible  EF-proximity  given by 

A Ce B iff there is a cont inuous  funct ion f :  X ~  [0, 1] (1.5) 
such that  f(A) = 0 and f(B) = 1. 

I f  ~ denotes any compatible  proximity on a T~-space X, then 

p ~ q implies p = q .  (1.6) 

In this paper  (X, 01), (Y,02) denote any of  the three types of  
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proximity spaces unless we mention a specific one. 

A function f :  X ~  Y is p-continuous iff whenever 
A 81 B in X, f (A)  a~f(B) in Y. 

(1.7) 

If we replace A by p, we get the definition of continuity o f f  at p. 
Throughout this paper D is a directed set, (f,:n e D) is a net of 

functions on X to Y. Also f:  X ~  Y is a function. For more details 
regarding proximity spaces see [5]. 

2. Sufficient Conditions. We begin with a condition which is strictly 
weaker than Leader's but which is sufficient for the limit functionfto 
be (p-)continuous when each f,  is. 

(2.1) Definition. R.C. f ,  ~ f iff for all subsets A, B o f  X, whenever 
f (A)  ~2f(B), then eventually f ,  (A) r (B). 

R.C, 
(2.2) Theorem. I f  f ,  ~ f and each f ,  is p-continuous (resp. 

Continuous), then f is p-continuous (resp. continuous). 

Proof We need only prove the preservation of p-continuity; the 
case of continuity is similar. Suppose f(A)r then eventually 
f~ (A) ~f~ (B) and since each f~ is p-continuous, A ~i B. Thus f is p- 
continuous. 

Although R.C. preserves (p-)continuity, unfortunately it is not 
stronger than pointwise convergence (P.C.) ! 

(2.3) Example. Suppose X= Y= N with the usual metric proxim- 
ity. Suppose f ( x ) = x  for each xeX. For each nEN, set f ,  (x)= x+n. 

R.C. P C. 
Here the sequencef~ ~ fbu t f~  -~J. Since it is well known that P.C. 
does not preserve continuity, it follows that P.C. and R.C. are inde- 
pendent. 

Since it is desirable to have convergence stronger than P.C we 
define: 

(2.4) Definition. X.C. = P.C. + R.C. 

Clearly, 
X.C. 

(2.5) Corollary. I f  f n ~ f and each f~ is p-continuous (continuous), 
then so is f 
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We now recall Leader's definition and call it L.C. (Leader 
Convergence): 

(2.6) Definition. f ~ f  iff for each A ~ X and B c  Y if 
f(A) r B, then eventually f ,  (A) ~2 B. 

By choosing A = p, it follows that L.C. is stronger than P.C. We 
now show that L.C. is strictly stronger than X.C. when 82 if EF. 

L.C. X.C. 
(2.7) Theorem. I f  ~ 2 is EF and s ~ f,  then f~ --* f 

L.C. R.C. 
Proof. It is enough to show that f ,  ~ f implies f~ --* f. Sup- 

pose f(A)r Since 8 2 is EF, there is a subset E of Y such that 
f (A)~2E and ( Y - E ) ~ z f ( B ) .  By (L.C.), eventually f~(A)~2E and 

Thus f,, z_-;f. (Y - E) ~2f(B). So eventually, fn (A) ~2f~ (B). R C 

(2.8) Corollary, (LEADER [4]) I f  ~32 is EF, then L.C. preserves p- 
continuity (continuity). 

We now give examples to show that X.C. does not imply L.C. and 
L.C. in R-proximity does not imply L.C. in EF-proximity. 

(2.9) Examples. (a) Suppose X = Y = [ -  l, 1] with the usual 
metric proximities. For each x e X, n e N  we define: 

f ( x )  = 0 
and 

f~(x) = nx(1 + n2x2) -1 
P C  

Clearly, fn -:-;f and sincef(A) = f (B)  = {0} for all subsets A, B of X, 
R C  X.C. 

f ,  z_;f. Sof~ -~f.  I f A  = {n - l "neN} and B = {2-1}, then f (A)~zB 
L.C. 

but fn (A) (~2 B for each n s N. Thus f ,  -~ f. We note here that X and Y 
are compact Hausdorff. Note that the obvious continuity of f follows 
from (2.5) but not from (2.8). 

(b) Suppose X = Y = N with the usual topology. For each x e Y 
and n ~ N we define: 

f ( x )  = x 2 

and 
in (X) = (X + n-1)2 .  

P C  
Clearly, f ,  ~ f .  If Y has the usual metric proximity, which is EF, 

L.C. 
then f ~ - ' o f  For A = { n : n ~ N \ { 1 } } ~ X  and B =  { ( n + n - l )  2" 
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n ~ N \ { 1 } } c  Y, f (A)r  but f , (A)  n B r  for each n and so 
f ,  (A)02 B. Suppose now that 02 is an R-proximity defined by 

A (]2B iff (A c~ B ~) u (A~n B) r 0 (2.10) 
or both A and B are infinite. 

If A c X, B c Y and f (A)  r B, then f (A)  ~~ B = 0 = f (A)  ~ B ~ and 
either A or B is finite. We can then verify, by actual calculations 
which we omit, that eventually, fn (A)r B. Similarly, if A and B 
are both subsets of X and f (A)r  in the usual metric prox- 
imity or R-proximity (2.10) then we can show that eventually 

. X . C .  

f,, (A) ~2f~ (B) 1.e. f~ --* f .  

(c) Suppose X = Y = N and for each x = X, neN, 

f ( x )  = x 

x < 0  

f , (x)  = + 2n -1 x > 0 

L C .  U.C. 
If  (]2 is the usual metric proximity, then f~ ~ f (and fn ~ f )  but if (]~ 
is an R-proximity defined by (2.10), then f ,  - ~ f  in X.C. or L.C. To 
see this we choose A = { x E N : x  < 0} and B = { x e N : x  > 0}. Here 

f (A)  r but f~ (A) (]2f~ (B). 

(2.1 1) Remarks. LEADER [4] showed that if 62 is induced by a 
uniformity, then U.C. implies L.C. Further, Leader showed that 
U.C. = L.C. if Y is totally bounded or (f,) is a sequence (see Sec- 
tion 3). Example (2.9) (a) shows that even if X and Y are compact, 
and (f,) is a sequence, X.C. need not imply L.C. or U.C. 

From the proof of Theorem (2.2) it is obvious that X.C. is too 
strong for the preservation of p-continuity (continuity). It is sufficient 
fOrfn (A)r (B) for just one n. However, since we would likef~ to be 

'near 'f ,  we requiref~ t ' c f  as well as a condition such asf ,  (A)r (B) 
frequently. Such considerations led Dini to define Simple Uniform 
Convergence (S.U.C.). Here we define an analogue of S.U.C. and call 
it D.C. (Dini Convergence). 

(2.12) Definition. D.c P.c. f~ -~ f i f f f~  ~ f a n d  for all subsets A, B of X, 
f (A)  ~2 f (B)  implies frequently, f~ (A) ~2f, (B). 

(2.13) Theorem. I f  f ,  DC f and each f ,  is p-continuous (continuous), 
then so is if. 
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Obviously X . C . ~ D . C .  but the converse is not  true as the 
following example shows. 

(2.14) Example. (Hobson) Here X = Y = ~, 

( x )  = x [n x + (1  - n x )  - 

U2n(X ) = -- x[(n + 1)x 2 + [1 - (n + 1)x]2] -1 

P.C. 
fro(X) = Un(X) ~ f ( x )  = X[X 2 + (1 -- X)2] -1 . 

n = l  

D.C. X.C. 
Here fn ~ f but f~ ~ f. 

3. Generalizations. In this section we suppose that ~1 and 82 are EF- 
proximities induced by uniformities q /and C on X, Y respectively. We 
generalize L.C. to Simple Leader Convergence (S.L.C.) in analogy 
with S.U.C. and study its relationship with S.U.C. of Dini and Q.U.C. 
(Quasi Uniform Convergence of Arzeia). 

S U C  P.C. 
(3.1) Definitions. ( a ) f  n 2;  f i f f f ~  ~ f a n d  for each V in ~U and 

for all x in X, frequently f ,  (x)e V[f(x)]. 
Q U C  P C .  

(b) f~ 2; "f iff f~ -:-; f and for each V in ~ and for each m e D, 
there exists a finite set {ni: ieI} c D such that ni > m and for each 
x~X, f~ , (x )e  V[f(x)] for some i~I. 

S L C  P.C. 
(c) f~ :7-; f i f f f ,  ~ f a n d  for each A c X, B = Y, f (A)  r implies 

frequently fn (A) r B. 

(3.2) Theorem. S.U.C. implies S.L.C. 

Proof Supposefn s.m.c.~ f and f (A) r  B for A c X a n d  B c Y. Then 
2 

there is a V~V such that V[f(A)] ~ B = 0. S.U.C. implies that 
frequently for each a ~ A,f~ (a) ~ V[f(a)] and so f~ (A) c V[f(A)]. So 

S.L.C. 
V[fn(A)] c~B = 0 frequently i.e. f~ (A) r B i.e.J~ --> J. 

(3.3) Theorem. I f  (Y,~t r) is totally bounded, then S.L.C. implies 
Q.U.C. 

Proof. For Vs 3e- there is a finite set {y~: 1 ~< i ~< m} c Y such 

that Y =  ~)V[Yi]. Suppose Ai=f-l[V(y~)],  then X =  Q)Ai and 
i=1  i=1  
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2 S.L.C _ 
f (A i )~2[Y-V[y i ] ] .  Since f~ ~ J ;  for each reeD,  there 
~i > m such that 

2 2 
f~(A;) r  V[yiJ], i.e. f,~(Ai) c V[y~], 1 <. i<~ m .  

exists 

For any x s X there is an i such that x e Ai and 
2 2 

f~i (x) 6 V[yg], f ( x )  e V[Yi] �9 

4 f Q.U.C. r 
Hencef~,(x)e V[f(x)] and sojn ~ j .  

(3.4) Corollary. ( L E A D E R  [ 4 ] .  I f  ( Y ,  ~ / ' )  is totally bounded and 
L.c .  U C  

f~ -~ f ,  then f ,  2 ;  f 

(Our proof patterned after the above one is different from Leader's 
or Nj~stad's [6]). 

S.L.C Q U C 
(3.5) Theorem. I f  X is compact and f ,  ~ f E C (X, Y), then fn ~ " f 

Proof  For each p ~ X and V~ ~/~, s incefis  continuous at p, there 
is a nbhd. Up in X such that 

f(Up) c V [f(p)]. 
2 

So f (Up)r  V[f(p)]]. For each m e D ,  there exists an np> m 
such that 

2 2 
/,~(Up)~2[Y- V[f(p)]], i .e./ ,~(Up)c V[f(p)]. 

q 2 
Since Xis compact, 2" = U U~, Ui = Upi, np~ = ni andf~, (Ui) c V[f(p)], 
l <<. i <~ q, n~ > m. i=1 

3 . ,0 Q.U.C. r 
So for each x E X, x e Ui for some i andf~ (x) e V[f(x)] a.e.j~ --. j .  

L.C. U C 
3.6. Corollary. I f  X is compact and f ,  ~ f then f~ 2 ;  f 

By imitating the proof of NJ/~STAD [6] Theorem 4, we get 

3.7 Theorem. I f  D is linearly ordered (in particular i f  f n is a sequence), 
then S.L.C. implies Q.U.C. 

4. Necessary and Sufficient Conditions. Here we investigate neces- 
sary and sufficient conditions for the preservation of continuity. If 
each fn is continuous, then it is obvious from Theorem (2.2) that for 
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f to be cont inuous,  the following condi t ion - -  replacing A by p - -  
is enough:  

For  each p in X, B ~ X, whenever f ( p ) f z f ( B )  , (4.1) 
eventually (or frequently)fn (P) r �9 

Our  mot iva t ion  for defining a convergence which is necessary and 
sufficient for the continui ty o f f ( w h e n  X is compact)  is the condi t ion 
Q.U.C. defined by Arzelfi (BARTLE [1]). So we call this A.C. (Arzelfi 
Convergence).  

f ~ f i f f f ~ f  and for each p ~ X ,  B o X ,  (4.2) Definition. A.C. P.C. 

whenever f ( P ) ~ 2  f(B), then for each reeD,  there is a finite set 
q 

{ni: 1 <<. i <~ q} ~ D, n i > m and B = U Bi such that  fn, (p) r (Bi) 
for 1 ~< i~< q. i=1 

(4.3) Remarks. Clearly L.C. =~ X.C. ~ A.C. Example (2.14) with 
X = [ -  1, 1] shows that  A.C. does not  imply X.C. 

We now prove an analogue of  Arzelfi's Theorem.  
pc 

(4.4) Theorem. Suppose X is compact and 82 is EF. I f  f ,  - ~ f  and 
each f~ is continuous then a necessary and sufficient condition for f 

A C  
to be continuous is that f ,  2 ; f .  

Proof. Suppose f is cont inuous,  p ~ X, B c J(, and f (p )  r f (B) .  
S i n c e f ( B - )  c f (B )  - , f ( p )  r - and Xis compact ,  we may suppose 
that  B (and f (B) )  are compact .  Since 82 is EF, there is an open set 
V c Y such that  f ( B )  c V and f (p )  r V. Suppose m ~ D. Since 

P.C. m '  f ,  ~ f ,  there is an > m such that  for each n > m', 

f~ (P) r V. (4.5) 

�9 P.C.  { f - 1  S m c e f , ~ f ,  B c  n ( V ) : n > m ' } . S i n c e B i s c o m p a c t ,  

q 

B c U f  ~l(V),q6[N, ni > m' . 
i = l  

q 

Clearly B = ~ B~, Bi = B c~fs 1 <. i<. q. By (4.5), 
i=1 

�9 A . C .  

L, (P) r (Bi), I.e. fn ~ f '  

Conversely, 
A.C, 

suppose f~ ~ f and each f~ is continuous�9 If  
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q 

f (p )  r and m ~ D, there exists ni > m, 1 ~< i ~< q, B = U Bi such 
that  ~= 1 Li (p) :2L, (8,.). 
This implies that  p 81B~ which, in turn, implies that  p 81B. So f is 
cont inuous.  

Next  we prove a near converse of Theorem (4.4). 

(4.6) Theorem. P.C. = A.C. on C(X, ~) implies X is pseudocom- 
pact. 

Proof. If  X is not  pseudocompact ,  then there is a cont inuous  
unbounded  function f :  X ~  ~+.  For  each x e X  and neN,  define 

L(x) =[ 0 
P C A.C. 

Then f ,  -:-;f but  f~ ~ f.  

n - 1  
f ( x )  0 <. f ( x )  <~ n 

n 

( 1 - n ) ( f ( x ) - n -  1) n<<.f(x)<<.n+l 

n + 1 <. f ( x ) .  

(4.7) Corollary. I f  X is normal, then X & countably compact if  
P.C. = A.C. on C(X, ~). 

(4.8) Remarks. Since the sequence of functions (f,) constructed in 
(4.6) is mono tone  increasing, it follows that  it is also a converse of  
Dini 's  Theorem. That  is: if P.C. = U.C. on C(X,'N) for m o n o t o n e  
nets implies Xis  pseudocompact .  The same applies to Corollary (4.7). 
I f  
X is a metric space, then pseudocompactness  is equivalent  to 
compactness.  So for metric spaces X the following are equivalent: 

(a) X is compact  
(b) P.C. = A.C. on C(X, ~) 
(c) P.C. = Q.U.C. on C (x, N) 
(d) P.C. = U.C. for mono tone  nets on C(X, ~). 
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