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Abstract In this work some problems in drug delivery

from solid systems were described in terms of transient mass

balances with diffusion and solved by using FEM. Firstly,

the solving codes were compared with known analytical

solutions, available for simple problems (simple geometries,

constant diffusivities). Then, models were written to

describe more realistic systems (complex geometries, vari-

able diffusivities). Eventually, the behaviors of some real

drug delivery systems were successfully predicted.

1 Introduction

Several forms of drug administration, like pills, injections,

lotions and suppositories are of quite common use. People

eat to survive and usually enjoy (or at least tolerate) the act

of ingestion. For this reason, oral dosage forms are the

more advantageous: they are easy to use, passable for

patients (high compliance) and they assure considerable

specific area for drug transport after ingestion.

An efficient delivery system for oral assumption must to

guarantee a drug concentration, in blood or in target tis-

sues, within the therapeutic window (the interval between

minimum effective concentration and minimum toxic

level) as long as possible, without requiring too frequent

administrations. If global elimination kinetics is known,

connected to transport and degradation phenomena, the

ideal dosage form should be prepared in order to give a

release profile (a kinetics of the drug delivery) equal and

opposite to total excretion kinetics. By this way, drug

concentration remains constant at a predetermined value:

this is the goal of the Controlled Release Systems (CRS).

In designing such devices, usually based on polymer

matrices and/or enteric coated tablets, a key role is played

by the transport phenomena which take place: water

uptake, gel swelling, diffusivity increase due to hydration,

and drug diffusion through the solid device and polymer

erosion. Because of the complexity of the procedures

required to set the fundamental parameters involved in the

determination of release profiles, it would be very useful to

have a mathematical tool able to predict the drug release

rate as a function of preparation parameters. By this way,

the preparation parameters of the dosage form could be

selected a priori, before executing the usual in vitro release

tests, extremely onerous in terms of human and material

resources and time-consuming. Thus, mathematical mod-

eling has a very important value in CRS optimization. The

model can be thought as a ‘‘mathematical metaphor of

some aspects of reality’’.

Numerous studies have been reported in the literature

investigating the transport mechanisms in solid pharma-

ceutical forms and trying to quantify the resulting drug

release kinetics [1].

The first significant example [2] of a mathematical

model aimed to describe drug release from a matrix system

is the one proposed by Higuchi in 1961. It was initially

conceived for planar systems, but it was then extended to

different geometries and porous systems. The Higuchi

equation is, in fact, the solution of the transient drug mass

balance (Fick’s balance equation) obtained under hypoth-

esis of pseudo–stationary conditions, 1-D diffusion,

absence of swelling, erosion and dissolution phenomena,

constant diffusivity and perfect sink condition in the

release medium. It shows a direct proportionality between

the drug released fraction and the square root of time, just
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like predicted by the exact solution of Fick’s second law

of diffusion [3], for thin films in the same conditions of

the Higuchi system and for short exposure times. Besides

the pure diffusion contribution, also a ‘‘second-kind’’ of

transport mechanism, named ‘‘dynamic swelling’’ and

relative to the relaxation process of polymer macromole-

cules after the water uptake, has to be taken into account,

as proposed from Peppas to Sahlin [4].

The process of drug liberation from controlled release

devices governed by diffusion can be described using the

analytical solutions obtained from Crank [3] solving the

Fick’s second law of diffusion for simple geometries and

various boundary conditions. Solutions for more compli-

cated geometries were found by other authors [5–7]. In

addition, literature suggests several applications of the

finite difference methods and of the finite element methods

to the simulation of drug release. For example, Zhou and

Wu [8, 9] applied finite element procedures to analyze drug

release into a finite and well-stirred volume from matrix

devices of complex geometries including a convex tablet, a

hollow cylinder, a doughnut-shaped ring, and an inward-

release hemisphere.

Siepmann and co-workers [10] developed a model able

to describe the water and drug diffusion in HPMC tablets.

They took into account the axial and radial transport in a

cylindrical device, moving boundaries of the pharmaceu-

tical form due to swelling and erosion phenomena and

water concentration-dependent diffusivities. The polymer

dissolution was investigated considering a constant disso-

lution velocity per surface area. The numerical model,

solved using finite differences, was then improved adding

inhomogeneous swelling, poorly water-soluble drugs and

high initial drug loadings. Mathematically, the matrix was

structured as a sequence of hydrated layers (‘‘Sequential

layer model’’) [11].

In the 2000 Grassi and co-workers [12] presented a new

model suitable to describe the drug release from delivery

systems constituted by an ensemble of drug loaded cross-

linked polymer particles. The model accounts for the main

factors affecting the drug release, such as the particle size

distribution, the physical state and the concentration profile

of the drug inside the polymeric particles, the viscoelastic

properties of the polymer–penetrant system and the disso-

lution–diffusion properties of the loaded drug.

Kiil and Dam-Johansen [13] developed a detailed model

for drug release from a swellable HPMC matrix. The code,

solved by the method of orthogonal collocation, took into

account water-induced swelling, drug dissolution and

external and internal mass transport resistances of dis-

solved drug. Differently from earlier models, explicit

equations for the rate of movement of the swelling, diffu-

sion and erosion fronts, with the relevant physical proper-

ties of drug and HPMC matrix contained in the equations,

were derived. Then, the authors compared the numerical

results from simulation with experimental data for three

drugs of very different water solubility (buflomedil pyri-

doxal phosphate, nitrofutantoin, and sodium diclofenac)

and a good agreement was found, in spite of several sim-

plifying assumptions and numerous parameters to be

estimated.

Other models also considerate the polymer erosion/

degradation phenomena during the drug desorption, in

terms of both surface and mass erosion. Some of them

present a statistical approach, for example using Monte

Carlo methods [14, 15].

Aim of this work is to test the applicability of the finite

element methods, as implemented in commercial software,

to simulate the behavior of several matrices systems. To

this purpose, the ability of the software has been validated

firstly against known solutions, analytical as well as from

literature, and then the software has been used to suc-

cessfully simulate some real cases, taken from literature.

2 Methods

The Fick’s second law of diffusion (1), on which the

problem of the drug release from a solid matrix is based, is

a non linear partial differential equation (PDE), in time and

space; it admits analytical solutions only in few simple

cases. For more complex problems, constituted by a certain

number of PDEs to be solved simultaneously, which

include a parameter variability with time and/or position,

space- dependent initial conditions, time-variant boundary

conditions or moving boundaries, the way to follow is to

introduce hypotheses and idealizations necessary to sim-

plify the problem, but still able to provide approximated

enough solutions and satisfactory results. The link between

the complex physical system and the mathematical solution

is supplied by the mathematical model of the idealized

system, that includes all the significant hypotheses for the

real system’s simulation. Nowadays, one class of the best

methods to solve sets of PDEs is the class of Finite Element

Methods (FEM) [16]. The FEM software used in this work

to implement the simulations is COMSOL Multiphysics�

3.4 (Copyright � 1994–2007 by COMSOL AB, Teg-

nérgatan 23 SE-111 40 Stockholm). It is a powerful

interactive environment for modeling and solving all kind

of scientific and engineering problems based on PDEs; this

software allows transforming conventional models for each

kind of physical model into multi-physics models, which

solve coupled physics phenomena simultaneously [17].

The development and implementation of the simulations

have been carried out with the help of a workstation based

on the processor Intel� CoreTM2 Duo E8500, with a clock

rate of 3.16 GHz and a RAM of 3 Gb, 800 MHz.
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3 Preliminary validation

As first step, models were implemented concerning matri-

ces with simple shape (slab, cylinder, and sphere) and with a

complex shape (convex tablet), uniformly loaded with drug

and for which the release is controlled by the pure diffusion

through the device’s polymeric network. Drug delivery

from such devices are ruled by the Fick’s second law of

diffusion (1), which correlates the temporal evolution of the

concentration in every point of the system with the variation

of the concentration gradient with position:

oCk

ot
¼ r! � Dkr

!
Ck

� �
ð1Þ

where Ck is the concentration of the diffusion compound

k (k = 1 for water and 2 for drug), Dk is the diffusion

coefficient of the k-species and r! is the gradient operator.

For simple-shaped matrices, drug release could take place

in an undefined extent medium, in which one can assume

perfect sink conditions; for both simple-shaped and com-

plex-shaped devices, drug release could take place in a

finite medium, where drug concentration increases with

time during the delivery process. Assuming constant sys-

tem’s density and constant diffusion coefficient of the

diffusing species (drug and water), and neglecting polymer

swelling and erosion phenomena, in literature [3] analytical

solutions of the Fick’s second law of diffusion are available

(Tables 1, 2) for some geometries. Numerical release

profiles have been compared with these solutions (Sects.

3.1, 3.2). In the case of the convex tablet, FEM procedures

validation has been accomplished by comparison with the

FEM code built by Zhou and Wu [8] (Sect. 3.3). For all the

cases considered here, the default options of the code for

meshing, the so-called ‘‘Normal’’ density was used. Larger

meshes (option ‘‘Coarse’’) gave less accurate simulations

(when compared with analytical solutions); finer meshes

(option ‘‘Fine’’) requires more computational time without

any improvement in simulation results.

3.1 Perfect sink condition in the release medium,

simple-shaped matrices

In the above-mentioned hypotheses, the diffusion equations

(1) for the drug and the water are completely decoupled

and, therefore, solvable separately, once assigned initial

and boundary conditions. So it’s enough to verify the

agreement between the numerical result and the analytical

one in terms of concentration profiles of only a diffusing

species (the drug), or in terms of drug release (ratio

between the active principle’s mass released until the time

t and the mass initially loaded). The remaining drug mass

[Mr(t)] is the volume integral of the drug concentration

(C) present in the matrix device (2):

MrðtÞ ¼
Z

X

Cðx~; tÞdV ð2Þ

where x~ is the position vector. Therefore, fractional release

can be evaluated as (3):

RðtÞ ¼ MðtÞ
M0

¼ M0 �MrðtÞ
M0

¼ 1�MrðtÞ
M0

: ð3Þ

Second Fick’s law of diffusion for the drug was

numerically solved using the following initial condition

(4), valid for all the matrix-systems considered in this

work:

@t ¼ 0 8x~2 X C ¼ C0 ð4Þ

where X is the matrix volume and C0 is the initial drug

concentration. The boundary condition (5) states that at the

matrix surfaces, through which the drug liberation occurs,

the drug concentration is negligible (perfect sink condition):

@x~2 C 8t [ 0 C ¼ C� ¼ 0 ð5Þ

Here C denotes the boundary of the region X.

The 1-D drug release from a plane sheet, a cylinder and

a sphere was evaluated by means of FEM procedures, using

a C0 value of 1 mg cm-3, a drug diffusivity (D) within the

matrix of 3 9 10-6 cm2 s-1, a slab half-thickness of 1 mm

and a cylinder and a sphere radius of 6.5 mm. All of them

are reasonable values, already chosen in the previous val-

idation process of the finite difference code. In the case of

slab and cylinder, edge effect was neglected assuming an

infinite cylinder length and an infinite extent of the slab

base surfaces: in doing so, the plane sheet releases only in

thickness direction and the cylinder releases only in radial

direction. If the height and the radius of the cylinder are

comparable, the axial transport cannot be neglected. In this

case, drug delivery becomes a 3-D problem that, thanks to

Table 1 Analytical solutions [3], in terms of fractional release of the

k-th component, for several geometries, under the hypotheses of

constant diffusivity and surface concentration of the k-th species,

uniform initial concentration of the k-th species and constant density

of the system

Slab
Rslab tð Þ ¼ 1�

P1
n¼0

8

2nþ1ð Þ2p2
exp � 2nþ1ð Þ2p2

4
Dkt
L2

h i

Infinite

cylinder
Rcyl tð Þ ¼ 1�

P1
n¼1

4
R2a2

n
exp �Dka2

nt
� �

an are the positive roots of the equation

J0(Ran) = 0;

J0 is the Bessel function of the first kind of order

zero

Finite cylinder Rfin cylðtÞ ¼ 1� 1� RslabðtÞ½ � � 1� RcylðtÞ
� �

Sphere
Rsphere tð Þ ¼ 1� 6

p2

P1
n¼1

1
n2 exp �n2p2 Dkt

a2

� �
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the axial symmetry of the device, can be reduced to a 2-D

problem. In the simulations, a cylinder with a radius of

6.5 mm and a height to diameter ratio of 1 was imple-

mented. Initial drug concentration and diffusion coefficient

are the same of the 1D-case. Numerical and analytical

results in terms of fractional release are reported in Fig. 1

versus the dimensionless time s (so, the analysis can be

generalized to similar devices, but with different dimen-

sions) (6):

s ¼
ffiffiffiffiffi
Dt

a2

r
ð6Þ

in which a represents the cylinder and sphere radius, or the

slab’s half-thickness. It can be seen that the numerical

solutions match the exact solutions very well for all the

investigated cases. The geometry of the device strongly

influences the release rate: at the same dimensionless time,

a spherical matrix releases faster than a plane or cylindrical

(of infinite height) device.

3.2 Release into a well-stirred finite volume, simple-

shaped matrices

If drug release occurs in a well-stirred finite volume, it is

not possible to adopt a perfect sink condition in the release

medium, since the active principle concentration in the

solution will rise with time. Therefore, on the surface C it is

necessary to use the following condition for the drug (7):

@x~2 C8t Vext

K

oC

ot
¼ C
!� �Dr

!
C

� �
ð7Þ

where K is the partition factor between the drug into the

release medium (of volume Vext) and the one on the matrix

surface, i.e. (8):

K ¼
Cj x!2C

Cext
ð8Þ

Here Cext is the drug concentration in the release medium.

The release process by diffusion from a slab, an infinite-

height cylinder and a sphere with dimensions analogous to

the previous case was analyzed, referring to the same initial

condition (4). Release profiles in Fig. 2 are obtained using

K = 1 and a = 1 (a represents a measure of the ratio

between the external volume and the matrix volume, as

reported in Table 2), and compared with the exact solutions

in Table 2. The computed results are in good agreement

with these solutions. In the case of release into a finite

volume, not all the drug present in the device can diffuse

out to the release medium, because of both its limited

capacity and of the active principle’s partition between the

two phases. So the mass M? released in the finite volume

is the amount of drug released after an infinite time, rather

Table 2 M(t)/M? in the case of simple geometries, loaded with an uniform concentration of the k-th component (the drug) and releasing into a

well-stirred solution of limited volume, under the hypotheses of constant diffusivity and system density [3]

Slab M tð Þ
M1

			
slab
¼ 1�

P1
n¼1

2að1þaÞ
1þaþa2 qnð Þ2

exp �Dk qnð Þ2 t
L2

� �h i
M1 ¼ 2LCk0

1þ1=a
a ¼ a

KL

qn are the non-zero positive roots of the equation tanqn = -aqn

Infinite

cylinder
M tð Þ
M1

			
cyl
¼ 1�

P1
n¼1

4að1þaÞ
4þ4aþa2ðqnÞ2

exp �Dk ðqnÞ2 t
R2

� �h i
M1 ¼ pR2Ck0

1þ1=a
a ¼ A

pR2K

qn are the non-zero positive roots of the equation aqnJ0(qn) ? 2 J1(qn) = 0; A is the cross-section of the release medium in

which the cylinder is immersedJ0 is the Bessel function of the first kind of order zero; J1 is the Bessel function

of the first kind of the first order

Sphere M tð Þ
M1

			
sphere
¼ 1�

P1
n¼1

6að1þaÞ
9þ9aþa2ðqnÞ2

exp �Dk ðqnÞ2 t
R2

� �h i
M1 ¼

4=3pR3Ck0

1þ1=a
a ¼ Vext

4=3pR3K

qn are the non-zero roots of the equation tanqn = 3qn/(3 ? a qn
2) Vext is the volume occupied by the release medium

Fig. 1 Fractional drug release versus the square root of dimension-

less time, s (constant q and D, perfect sink condition). Comparison of

release profile calculated by FEM with analytical solution [3] for four

types of geometry (a = 0.65 cm, D = 3 9 10-6 cm2 s-1). Symbols,

FEM solutions (open square slab, filled triangle infinite cylinder, star
symbol finite cylinder, filled circle sphere); curves, analytical

solutions (dash dotted slab, dashed infinite cylinder, continuous finite

cylinder, dotted sphere)
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than the amount initially loaded, and results smaller than

the M? released into a perfect sink.

3.3 Release into a well-stirred finite volume, convex

tablet

Many matrix devices intended for controlled drug release

have complex geometries. For such systems it is necessary

to study a 3-D diffusive process and, normally, derivation

of analytical solutions for the Fick’s second law of dif-

fusion is very difficult, even impossible. The situation gets

worse if the release takes place with time-variant bound-

ary conditions, as occurs in the case of finite release

volume. In this work the release from a convex tablet

(whose dimensions, in centimeters, are reported in Fig. 3)

was investigated, and the solution, in terms of evolution

of fractional release with time, was compared with the

profile obtained by Zhou and Wu [8]. The values assigned

to the model parameters are the same used by the above-

mentioned researchers: C0 = 0.15 mg cm-3 (initial drug

concentration) and D = 1 910 -6 9 cm2 s-1 (drug dif-

fusivity) (also in this case, as in Sect. 3.1, the parameters

choice was dictated by previous selection made by the

Authors of the first work); the release occurs from all the

device’s surfaces, to a dissolution medium with a volume

equal to 10 times the matrix’ one (a = 10, K = 1). As it

can be seen from the Fig. 3, the two codes’ predictions

perfectly agree.

3.4 Concentration-dependent diffusion coefficients,

simple-shaped matrices

If the diffusivity of both the drug and the water is some-

what influenced by the concentration of one of the species

present in the system, it is evident that diffusion equations

of water and drug are coupled and their solution must occur

simultaneously. For example, the pseudo-diffusion coeffi-

cients Dk (k = 1 for water and 2 for drug) in matrix sys-

tems strongly depend on hydration level achieved by the

device during the release process, and can be modeled

according to the following equation (9):

Dkðx1Þ ¼ D�k exp �bk 1� x1

x1;eq


 �� 

ð9Þ

where D�k=expðbkÞ is the value of the pseudo-diffusion

coefficient in the dry matrix (x1 = 0), and Dk
* is the value

of the pseudo-diffusion coefficient in the fully swollen

matrix (x1 = x1, eq). At this point, diffusion equations for

water and drug in terms of mass fraction of the diffusing

species (xk) were implemented and solved with the

following initial (10) and boundary conditions (11):

@ t ¼ 0 8x~2 X
x1 ¼ x10 ¼ 0

x2 ¼ x20 ¼ 0:3

(
ð10Þ

@ x~2 C 8t [ 0
x1 ¼ x1eq ¼ 0:8

x2 ¼ x20 ¼ 0� �perfect sink

(
ð11Þ

Fig. 2 M(t)/M? versus the square root of dimensionless time, s
(constant q and D, well-stirred finite outer volume). Comparison of

release profile calculated by FEM with analytical solution [3] for

three types of geometry (a = 0.65 cm, D = 3 9 10-6 cm2 s-1,

K = 1, a = 1). Symbols, FEM solutions (open inverted triangle slab,

filled circle infinite cylinder, filled rectangle sphere), curves analytical

solutions (dotted slab, continuous cylinder, dashed sphere)

Fig. 3 M(t)/M? versus time (constant q and D, well-stirred finite

outer volume). Comparison of release profile calculated by FEM with

another FEM solution drawn from literature [8] for a convex tablet

whose dimensions are reported down, in a bi-dimensional outline

(D = 1 9 10-6 cm2 s-1, a = 10, K = 1). Filled square FEM solu-

tion from this work, straight line FEM solution from literature
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The 1-D diffusion problem relative to the same geometries

of the previous cases (a slab, a cylinder and a sphere) was

investigated. Besides, fixed boundaries of the devices were

assumed: that means system density is an invariant, i.e.

matrices do not swell because of the water up-take and do

not erode because of the polymer dissolution in the release

medium. This approximation is quite strong, as water

penetration (with the subsequent increase in diffusivities)

and matrix swelling is concomitant phenomena.

The simulations were performed using the following dif-

fusion parameters: D�1 = 5.6 9 10-10 m2 s-1, D�2 = 8 9

10-11 m2 s-1, b1 = 2.5, b2 = 8.3. Then the FEM results

were compared with the profiles obtained by Barba et al.

[18], by means of a Finite Differences (FD) code, else-

where validated. In Fig. 4 evolution versus the square root

of the dimensionless time (s) of the fractional drug release

(FEM results and FD results) is reported; the pseudo-dif-

fusion coefficient taken as reference in the definition of s is

D�2. Because of the low initial D2 value (due to the dehy-

dration of the matrix), the delivery rate is quite low for

short times, though the drug concentration gradient which

causes the diffusive transport is initially on its maximum

value. The match between the FEM code and the FD one is

satisfactory, confirming the accuracy of the implemented

models.

Both the techniques require similar computational time,

even if the FD scheme was implemented by an high-level

mathematical programming language (Mathcad 14, Math-

soft Engineering and Education, Inc.) whereas the FEM

scheme was implemented using a commercial code

(Comsol 3.4, see Sect. 2). The FD scheme was 1-D, the

FEM scheme was one- (slab), two- (cylinder) or 3-D

(sphere), therefore a comparison of the mesh size is not

straightforward. It is worth noticing that, even the com-

putational time requirements are similar, the FD scheme

cannot be easily extended to complex geometries, then the

use of FEM schemes are preferred.

4 Case histories

After the validation stages, two case histories from litera-

ture were analyzed and modeled, both confirming effective

results achieved with the FEM procedures adopted and

pointing out the possibility to simulate more complex

systems, with a good level of detail. In the first case,

a model able to predict the drug release kinetics from a

porous system was worked out. In order to validate such a

code, release data coming from a work of Horcajada et al.

[19] were used; they studied the influence of pore dimen-

sions of mesoporous materials (bio-ceramics MCM-41) on

the release rate of Ibuprofen, a common use analgesic and

anti-inflammatory (Sect. 4.1). In the second case a work by

Grassi et al. [20], concerning the macro- and microscopic

characterization of a scleroglucan-borax gel system loaded

with active principles, inspired a model capable to identify

the thickness of the aqueous interfacial layer, which sur-

rounds the cylindrical gel and exerts an additional resis-

tance to diffusive phenomena, reducing drug delivery rate

(Sect. 3.2).

4.1 Ibuprofen release from MCM-41 matrices

During the release process of a drug loaded into a porous

matrix, the system can be schematized as a biphasic

medium, constituted by the matrix where the active prin-

ciple is dispersed and a fluid phase (initially solute-free)

that penetrates porous structure’s cavities and dissolves the

drug, making it capable to diffuse out to the external

medium. Between the two phases, equilibrium and mass

transfer phenomena establish, whose modeling can be

described through thermodynamic equilibrium relations,

obtained considering matrix and solvent characteristics,

mass transfer equations and material balances, imple-

mented with reference to the transferring component (the

drug), on differential volumes of the system (the nano-

porous bio-ceramic particle). The object of modeling is the

determination of both the concentration of the drug in

the dissolution medium which infiltrates into the pores

(C, mgdrug/mgfluid) (12) and the concentration of the drug

immobilized in the solid matrix (Q, mgdrug/mgmatrix) (13).

Fig. 4 Fractional drug release versus the square root of dimension-

less time, s (constant q, water concentration-dependent D, perfect

sink condition). Comparison of release profile calculated by FEM

with FD code by Barba et al. [18] for three types of geometry

(a = 0.65 cm, D�1 = 5.6 9 10-6 cm2 s-1, D�2 = 8 9 10-7 cm2 s-1,

b1 = 2.5, b2 = 8.3). Symbols, FEM solutions (open triangle slab,

filled triangle infinite cylinder, open circle sphere), curves FD

solutions (dotted slab, continuous cylinder, dashed sphere)
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C ¼ Cðt; x~;KÞ ð12Þ
Q ¼ Qðt; x~;KÞ: ð13Þ

Both the concentrations are functions of independent

temporal (t) and spatial (x~) variables, and of the system’s

physical parameters vector (K). The system under

consideration can be modeled by two partial differential

equations (PDEs), a transient mass balance equation for the

drug in the fluid phase (14) and a transient mass balance

equation for the drug in the solid phase (15):

qf e
oC

ot
¼ qf er

! � ðDLr
!

CÞ þ JðQ;C;KÞ ð14Þ

qs 1� eð Þ oQ

ot
¼ �JðQ;C;KÞ: ð15Þ

Here qs is the density of the bio-ceramic matrix (mgmatrix/

cm3), qf is the density of the dissolution medium (mgfluid/

cm3), (1 - e) is the volume fraction occupied by solids

(e is the porosity, i.e. the volume fraction occupied by pores),

J(Q, C, K) is the mass flowrate, per unit of volume, of the

active principle leaving the solid phase to the fluid one into

pores (mgdrug/cm3 s), DL is the apparent diffusivity of the

drug in the fluid bounded in the pores. The system of PDEs

can be written as follows (16):

oC

ot
¼ r! � ðDLr

!
CÞ � 1� eð Þ

e
qs

qf

oQ

ot

oQ

ot
¼ �f ðQ;C;KÞ

8>><
>>:

ð16Þ

where f ðQ;C;KÞ ¼ JðQ;C;KÞ
qsð1�eÞ : To be solved, it calls for the

definition of appropriate initial and boundary conditions, the

selection of an expression for the forcing term f, on the basis

of equilibrium and transport phenomena, the knowledge of

the system’s parameters (geometry, e, qs, qf) and the

determination of equilibrium and transport parameters. The

spherical particles, of radius RS = 500 nm, are initially

loaded with a homogeneous drug concentration, Q0; the fluid

phase is initially pure (C0 = 0). On the surface a perfect sink

condition is assumed. Particles’ radius, in absence of erosion

and swelling phenomena, results constant. Every moment,

the overall drug mass contained into the matrix (mF) can be

calculated as sum of the mass contained into the solid phase

and the mass contained into the liquid, i.e. (17):

mF tð Þ ¼
Z

V

qs 1� eð ÞQdV þ
Z

V

qf eCdV ð17Þ

where V is the particle volume. So, the fractional release

can be calculated as (18):

R tð Þ ¼ 1� mF tð Þ=mF0 ð18Þ

where mF0 is the initial drug mass loaded in the device. In

the course of modeling, the equilibrium between the

Ibuprofen on the particle surface and the drug solubilized

in the fluid and the drug transport from the solid surface to

the liquid have been taken into account as steps controlling

the rate of the entire process. In these hypotheses, the

forcing term f assumes the following form (19):

f ðQ;C;KÞ ¼ kc C� � Cð Þ ð19Þ

where kc is the Ibuprofen transfer coefficient from the pore

surface to the fluid phase (s-1): the greater its value, the

smaller the resistance to the transport encountered by the drug.

C* represents the drug concentration at solid–fluid interface

(fluid-side), in equilibrium with the solid-side concentration

Q* (supposed as uniform on the whole internal channels’

surface, i.e. Q = Q*). Any equilibrium formula can be chosen

to describe the relationship between the two concentrations,

Q and. The simplest is a partition relation, with a single

material parameter, the partition factor K, and it was selected

here to avoid the introduction of other model parameters.

Q� ¼ KC�: ð20Þ

Therefore, the system of PDEs to solve becomes (21):

oC

ot
¼ r! � DLr

!
C

� �
� 1� eð Þ

e
qs

qf

oQ

ot

oQ

ot
¼ �kc C� � Cð Þ

Q ¼ KC�

8>>>>><
>>>>>:

ð21Þ

equipped with the initial and boundary condition previ-

ously described. At this point, known the densities of the

two phases (qs = 2,600 mg cm-3, qf = 1,000 mg cm-3)

and the porosity of the different MCM-41 samples, and

assuming a partition factor equal to 1 (the error in this

approximation will be offset by the parameter optimization

procedure), it is possible to numerically solve the system,

optimizing the parameters DL and kc on the basis of a

comparison with the experimental Ibuprofen delivery data

collected by Horcajada et al. [19]. In the Table 3 the

principal characteristics of the four MCM-41 samples

calcined and loaded with Ibuprofen are reported [19]. More

details about the formulation and the preparation of the

bio-ceramic samples and about the drug incorporation’s

procedures can be found in [19].

Since kc represents a local transfer coefficient and it is

not correlated to the pore dimensions, in order to reproduce

the behavior of all the analyzed bio-ceramic materials, it is

possible to optimize the kc value for a single mesoporous

matrix and then adopt the same value for the other samples,

so performing just the optimization of the apparent diffu-

sivities. In particular a value of the mass transfer coeffi-

cient equal to 1 9 10-4 s-1 was found.
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In Fig. 5 the predictions of the model presented in this

work, in terms of fractional release of Ibuprofen, were

reported as curves, the experimental data as symbols. It can

be observed that the implemented code guarantees a good

reproduction of the experimental data, for all the investi-

gated bio-ceramics. The delivering rate strongly decrease

as the pore sizes varies from 3.6 to 2.5 nm: this is caused

by the reduction of the apparent diffusivity, due to the

larger specific hindrance of the Ibuprofen molecules inside

smaller channels. The narrower are the pores, the more

difficult is the diffusive phenomenon. Between the appar-

ent drug diffusivity and the pore diameter a linear depen-

dence was discovered (Fig. 6) that, from the engineering

point of view, expresses the chance to use the transport

model just described as a predictive tool to reconstruct the

release kinetics from similar porous materials, with any

pore dimension.

4.2 Vitamin B12 and myoglobin release

from hydrogels

Grassi et al. [20] prepared pharmaceutical formulations for

oral assumption constituted by Scleroglucan (a water-sol-

uble polysaccharide produced by fungi of genus Sclero-

tium), borax (a ligand suitable for polymers containing

hydroxyl groups) and molecules of pharmaceutical interest,

like Theophylline, Vitamin B12 and Myoglobin. Tablets

were produced with consistency of a high-stability hydro-

gel, suitable for controlling and modifying host molecules’

release. In particular, the gel has been structured in the

form of cylindrical tablets, of radius Rc equal to 1.1 cm and

of height H = 1 cm. During drug release tests (the initial

drug concentration, C0, is 5 mg cm-3), carried out in

200 cm3 of distilled water (Vrel, pH = 5.5), the gel was

kept at a certain height from the bottom of the container by

a thin web, while the dissolution medium was magnetically

stirred. The erosion of the gel, in terms of polymer disso-

lution, was quantitatively determined by a colorimetric

method, using phenol in the presence of sulphuric acid. In

the first 8 h, the researchers found negligible erosion

(B4%). Besides, the experimental evidence has explained

Table 3 Characterization and

results of Ibuprofen content of

MCM-41 samples [4]

MCM-

4116

MCM-

4112

MCM-

418(70%)-10(30%)

MCM-

418(85%)-10(15%)

d (nm), Network spacing 3.9 3.65 3.4 3.4

a0 (nm), Unit cell size 4.42 3.84 3.9 3.9

Dp (nm), Pore diameter 3.6 3.3 2.7 2.5

vp (cm3/g), Pore specific volume 0.98 0.85 0.95 1.012

e, Porosity 0.718 0.688 0.712 0.725

mgIBU/g, Ibuprofen content 337 233 150 106

Q0 0.34 0.23 0.19 0.11

Fig. 5 Ibuprofen delivery from different pore-sized MCM-41. Sym-
bols, experimental data [open triangle MCM-4112, filled circle
MCM-4116, filled triangle MCM-418(70%)-10(30%), open diamond
MCM-418(85%)-10(15%)], curves model predictions [dotted MCM-

4112, dashed MCM-4116, continuous MCM-418(70%)-10(30%), dash
dotted MCM-418(85%)-10(15%)]

Fig. 6 Apparent diffusivity of the drug molecules into the liquid

phase penetrated the pores versus pore diameter. Open circle
optimized DL, straight line fitting straight line
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that the formulated hydrogels don’t further swell when

introduced in the release environment [20]. Inevitably the

presence of a web around the device represents a resistance

to the drug diffusion towards the external medium: it

lightly reduces the mass transfer surface area and promotes

the boundary layer formation (of thickness d) at the inter-

face between the gel and the surroundings. To model the

diffusive process, two diffusion coefficients have been

introduced by Grassi and co-workers: an interfacial diffu-

sion coefficient (Di) in the aqueous level and a bulk dif-

fusion coefficient (Db) in the gel network (Di \ Db). Fick’s

second law of diffusion (22) has been numerically solved

in cylindrical coordinates according to the control volume

method, satisfying the following initial (23) and boundary

conditions (24):

oC

ot
¼ D

r

o

or
r
oC

or


 �
þ D

o2C

oz2
ð22Þ

@ t ¼ 0; 8ðr; zÞ 2 X C ¼ C0 Crel ¼ 0 ð23Þ
@ðr; zÞ 2 C; 8t Cðr; z; tÞ ¼ KCrelðtÞ ð24Þ

VrelCrelðtÞ ¼ pR2
cHC0 �

ZH

0

ZRc

0

Cðr; z; tÞ2prdrdz ð25Þ

K is the partition factor of the drug between the gel and the

environmental release fluid, Crel is the drug concentration in

the release medium. The equation 25 is the drug mass

balance for the gel/release fluid system and states the relation

between Crel and C(r, z, t). Set K = 1, the proposed model

has two parameters (Di and Db), adjusted by comparison with

experimental data. For Vitamin B12 the researchers have

found Db = (3.67 ± 0.22) 9 10-6 cm2 s-1 and Di = (4.0 ±

0.4) 9 10-7 cm2 s-1; for Myglobin Db = (1.21 ± 0.21) 9

10-6 cm2 s-1 and Di = (1.6 ± 0.3) 9 10-7 cm2 s-1. Since

Di is about one order of magnitude lower than Db for both the

host molecules, the web around the device really exerts an

additional resistance. At this point, known the two drugs’

diffusion coefficients in water, Grassi et al. were able to

determine the average polymeric network mesh. In this

work, the results drawn from literature in terms of diffusion

coefficients (without further optimization) have been used to

work out a FEM model analogous to literature one, but also

able to provide in output the thickness of the aqueous level,

just implementing, with a Boolean expression (26), the

following drug diffusion coefficient (D):

D ¼ Di � ð�d\z\0 or H\z\H þ d or Rc\r\Rc þ dÞ
þ Db � ð0\z\H and r\RcÞ:

ð26Þ

The coordinate system (r, z) has been fixed so that the

origin coincides with the centre of the hydrogel base

surface. So, inside the bulk of the tablet, D = Db, in the

aqueous layer D = Di. Varying from time to time the

thickness of the interfacial layer, the value of d that guar-

antees the best agreement with the release experimental

data has been obtained. The results of the simulations in

terms of time evolution of the ratio Crel/Crel,? were com-

pared with experimental data and shown in Fig. 7.

The best comparison can be found for d = 180 lm in

the case of Vitamin B12 and for d = 100 lm in the case of

Myoglobin.

5 Conclusions

The modeling of drug release from solid systems is an

interesting goal for the pharmaceutical sciences. At the

same time, it is a hard task, because of the large number of

concurrent phenomena which take place (solvent and drug

diffusion in presence of variable diffusivity, matrix swell-

ing and/or erosion which lead to moving fronts, different

boundary conditions). The model equations, aiming to

describe complex transient phenomena in the space, are at

least PDEs with variable coefficients and often with

changing boundary conditions and moving boundaries.

Such complex behaviors ask for numerical solutions, such

as Finite Difference or Finite Element methods.

In this work, the diffusion equation was solved in

transient using a commercial FEM code, accounting for

different geometries, for two distinct boundary conditions

(the so-called perfect sink, i.e. the negligible drug con-

centration in the dissolution medium, or the presence of a

Fig. 7 Time evolution of the ratio Crel/Crel, ? for the two guest

drugs, Vitamin B12 and Myoglobin, released from a cylindrical

SCLG-borax hydrogel. Symbols, experimental data (filled square
Vitamin B12, open circle Myoglobin), curves model predictions

(continuous Vitamin B12, dashed Myoglobin)
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well-mixed finite external volume). For these problems the

numerical solution is successfully compared with the ana-

lytical solutions, available from literature. Then, the FEM

code was tested in predicting the behavior in presence of

variable diffusivity, giving the same results of a FD code

from literature. The validation section was completed by

the simulation of a complex shape matrix system, the

results obtained being in agreement with results taken from

literature, also obtained by a Finite Element Method.

Afterwards, codes based on FEM were purposely poin-

ted out, to solve two problems, the desorption of a drug

from some bio-ceramics and the release of two drugs from

a matrix system, whose experimental data were taken from

literature. Both the cases were successfully described by

suitable models, confirming the ability of code based on

Finite Element Method in the description of the drug

release problems.

Therefore, the FEM approach was proven useful in the

analysis of drug release phenomena. A further step, cur-

rently under consideration by our research group, is the

analysis of the phenomena which cause the movement of

the matrices boundary, i.e. the swelling and the erosion of

the matrices.
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