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A new structural system conceived to control Base Isolated System vibrations under seismic 
excitations is analyzed. The new system combines the Hybrid Mass Damping strategy with the 
Isolation concept in order to obtain a new system which principally attenuates the effects of the 
seismic excitation components with frequencies close to the fundamental natural vibration one. 
The aim is achieved by using a control algorithm based on the frequency shaping technique. 
Comparisons of system performance show that under the considered  processes  the control 
power required to achieve similar performances using control algorithm in the frequency domain 
is less than using  algorithm in the time domain. 

 
1 Introduction 
 
The mass damping technique has been applied mainly in Japan and the United States 
for the vibration reduction in tall buildings due to  strong wind and moderate seismic 
activity. The efficiency of TMD (Tuned Mass Damper) for the reduction of response of 
systems with several degrees of freedom, subject to strong seismic excitations, is 
considered substantially low1,4. A significant improvement of building vibration control 
capacity using mass damping was obtained with the introduction of active control 
criteria first proposed at the AIJ Confernce by T. Kobori5. In 1994, the authors 
proposed a new system derived from the combination of Base Isolation System  (BIS) 
and mass damping strategy6. Preliminary tests have shown that the efficiency of this 
system (BIS&TMD) in the amplitude reduction of seismic motion is significant when 
compared to the case without TMD. The positive behaviour is due to the appropriate 
combination of three fundamental properties of the combined system : 1) the reduction 
of the ground motion transmission to the superstructure; 2) the vibration mode 
modification due to the isolation; 3) the first vibration mode reduction by means of  the 
damping mass tuned  to this frequency. 

However, the system presents some difficulty in tuning the TMD optimal 
parameters to a natural vibration frequency, variable with the excitation intensity, 
caused by non-linearity of the isolation system behaviour. In this study, a new hybrid 
system, conceived by the authors, deriving from a combination of Base Isolation, 
Mass Damping and Active Control strategies is investigated. Hybrid Mass Dampers- 
HMD. For an isolated system the aim of an Active Control should reduce the 
absolute accelaration and the relative displacements. Since the typical frequency 
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response of Base Isolation presents amplitude peaks in a narrow frequency range, the 
frequency-shaping method is proposed as a control algorithm  for these systems. 

A frequency-shaped performance index has been introduced using weighting 
matrices defined in the frequency domain. The applied technique allows the designer 
to simultaneously control some state variables with frequency specifications 
compared to the well known time performance index. 

 
 

2 The model 
 
Figure 1 shows the model of a base isolated structure equipped with a hybrid mass 
damper located at the base. The superstructure is considered to be  linearly elastic 
because designed as so. The isolation system is also considered as an equivalent 
linear system according to some equivalence criteria2,3:  
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Fig. 1 : The BIS and HMD model 

 
The motion of system model, Assuming the state variable x y, y= [ & ]T , is described 

by the following 
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where M , C  and K  respectively represent mass, damping and stiffness matrices of 
the model, ug  and f u  are the ground displacement and the control force acting on 

the TMD. 
3 Shaping the Dynamic Response by Frequency Specifications 
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The design of the feedback controller, assumed to be linearly dependent on the state, 
is based on the minimization of the following index in the frequency domain7 
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where X( )ω  and U( )ω  represent the Fourier transform of the state variable and 
control force, and where ∗  denotes the complex conjugate transpose of the matrices. 

In this performance index defined by the (4) two terms contribute to the 
integrated function control: the quadratic forms X*(jω) Q(jω) X(jω) and term 
U*(jω) R (jω) U (jω) which, respectively, penalize the deviation of the state X(jω) 

from the origin and the control cost. Weighting matrices ( ) ( )Q Qj j⋅ ⋅ ≥∗ω ω 0  e 

( ) ( )R Rj j⋅ ⋅ >∗ω ω 0  are diagonal real functions of complex variables. Minimization 

of the function (4) may be achieved by transforming the problem in an equivalent 
form written in the time domain. 

Let’s consider the matrix factorization of ( )Q j ⋅ ω  and ( )R j ⋅ ω  matrices as: 
 

( ) ( )Q P P R P Pj j j j j jQ Q R R⋅ = ⋅ ⋅ = ⋅ω ω ω ω ω ω* *( ) ( ) ( ) ( )   (5) 
 

where matrix PR j( )ω  has r r×  dimensions, while  matrix PQ j( )ω  has σ × n  

dimensions, with σ  the ( )Q j ⋅ω  matrix rank. Let’s introduce the two ( )xp t  and  

( )u p t  vectors chosen so that the Fourier transform is given by: 
 

( ) ( ) ( ) ( ) ( ) ( )X P X U P UP Q P Rj j j j j j⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ω ω ω ω ω ω=           =  (6) 
 

The performance index (4) can be rewritten as: 
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In (7) weighting matrices are constant in the frequency domain. Using Parseval’s 
theorem the performance index can be written as: 
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Therefore the optimum gain problem is expressed in terms of another set of state 
variables ( )xp t  and ( )u p t , which consider the penalties described above in the 

frequency domain.  
From (6), the new variables ( )xp t  and ( )u p t  can be considered as output of two 

new auxiliary systems: 

( ) ( ) ( )X P XP Qj j j⋅ ⋅ ⋅ ⋅ω ω ω=   <>  ( ) ( ) ( )
( ) ( ) ( )

z A z B x

x C z D x

•
⋅ ⋅

⋅ ⋅








Q Q Q Q

P Q Q Q

t t t

t t t

= +

= +
 (9) 

( ) ( ) ( )U P UP Rj j j⋅ ⋅ ⋅ ⋅ω ω ω=   <>  ( ) ( ) ( )
( ) ( ) ( )

z A z B u

u C z D u

•
⋅ ⋅

⋅ ⋅








R R R R

P R R R

t t t

t t t

= +

= +
 (10) 

 
Therefore it is possible to reformulate the original dynamic problem by using a new 
state vector describing both the real and auxiliary models (9) and(10), given by: 
 

( ) ( ) ( )&x A x B uA A At t t= +⋅ ⋅     (11) 

where the new set of matrices are 
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Considering (11), performance index (8) can be rewritten as: 
 

( ) ( )[ ] ( )
( )J t t

t

t
dtA

T T A
T

A

A= ,
 

 x u
Q N

N R

x

u
⋅








 ⋅












∞
∫
0

   (13) 
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Q

D D D C 0

C D C C 0

0 0 C C
A

Q
T

Q Q
T

Q

Q
T

Q Q
T

Q

R
T

R

=

⋅ ⋅
⋅ ⋅

⋅



















  N

0

0

C D

=

R
T

R⋅

















  R D DA R
T

R= ⋅  (14) 

 
The new formulation is correct only if ( )Q j ⋅ω  ed ( )R j ⋅ ω  matrices can be factorized 

as in (5) and the terms of  PQ j( )ω  and PR j( )ω  matrices are proper or strictly proper 

rational functions of jω . In order for the auxiliary problem to have a solution it 
needs the condition R 0A > , and that the new system should be stable and 

observable. The new system block diagram is represented in figure 2. 
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 Fig. 2 : Block Diagram of Control Algorithm 

 
Figure 2 shows how this control algorithm may penalize state variables both in time 
and in the frequency domain. 

Let’s consider that µ < n  state variables have to be controlled in the frequency 

domain with the aim of suppressing the response in a narrow frequency band around 
ω i . In this case the correspondent weighting matrix Q should be expressed by 
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which can be factorized using 
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Note that the generic diagonal term 
( )
a

j

i

ω ωi
2 2

- ⋅
 represents the response of a simple 

degree dumpless oscillator. Matrix ′PQ  can be considered as the transfer function of 

a set of  µ  simple oscillators. This particular system can be expressed in the state-
space by 
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In (10), an algebraic problem for these particular cases, the only non-null matrix 

DR  has to be set by considering that R D D RA R
T

R= ⋅ = . 

Therefore, problem (11) is characterized by a null dimension vector zR , a 

weighting matrix { }Q 0 0 0A n n n idiag a i( ) , , ( , .. ),+ × + −= =η η µ µ µµ2 1 , N 0n r+ × =η  and 

R RA r r( )× = . The first µ  values in QA  represent null penalty in correspondence of 

frequency penalized main state variables, the next n − µ  values are penalties for 
main state variables not penalized. The other 2µ  values in QA  are the weighting in 

the frequency domain for main state variables. 
 
 
4 Results 
 
Seismic responses of models controlled by the frequency-shaping algorithm have 
been obtained using numerical simulations. The seismic response of the same models 
controlled by using the LQR algorithm in the time domain has also been tested in 
order to make comparisons. Control forces, energies and powers are also evaluated 
for both control algorithms in the time and frequency domain. 

Figures 3, 4 and 5 show response comparisons of systems controlled by time and 
frequency-shaping algorithm under the El Centro N-S (1940) earthquake. 
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Fig. 4 : Top Relative Displacement Time Histories 

 
In particular figg. 3-4 show base and top relative displacements, while fig. 5 shows 
the tuned mass damper response. 

With the frequency shaping technique the performance index penalizes the 
response around the fundamental natural damped frequency. Two methods have been 
compared designing control systems to have similar performance in the structure to 
investigate the energy, power and force required by the control system. 

Figures 6-8 show control force, power and energy time histories for the two 
control methodologies. Results show that control forces, energy and power required 
by the frequency shaping method are strongly lower than the ones required by the 
optimum control in the time domain. 
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Fig. 5 : TMD Relative Displacement Time Histories 
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Fig. 6 : Control Force Time Histories 
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Figure 9 shows the comparison in the frequency domain of control force for the two 
considered algorithms. The control power spectrum shows that the power is 
maximally used to control the assigned frequency band in the frequency-shaping 
control algorithm. 
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5. Conclusion 
 
This paper describes an active control algorithm based on the frequency shaping 
control techniques applied to a new hybrid system based on the combination of the 
isolation strategy with active mass damping. 
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The performance of the new control method has been verified by numerical 
simulation in comparison with the response of the same system optimally controlled in 
the time domain. Responses of the hybrid systems, controlled by the two different 
methods, have shown that better performance may be obtained using the frequency-
shaping techniques which require less control resources. 
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