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ABSTRACT: A comparison between minimal resources required to control structures, 
fixed or base isolated, by applying different methodologies is presented in this paper.  LQR, 
H2, H∞ and IOC control techniques have been considered. Numerical tests have been carried 
out in order to evaluate the control energy and power necessary to reach similar seismic 
performances under several recorded excitations.  Results are presented by using spectral 
representations of response and control resources 
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I . INTRODUCTION 
 
The primary objectives of a control system is to address a dynamic process according to 

fixed design objectives and behavior criteria, under excited conditions caused by the outside 
environment. The seismic response of a system may be controlled through the utilization of 
appropriate artificial actions according to optimum control algorithms, which require the 
transfer of energy and power from the outside.  The possibility that, at the moment of the 
earthquake's occurrence, the energy and power necessary for the control of the system's 
seismic response requires an energy reserve must be taken into account. Therefore, it is 
necessary to have the instruments available for the prediction of the energies and powers 
necessary for a control system to adjust the seismic response to predefined levels.  

This study investigates the energy resources necessary for the active control of 
structures subject to seismic excitations comparing several control methods.  In particular, 
with respect to assigned dynamic performances the energy and power necessary for their 
production are evaluated as a function of different control algorithms: Linear Quadratic 
Riccati - LQR, "Control Law H2", "Control Law H∞" and "Instantaneous Optimal Control - 
IOC".  The analyses take into consideration simple controlled linear systems, fixed or base 
isolated, subject to recorded excitations.  

The results of the analysis of systems subject to different seismic excitations, are 
represented in spectral form for a direct comparison of the potential performances with 
variation in active control methodologies considered, as well as in the requirements for the 
necessary control resources.  

 

II.  ANALYTICAL MODEL OF ANALYZED SYSTEMS 
 

The model analyzed is schematically described as a Single Degree Of Freedom or 2 
Degrees Of Freedom, subject to base seismic motion gu&&  and controlled by active force ( )tfc  

(Figure 1). The motion of the systems are respectively represented by the following equations: 
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Figure 1: Simple Models for fixed and isolated base structure 
 

                                             ( ) ( ) ( ) ( ) ( )tu
m

tf
txtxtx g

c &&&&& −=ω+ξω+ 2 2                                    (1) 

                                         








±−=ω+ωξ+χ+

−=ω+ωξ++

M
tf

uxxxx

uxxxx

c
gbbbbbsb

gsssssbs

)(
2

2

2

2

&&&&&&&

&&&&&&&

 ,                                 (2) 

 

where ( )tx  and ( )tug  are the relative movement and the base seismic motion respectively, ξ  

and ω  the damping factor and natural circular frequency and, m is the mass and finally χ  the 

mass ratio ( )bs

s
mm

m
+ . The characters “s” and “b” individuate respectively the main structure 

and the isolation layer properties. In the state space formulation the dynamic behavior of the 
controlled systems is described by: 
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(t)uDtvCtz 121 )()( += , 

 

whereA , 1B  and 2B represent respectively the dynamic matrix of the system, the position 

matrix of the seismic action and that of  the control action, )(tz  the vector of the controlled 

variables, 1C  represents the matrix of the weight on the components of the state vector and  

12D  that of the control vector  )(tu . Finally, 2C  and 21D  the matrices which correlate the 

vector of the measured variables )(ty  to the state and the seismic excitation. 

The dynamic performance of the described systems is evaluated through the following 
performance indices:  
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respectively for the fixed and the isolated base system.  

 



III. CONTROL  ALGORITHMS 
 
The control methodologies examined in this study are the following:  

 

LQR Control Law: The LQR methodology assumes as a control force a function that 
minimizes the performance index J defined as: 

[ ]dttRuutQxtxJ
ft

t
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0

∫ += . 

IOC Control Law (Instantaneous Optimal Control): This control methodology, useful 
also for the regulation of the dynamic response of non-linear systems, is based on the 
minimization of the following instant performance index J : 

)()()()( tRuutQxtxtJ TT += . 

 

Control Law H2: This control methodology has as its objective the minimization of H2 
norm of transfer function ( )sG  of the controlled system1 which ties the transformation in the 

frequency domain of the vector )(tz  to that of seismic excitation )(tug : 
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where "*" represents the transposed conjugated matrix function.  It is to be noted that H2 norm 
of a transfer function represents the mean square deviation of the structural response when the 
excitation is made up of white noise.  Minimizing H2 norm, is equivalent therefore, in 
reducing to a minimum the mean square deviation of the response )t(z  of the system to the 
white noise 3. 

 

Control Law ∞H : The objective of this methodology is to minimize∞H norm of the 

transfer function ( )sG  of the controlled system 1: 
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with the single operator )(⋅σ  defined by: 
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where d is a non-zero stationary stochastic process. This expression shows how ∞H law 

permits the adjustment of the system response in the case of worst input; therefore, the ∞H  
methodology produces a solid control with respect to the excitation event.  

All control algorithms are designed to divide by 2 the performance indices (4) of the not 
controlled cases. 

 

 

 



IV. DESCRIPTION OF THE SEISMIC EXCITATIONS 
 

The numerical analyses were carried out by considering the accelerometer data 
recordings of particularly significant events for which the spectral responses in terms of 
acceleration are shown in Figure 2, and general data is found in the following: 

 

Earthquake Component Duration[sec] PGA [cm/s2] 
Taft 21/07/1952 N69W 30.00 153.83 

El Centro 19/05/1940 S00E 53.80 341.82 
Mexico City 19/09/1985 N90W 180.08 167.918 
Tolmezzo 06/05/1976 NS 36.58 360.03 

Petrovac 1979 NS 19.62 429.29 
Northridge 17/01/1994 34N 118W 60.00 483.33 

Pacoima 1971 S16E 41.90 1148.496 
 

The seismic events under consideration are classifiable in four categories: the first is 
represented by the Taft earthquake, of low energy content and regular progression in the field 
of the periods of interest; a second includes the El Centro, Tolmezzo and Northridge 
earthquakes, characterized by a strong energy content in the 0.1 - 0.8 sec. interval; a third,  
identified from the Mexico City earthquake, is characterized by elevated peaks of acceleration 
in the period interval 1.7 - 3 seconds; the fourth and last, is made up of the Petrovac and 
Pacoima earthquakes, having an elevated energy in the period interval 0.2 - 1.3 seconds. 
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Figure 2: Response spectrum in terms of absolute acceleration 

 

V. NUMERICAL RESULTS  
 
The described systems were subjected to numerical tests for the purpose of determining 

the energy resources required by the control mechanisms for an assigned performance index 
which is half that of the uncontrolled cases.  In figures 3-6 the spectral representation of the 
performance index are shown for uncontrolled and controlled cases respectively, with a 
damping factor ξ = 0.05.  

For each of the considered control algorithms, the maximum spectral response of the 
systems are illustrated in figures 7-20. Figs 7-8 shown the worst damping and the elastic 
energy ratios for the isolation level. In particular, figures plot the ratio between the energies of 



the controlled and the ones of the uncontrolled systems valued for considered seismic 
excitations. Figures 9-14 show the worst kinetic energy, dissipated energy and elastic energy 
ratios for the fixed and isolated base systems. Control force, control energy and control power 
are finally plotted in the figures 15-20.  

With equal performance indices, the control energy is generally minimal for the H2 and 
H∞ control algorithm. The IOC law requires higher values of control power and forces for 
almost all of the excitations considered. The algorithms H2 and H∞, when faced with a greater 
energy requirement, have lower control force values. Results show that isolated systems 
required less energy and power resources than the ones necessary to control the fixed base 
systems. In particular, in the range of interest periods, the control of fixed base system 
requires energy resources 1.5 times the input ones, while the control of base isolated systems 
requires less than 0.5. 
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Fig 3: Performance index spectra for non controlled 
fixed base structures 
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Fig 4: Performance index spectra for controlled 
fixed base structures 
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Fig 5: Performance index spectra for non controlled 
base isolated structures, isolation layer. 
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Fig 6: Performance index spectra for controlled base 
isolated structures, isolation layer. 
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Fig 7: Isolator layer response spectra  
         (worst case between considered excitations) 
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Fig 8: Isolator layer response spectra 
         (worst case between considered excitations) 
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Fig 9: Main structure kinetic energy gain spectra                   
          (worst case)   
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Fig 10: Main structure kinetic energy gain spectra 
            (worst case)  
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Fig 11: Main structure damping energy gain 
            spectra (worst case)  
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Fig 12: Main structure damping energy gain    
             spectra (worst case)  
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Fig 13: Main structure elastic energy gain spectra 
            (worst case)  
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Fig 14: Main structure elastic energy gain spectra 
             (worst case)  
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Fig 15: Control force spectra 
            (worst case)  
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Fig 16: Control force spectra 
            (worst case)  
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Fig 17: Control energy spectra  
            (worst case)  
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Fig 18: Control energy spectra 
            (worst case)  
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Fig 19: Control power spectra 
            (worst case)  
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Fig 20: Control power spectra 
            (worst case)  
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