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Abstract We develop an analytical approach to study
the wave process arising in an elastic half-space be-
cause of harmonic vibrations applied on its free sur-
face by a (periodic) distribution of rigid punches. By
assuming perfect coupling between punches and half-
space, the (in-plane) propagation problem is firstly
reduced to a 2 × 2 system of integral equations for
the contact stresses. Then, in the frequency range im-
plying the so-called one-mode (far-field) propagation,
suitable mild approximations on the kernels lead to
some related auxiliary systems of integral equations,
which are independent on frequency and can be solved
analytically. The explicit formulas thus obtained are
reflected through some figures and enable us to dis-
cuss the energetic properties of the wave process with
respect to frequency. A direct numerical treatment of
the original system of (exact) integral equations con-
firms the precision of the analytical solution.
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1 Introduction

In this paper, we aim to study analytically the wave
process generated by a periodic distribution of rigid
punches vibrating (harmonically) over the free surface
of an elastic half-space. As is known, this type of in-
vestigation has a great relevance in many branches of
the engineering sciences. Among the most important
practical applications, we can mention various prob-
lems arising in Applied Geophysics, such as the study
of seismic propagation in order to protect the build-
ing foundations against earthquakes [1] and the activi-
ties of underground exploration for geological or min-
ing researches [2, 3]. Recently, this subject has also
attained a special interest in the study of ultrasonic
methods for non-destructive testing of composite or
damaged materials [4].

In every case, it was early recognized that the
energy transmission into the medium can be im-
proved by using more than one punch—namely, sev-
eral punches vibrating simultaneously—since the ex-
perience pointed out that only multiple sources (and
receivers) arrays can provide a good efficiency for
such systems as regards intensity and resolution of the
detected results: see [5] and the numerous U.S. patents
therein quoted.

Regarding the periodic system of punches here con-
sidered, one can imagine for example that such a ge-
ometry may arise in the dynamic (vibratory) contact
of a relatively long punch with a laminated compos-
ite material; in this case, the surface structure of the
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(reinforced) material becomes quasi-periodic, and any
punch in contact works there as it were over some elas-
tic foundation having alternate relatively stiff and soft
layers. In this connection, see e.g. [6], where an in-
teresting formulation of the periodic contact problem
for solids possessing regular microreliefs can also be
found.

In all the above contexts, it is well known that the
characteristics of the wave propagation are highly in-
fluenced by the contact conditions between the vibrat-
ing punches and the underlying medium. Physically,
the contact zone under the punches’ base can pos-
sess various frictional properties. As a first approx-
imation, the model of a friction-less contact (imply-
ing quite free sliding) is often assumed to be valid [5].
Nonetheless, some intensive works began to study fur-
ther improvements in the physical conditions of the
contact; in this connection, two new models have been
proposed: (i) friction with partial sliding, and (ii) full
adhesion (implying perfect coupling), the second of
which is concerned in the present paper. From a phys-
ical standpoint, the adhesion is the result of a specific
interaction between the (rough) surfaces put in touch.
As a rule, contact with full adhesion requires suitable
mathematical treatments [7]; typically, modern numer-
ical methods find wide applications to such problems
[8], while analytical procedures are somewhat poorly
applied. This paper just wants to use analytical tech-
niques to study the harmonic wave process mentioned
above, under the assumption of a perfect coupling be-
tween punches and medium (of course, the problem
with frictionless contact can be easily recovered as a
special case [9]).

Among other interesting papers devoted to the dy-
namic behaviour of a system of punches over some
elastic basis, those by Lavrov et al. [10] and Argatov
[11] are worthy to be mentioned (see also the refer-
ences therein quoted). In them, two types of transient
(not harmonic) problems involving several punches
are considered and various semi-analytical—or even
purely analytical in some cases—solutions are con-
structed; a number of examples concerning concrete
configurations is also provided.

Needless to say, analytical procedures are certainly
worthy of great attention in this ambit since they only
can produce explicit results with respect to the rele-
vant parameters, and this is crucial, for example, when
studying inverse problems which are often involved in
the practical applications alluded to above.

Going into details, after stating the formulation of
the (in-plane) propagation problem in the present con-
text, we work out the pertinent integral equations and
representation formulas for the wave field (Sect. 2).
Then, by a mild approximation holding in the given
interval of frequency, we reduce the original kernels to
kernels independent of frequency (Sect. 3), so that an
explicit representation—with respect to frequency—
can be set up for the wave field as well as the main
physical quantities (Sect. 4). Finally, the peculiar en-
ergetic properties of the vibrating structure will be dis-
cussed by means of some graphs in which the analyt-
ical results obtained can be reflected for concrete val-
ues of the geometrical and material parameters. Par-
allely, a direct numerical method will be applied to
solve the original (exact) integral equations, in order
to control the precision of such (approximate) analyti-
cal results; the validity of the approximation used will
be confirmed.

2 Formulation of the problem and reduction
to integral equations

Let us consider an infinite, periodic distribution of
rigid coplanar punches which lye over the horizontal
free surface of an elastic half-space y ≥ 0. All such
punches can vibrate vertically with given (equal) am-
plitude, frequency and phase in the harmonic regime,
thus generating a wave propagation through the half-
space with the same angular frequency ω. For con-
venience, the punches are considered infinitely long
(in the z-direction), while 2b is the common width
of their bases and 2a the period of the array (in the
x-direction). We assume that each punch is perfectly
coupled with the elastic medium. Figure 1 shows the
section of the structure with (any) normal plane xy.

If we denote by S × {−∞ < z < ∞} the total contact
area between punches and half-space surface, in the
periodic problem at hand it holds

S =
+∞⋃

n=−∞
(−b + 2an,b + 2an). (2.1)

In the half-space, the displacement (or wave) field
u has non-trivial only the components ux(x, y, t),

uy(x, y, t), clearly independent on z. Omitting hence-
forth the time dependence factor exp(−iωt), which is
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Fig. 1 A periodic distribution of rigid punches (of width 2b) is vibrating above the free surface of an elastic half-space (c1/c2 = 2).
The period is 2a

common in all field variables, the governing equations
are [12]:

ux = ∂ϕ

∂x
+ ∂ψ

∂y
,

uy = ∂ϕ

∂y
− ∂ψ

∂x
(Green-Lamè representation),

(2.2)

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ k2

1ϕ = 0,

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ k2

2ψ = 0 (Helmholtz equations),

(2.3)

τxy = τyx = ρc2
2

(
2

∂2ϕ

∂x∂y
− ∂2ψ

∂x2
+ ∂2ψ

∂y2

)
, (2.4a)

σyy = ρc2
1

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
− 2ρc2

2

(
∂2ϕ

∂x2
+ ∂2ψ

∂x∂y

)

(constitutive equations), (2.4b)

where ϕ(x, y),ψ(x, y) are the displacement poten-
tials, τxy(x, y), σyy(x, y) the relevant components of
the stress tensor, c1, c2 the longitudinal and trans-
verse wave speeds of the elastic material (c1 > c2),

k1 = ω/c1, k2 = ω/c2 the corresponding wave num-
bers, and ρ the mass density.

In the case of perfect coupling we are treating, the
boundary conditions are

τxy(x,0) = σyy(x,0) = 0, x ∈ (−∞,∞) \ S; (2.5)

ux(x,0) = 0, uy(x,0) = u0, x ∈ S. (2.6)

Here u0 denotes the (given) common amplitude of the
punches’ vibration.

We now submit the above equations to Fourier
transformation [13]

f (x, y) → f̂ (α, y) ≡
∫ ∞

−∞
f (x, y)eiαxdx.

Equations (2.3) promptly lead to

ϕ̂(α, y) = A(α)e−γ1(α)y,

ψ̂(α, y) = B(α)e−γ2(α)y,

γ1(α) =
√

α2 − k2
1,

γ2(α) =
√

α2 − k2
2, α ∈ (−∞,∞),

(2.7)

where the standard (Sommerfeld) radiation condition
for the potentials as y → +∞ has been applied [12]
(and the branch in the square-roots is chosen so that√−1 = −i, i2 = −1).

As a consequence, by (2.4) at y = 0 we can de-
duce the following linear 2 × 2 system for coefficients
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A(α),B(α):
{

(2α2 − k2
2)A(α) − 2iαγ2B(α) = σ̂ (α)/μ,

2iαγ1A(α) + (2α2 − k2
2)B(α) = τ̂ (α)/μ,

(2.8)

where σ̂ (α) and τ̂ (α) are the Fourier transforms
of the (unknown) functions σ(x) ≡ σyy(x,0) and
τ(x) ≡ τxy(x,0), respectively, which represent the
normal and tangential stress components on the sur-
face of the half-plane (of course, in view of (2.5),
σ = τ = 0 outside S); moreover, μ = ρc2

2 is the shear
modulus.

The solution of system (2.8) is

A(α) = 2α2 − k2
2

�(α)

σ̂ (α)

μ
+ 2iαγ2(α)

�(α)

τ̂ (α)

μ
, (2.9a)

B(α) = −2iαγ1(α)

�(α)

σ̂ (α)

μ
+ 2α2 − k2

2

�(α)

τ̂ (α)

μ
, (2.9b)

where the determinant

�(α) = (2α2 − k2
2)2 − 4α2γ1(α)γ2(α) (2.10)

has some similarity with the classical Rayleigh func-
tion [12].

By using (2.2) after substituting (2.9) into (2.7),
we easily get the (transformed) wave field as follows

ûx(α, y) = −iαϕ̂(α, y) + dψ̂(α, y)

dy

= iα

μ�

[
(k2

2 − 2α2)e−γ1y + 2γ1γ2e
−γ2y

]

×
∫

S

σ (ξ)eiαξ dξ

+ γ2

μ�

[
2α2e−γ1y + (k2

2 − 2α2)e−γ2y
]

×
∫

S

τ (ξ)eiαξ dξ ; (2.11)

ûy(α, y) = dϕ̂(α, y)

dy
+ iαψ̂(α, y)

= γ1

μ�

[
(k2

2 − 2α2)e−γ1y + 2α2e−γ2y
]

×
∫

S

σ (ξ)eiαξ dξ

+ iα

μ�

[
−2γ1γ2e

−γ1y − (k2
2 − 2α2)e−γ2y

]

×
∫

S

τ (ξ)eiαξ dξ. (2.12)

Taking into account (2.1), the integrals over S in
(2.11), (2.12) can be calculated as follows:
∫

S

(
σ(ξ)

τ (ξ)

)
eiαξ dξ

=
∞∑

n=−∞

∫ b

−b

(
σ(ξ)

τ (ξ)

)
eiα(ξ+2an)dξ

= π

a

∞∑

m=−∞
δ

(
α − πm

a

)∫ b

−b

(
σ(ξ)

τ (ξ)

)
eiαξ dξ,

(2.13)

since the stress components are clearly periodic along
the array (with the same period 2a) and the following
relation holds as a consequence of well known proper-
ties of Dirac function δ [13]:

∞∑

n=−∞
e2iaαn = π

a

∞∑

m=−∞
δ

(
α − πm

a

)
. (2.14)

Of course, we can assume that σ(x) and τ(x) are even
and odd functions, respectively, on the typical interval
(−b, b); hence, an inverse transformation of (2.11),
(2.12) leads to the following representation formulas
for the wave field throughout the half-space:

ux(x, y) = 1

μa

∞∑

m=1

[
(k2

2 − 2a2
m)e−qmy + 2qmrme−rmy

]

× am

�m

(∫ b

−b

σ (ξ) cosamξdξ

)
sinamx

+ 1

μa

∞∑

m=1

[
2a2

me−qmy + (k2
2 − 2a2

m)e−rmy
]

× rm

�m

(∫ b

−b

τ (ξ) sinamξdξ

)
sinamx,

(2.15a)

uy(x, y) = − ik1

2μak2
2

P0 eik1y

+ 1

μa

∞∑

m=1

[
(k2

2 − 2a2
m)e−qmy + 2a2

me−rmy
]

× qm

�m

(∫ b

−b

σ (ξ) cosamξdξ

)
cosamx

+ 1

μa

∞∑

m=1

[
2qmrme−qmy
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+ (k2
2 − 2a2

m)e−rmy
]

× am

�m

(∫ b

−b

τ (ξ) sinamξdξ

)
cosamx,

(2.15b)

where we have put

am = πm

a
,

qm =
√

a2
m − k2

1 = q−m (q0 = −ik1),

rm =
√

a2
m − k2

2 = r−m (r0 = −ik2),

�m = (2a2
m − k2

2)2 − 4a2
mqmrm = �−m,

(2.16)

together with

P0 =
∫ b

−b

σ (ξ)dξ (2.17)

which gives the total force acting on the single punch
(if its mass is assumed negligibly small). When real,
the root squares in (2.16) will be taken as positive.

Now, it is clear that use of boundary conditions
(2.6) into above equations allows to establish a system
of integral equations to determine the contact stresses
σ(x) and τ(x), which we write as follows:
∫ b

−b

K11(x − ξ)σ (ξ)dξ

−
∫ b

−b

K12(x − ξ)τ (ξ)dξ = 2aμu0,

∫ b

−b

K12(x − ξ)σ (ξ)dξ +
∫ b

−b

K22(x − ξ)τ (ξ)dξ = 0,

x ∈ (−b, b), (2.18)

where the kernels are

K11(x) = − ik1

k2
2

+ 2k2
2

∞∑

m=1

qm

�m

cos
πmx

a
,

K22(x) = 2k2
2

∞∑

m=1

rm

�m

cos
πmx

a
,

K12(x) = 2π

a

∞∑

m=1

m

�m

[
2qmrm − 2a2

m + k2
2

]
sin

πmx

a
.

(2.19)

Once solved such a system, (2.15) can promptly
give the wave field. Of course, since the kernels con-
tain the wave numbers, the dependence on frequency

in (2.15) is still implicit. We finally note that the case
of frictionless contact between punches and medium
can be deduced by assuming the tangential stress τ to
be vanishing all over the half-space surface and drop-
ping boundary condition (2.6)1; thus, in system (2.18),
only the first equation should remain (with τ ≡ 0).

3 Approximation in the one-mode regime

The above system of integral equations could be di-
rectly submitted to classical numerical algorithms for
arbitrary values of the parameters involved (and this
has been actually done for the sake of comparison).
However, in this paper we aim to remain as far as pos-
sible in an analytical context, and to this end we accept
to assume an upper bound for the frequency of vibra-
tion by putting

(k1 <)k2 < π/a. (3.1)

This implies qm, rm > 0 ∀m ≥ 1 in (2.15), so that
at large distance from the surface y = 0 we find
as a non-vanishing propagating wave only the first
(zeroth-order) mode of the vertical displacement field
in (2.15b). This is just what defines the one-mode
regime for the far-field propagation [12]. Of course,
for k2 > π/a further (higher-order) propagating modes
can arise, but their consideration is out of the goals of
the present study.

In fact, position (3.1) allows us to apply the follow-
ing approximation

qm ≈ rm ≈ am ∀m ≥ 2,1 (3.2a)

so that, looking at the kernels (2.19), we can write

�m ≈ 4a4
m(1 − k2

2/a2
m) − 4a4

m(1 − k2
1/2a2

m − k2
2/2a2

m)

= 2a2
m(k2

1 − k2
2),

2qmrm − 2a2
m + k2

2

≈ 2a2
m(1 − k2

1/2a2
m)(1 − k2

2/2a2
m) − 2a2

m + k2
2

≈ −k2
1,

(3.2b)

1In the worst case, which is for r2, this amounts to put

ar2/π = √
4 − (ak2/π)2 = √

3.75 ≈ 2 in the middle of the
range (3.1).
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for m ≥ 2. All the above values are taken exact for
m = 1.

As a consequence, it holds

K11(x) ≈ − ik1

k2
2

+ D cos
πx

a

+ ak2
2

π(k2
1 − k2

2)

∞∑

m=1

1

m
cos

πmx

a
, (3.3a)

K12(x) ≈ E sin
πx

a
− ak2

1

π(k2
1 − k2

2)

∞∑

m=1

1

m
sin

πmx

a
,

(3.3b)

K22(x) ≈ F cos
πx

a
+ ak2

2

π(k2
1 − k2

2)

∞∑

m=1

1

m
cos

πmx

a
,

(3.3c)

where

D = 2k2
2

[
q1

�1
− a/π

2(k2
1 − k2

2)

]
,

E = 2π

a

[
2q1r1 − 2(π/a)2 + k2

2

�1
+ k2

1(a/π)2

2(k2
1 − k2

2)

]
,

F = 2k2
2

[
r1

�1
− a/π

2(k2
1 − k2

2)

]
(3.4)

are quantities depending on frequency. By using the
summations

∞∑

m=1

1

m
cos

πmx

a
= − ln

∣∣∣2 sin
πx

2a

∣∣∣ ,

∞∑

m=1

1

m
sin

πmx

a
= π

2

[
sign(x) − x

a

]
,

system (2.18) transforms into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ b

−b
N1(x − ξ)σ (ξ)dξ

− ∫ b

−b
N2(x − ξ)τ (ξ)dξ = f1(x),

∫ b

−b
N2(x − ξ)σ (ξ)dξ

+ ∫ b

−b
N1(x − ξ)τ (ξ)dξ = f2(x), x ∈ (−b, b),

(3.5)

where

N1(x) = −B ln
∣∣∣2 sin

πx

2a

∣∣∣ ,

B = ak2
2

π(k2
1 − k2

2)
= − ac2

1

π(c2
1 − c2

2)
, (3.6a)

N2(x) = A
π

2

[
sign(x) − x

a

]
,

A = − ak2
1

π(k2
1 − k2

2)
= ac2

2

π(c2
1 − c2

2)
, (3.6b)

f1(x) = 2μau0 + ik1

k2
2

P0 − (DPc + ETs) cos
πx

a
,

f2(x) = − (EPc + FTs) sin
πx

a

(3.7a)

and

Pc =
∫ b

−b

σ (ξ) cos(πξ/a)dξ,

Ts =
∫ b

−b

τ (ξ) sin(πξ/a)dξ.

(3.7b)

We note that new kernels N1,N2 don’t contain any fre-
quency parameter.

4 Explicit representation and analytical solution

By the linearity of system (3.5), it is clear that if one
solves the following three auxiliary 2 × 2 systems

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ b

−b
N1(x − ξ)

(
h0
hc

)
(ξ)dξ

−∫ b

−b
N2(x − ξ)

(
g0
gc

)
(ξ)dξ = ( 1

cos(πx/a)

)
,

∫ b

−b
N2(x − ξ)

(
h0
hc

)
(ξ)dξ

+ ∫ b

−b
N1(x − ξ)

(
g0
gc

)
(ξ)dξ = 0, x ∈ (−b, b),

(4.1)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ b

−b
N1(x − ξ)hs(ξ)dξ

− ∫ b

−b
N2(x − ξ)gs(ξ)dξ = 0,

∫ b

−b
N2(x − ξ)hs(ξ)dξ

+ ∫ b

−b
N1(x − ξ)gs(ξ)dξ = sin(πx/a),

x ∈ (−b, b),

(4.2)
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fully independent on frequency, then the solution to
system (3.5) can be constructed as

(
σ(x)

τ(x)

)
=

(
2μau0 + ik1

k2
2

P0

)(
h0(x)

g0(x)

)

− (DPc + ETs)

(
hc(x)

gc(x)

)

− (EPc + FTs)

(
hs(x)

gs(x)

)
, (4.3)

where functions h(·) are even and g(·) are odd in
(−b, b).

The unknown quantities P0,Pc, Ts here appearing
can be obtained by (twice) integrating (4.3) for σ(x) as
it is and after multiplying by cos(πx/a), and (4.3) for
τ(x) after multiplying by sin(πx/a); we get a linear
3 × 3 system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − ik1

k2
2
H00

)
P0 + (DHc0 + EHs0)Pc

+ (EHc0 + FHs0)Ts = 2μau0H00,

− ik1
k2

2
H0cP0 + (1 + DHcc + EHsc)Pc

+ (EHcc + FHsc)Ts = 2μau0H0c,

− ik1
k2

2
G0sP0 + (DGcs + EGss)Pc

+ (1 + EGcs + FGss)Ts = 2μau0G0s ,

(4.4)

where new constants H,G (free of frequency) are
given by

(
H00

H0c

)
=

∫ b

−b

h0(ξ)

(
1

cos(πξ/a)

)
dξ,

(
Hc0

Hcc

)
=

∫ b

−b

hc(ξ)

(
1

cos(πξ/a)

)
dξ,

(
Hs0

Hsc

)
=

∫ b

−b

hs(ξ)

(
1

cos(πξ/a)

)
dξ,

⎛

⎝
G0s

Gcs

Gss

⎞

⎠ =
∫ b

−b

⎛

⎝
g0
gc

gs

⎞

⎠ (ξ) sin(πξ/a)dξ,

(4.5)

and can be calculated after systems (4.1), (4.2) have
been solved. Thus, substitution of σ, τ from (4.3) into
(2.15) gives rise to the sought explicit representation—
with respect to frequency—of the wave field.

Moreover, by applying the combinations N1 ± iN2

and h± ig in (4.1), (4.2), we get the following integral
equations:

∫ b

−b

(N1 ± iN2)(x − ξ)

⎛

⎝
h0 ± ig0
hc ± igc

hs ± igs

⎞

⎠ (ξ)dξ

=
⎛

⎝
1

cos(πx/a)
±i sin(πx/a)

⎞

⎠ , x ∈ (−b, b), (4.6)

which are quite similar to integral equations (3.6),
(3.7) treated and solved in [14]. Thus, functions
h0 ± ig0, hc ± igc and hs ± igs are just given by func-
tions h±

3 , h±
2 and ±ih±

1 , respectively, found in Sect. 4
of that paper. In particular, we are interested in con-
stants H,G appearing in system (4.4), and these can
be obtained as follows:

H00 = 1

2
(H+

3 + H−
3 ),

H0c = 1

2
(H+

3c + H−
3c), G0s = 1

2i
(H+

3s − H−
3s),

Hc0 = 1

2
(H+

2 + H−
2 ),

Hcc = 1

2
(H+

2c + H−
2c), Gcs = 1

2i
(H+

2s − H−
2s),

Hsc = i

2
(H+

1c − H−
1c),

Hs0 = i

2
(H+

1 − H−
1 ), Gss = 1

2
(H+

1s + H−
1s),

(4.7)

where in the second members there are the constants
H±

ν , H±
νc and H±

νs (ν = 1,2,3) which were (analyti-
cally) calculated in (4.13), (4.17), (4.18) of [14].2 It is
useful to note that all constants H,G as given above
turn out to be real-valued (for details, see [14]).

5 Energetic properties and physical remarks

In view of the analytical procedure here adopted, it
is possible to discuss the energetic properties of the
structure—with respect to the frequency of vibration—
starting from explicit expressions.

The energy produced by the elastic stress on its
work with the particle’s displacement, calculated over

2In these equations, parameter ε ≡ A
B

now holds ε = −( c2
c1

)2,

with |ε| < 1 as it is due (see (3.6)).
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the period T = 2π/ω of the harmonic oscillation, is
given by

e = −1

2
T Re(�∗v) = π Im(�u∗) (5.1)

where v (or u) is a pertinent component of the veloc-
ity (or displacement) vector and � the corresponding
stress component ((·)∗ means complex conjugate)
[15]. At the half-space surface y = 0, the stresses
are non-null only on the contact area S, where the
displacement is only vertical and holds u0. As a
consequence, by integrating over the typical interval
(−a, a), we get the energy inputted by the vibration
of a single punch as follows:

E0 ≡
∫ a

−a

e(x, y)|y=0 dx = πu0

∫ b

−b

Imσ(x)dx

= πu0 Im(P0). (5.2)

Of course, by an obvious property of balance, the same
energy should be found at large depth along the half-
space. Since in the given frequency regime only the
(first mode of the) vertical displacement is present at
y → ∞ (see (2.15b)), it holds

σyy(x, y)|y→∞ = ρc2
1
∂uy(x, y)

∂y
|y→∞

= P0

2a
eik1y (y → ∞),

so that one gets:

E∞ ≡
∫ a

−a

e(x, y)|y→∞ dx

= π

∫ a

−a

Im
(
σyy(x, y)u∗

y(x, y)|y→∞
)
dx

= |P0|2
2μ

c2/c1

(ak2/π)
. (5.3)

First of all, it is worth noting that the (just alluded
to) equality

E0 = E∞ (5.4)

is implied analytically by our formulas for any value of
the parameters and constants involved. Indeed, we can
rapidly deduce the solution for P0 of system (4.4): by
applying the combination G0s ×(4.4)2 −H0c ×(4.4)3,

we get

MPc + NTs = 0 =⇒ Ts = −M

N
Pc (5.5)

where

M ≡ G0s(1 + DHcc + EHsc) − H0c(DGcs + EGss)

N ≡ G0s(EHcc + FHsc) − H0c(1 + EGcs + FGss)

are real-valued quantities (in the one-mode frequency
regime). Substitution of (5.5) into the first two equa-
tions of (4.4) clearly gives rise to a 2 × 2 linear system
in P0,Pc, which in turn yields the following explicit
formula with respect to frequency:

P0 = 2μau0
H00R − H0cQ

R − i(k1/k2
2)(H00R − H0cQ)

, (5.6)

where new quantities

Q ≡ DHc0 + EHs0 − (M/N)(EHc0 + FHs0)

R ≡ 1 + DHcc + EHsc − (M/N)(EHcc + FHsc)

also are real-valued. As a consequence, it holds

|P0|2 = (2μau0)
2 (H00R − H0cQ)2

R2 + (k2
1/k4

2)(H00R − H0cQ)2
,

(5.7a)

Im(P0) = 2μau0
(k1/k2

2)(H00R − H0cQ)2

R2 + (k2
1/k4

2)(H00R − H0cQ)2
,

(5.7b)

and we can see from (5.2), (5.3) that the balance of
energy (5.4) is identically verified.

After that, by choosing some fixed values
for the material and geometrical parameters
(c1/c2 = k2/k1 = 2 ⇒ ε = −1/4, a/B = −3π/4 in
(4.13), (4.17), (4.18) of [14]; b/a = 0.1,0.5,0.9), we
have calculated the corresponding numerical values of
all constants H and G appearing in (5.7) by means
of (4.7), and then studied the behaviour of the trans-
mitted energy with respect to the vibration frequency
by plotting (5.2) or (5.3) versus (non-dimensional)
parameter ak2 in the one-mode interval (0,π): see
Figs. 2, 3, 4, where the three cases of small
(b/a =0.1), medium (b/a =0.5) and large (b/a =0.9)

punches are respectively reflected.
Apart from the third case in which the (very) large

involved punch implies a trivial proportionality of the
energy in that interval, in the other cases we can ob-
serve non-monotonic curves presenting a local maxi-
mum (obviously higher for larger punch); this result
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Fig. 2 Transmitted energy vs. frequency of vibration. The case
of small punches: b/a = 0.1 (Dashed line: exact numerical so-
lution)

Fig. 3 Transmitted energy vs. frequency of vibration. The case
of medium punches (b/a = 0.5) (Dashed line: exact numerical
solution)

can suggest to engineers the proper choice for the vi-
bration frequency of given punches in order to ob-
tain the greatest energy in the wave propagation (and
possible reflection from some expected obstacles). In
this connection, we note that the typical values of the
parameters which are involved in the practical appli-
cations mentioned in the Introduction, imply that the
one-mode range (3.1) covers the frequencies usually
used in those applications (for example, in the ac-
tivities of underground exploration: c2 ≈ 3 km/s and
2a ≈ 30 m, so that ak2 <π =⇒f ≡ ω

2π
< c2

2a
≈100 Hz;

see [1–3]).
In every case, formulas (5.2), (5.3), in view of (5.6),

clearly show that the energy produced by the vibration
is proportional to the square of its initial amplitude u0

(besides to shear modulus of the medium).
The rapid increase of energy after the zero ob-

served for small punches, just before the end of the

Fig. 4 Transmitted energy vs. frequency of vibration. The case
of large punches (b/a = 0.9) (Dashed line: exact numerical so-
lution)

one-mode interval, physically reflects the onset of
some (constructive) resonance effects, which often
take place in wave propagation from periodic struc-
tures when frequency approaches certain (cut-off) val-
ues. For larger punches, occurrence of maxima and/or
resonance phenomena are probably shifted to more
high frequencies—out of that interval—when further
propagating wave modes can arise. However, these
cases cannot be treated by the analytical procedure
presented in this paper.

By using formulas (2.15), we can also study the
structure of the wave field along the medium with re-
spect to the various punch sizes; after substituting (4.3)
into (2.15), we only need to calculate the following in-
tegrals (actually, independent on frequency):

∫ b

−b

⎛

⎝
h0(ξ)

hc(ξ)

hs(ξ)

⎞

⎠ cos
πmξ

a
dξ,

∫ b

−b

⎛

⎝
g0(ξ)

gc(ξ)

gs(ξ)

⎞

⎠ sin
πmξ

a
dξ, ∀m ≥ 1. (5.8)

Made this by aid of the results established in [14]
(see (4.6) above and subsequent considerations), we
have plotted the vertical (principal) displacement
|uy | versus depth parameter k2y ≥ 0 in the three
cases b/a = 0.1,0.5,0.9 for some fixed frequency
(ak2 = π/2) and abscissa (x = 0). See Fig. 5.

Besides to the (trivial) peculiarity of the behaviour
in the case of very large punches, already pointed
out in connection with energy transmission, we can
observe that, after a (more or less spread) minimum
reached at a relatively small depth, the vertical dis-
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Fig. 5 Principal displacement vs. depth parameter; ak2 = π/2,
x = 0. Line 1: b/a = 0.1; line 2: b/a = 0.5; line 3: b/a = 0.9

placement tends asymptotically to a certain constant
value as y → ∞, which is clearly independent of x

and given by the first (zeroth-order) mode in (2.15b);
of course, for a given amplitude of vibration in the
contact zone, the smaller is the punch the smaller is
the principal displacement at infinity, as physically ex-
pected.

Finally, we have compared our analytical results
with those arising from a direct numerical method.
By solving numerically system (2.18) with the exact
kernels given in (2.19), we have worked out expres-
sions (5.2), (5.3) for the same values of geometri-
cal and physical parameters considered in the ana-
lytical procedure: after noting that equality (5.4) is
satisfied up to the 5th decimal digit, the results for
transmitted energy have been reported as dashed lines
in the (corresponding) figures previously discussed.
Of course, to draw now any curve with respect to fre-
quency, system (2.18) must be solved each time anew
for each new value of the frequency parameter. We
can observe an excellent agreement between (exact)
numerical and (approximate) analytical results, apart
from some discrepancies not larger than 3–4% in the
given frequency range. This fully justifies the mild ap-
proximations used to derive the analytical solution.
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