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A new structural system conceived to control Bagdated System vibrations under seismic
excitations is analyzed. The new system combinedHybrid Mass Damping strategy with the

Isolation concept in order to obtain a new systdmichv principally attenuates the effects of the
seismic excitation components with frequenciesectosthe fundamental natural vibration one.
The aim is achieved by using a control algorithnsdobon the frequency shaping technique.
Comparisons of system performance show that uriderconsidered processes the control
power required to achieve similar performancesgisomtrol algorithm in the frequency domain

is less than using algorithm in the time domain.

1 Introduction

The mass damping technique has been applied maidigpan and the United States
for the vibration reduction in tall buildings due tstrong wind and moderate seismic
activity. The efficiency of TMD (Tuned Mass Dampér) the reduction of response of
systems with several degrees of freedom, subjedtrting seismic excitations, is
considered substantially Id% A significant improvement of building vibratiomatrol
capacity using mass damping was obtained with tiduction of active control
criteria first proposed at the AlJ Confernce by Kiobor. In 1994, the authors
proposed a new system derived from the combinatiddase Isolation System (BIS)
and mass damping stratégpreliminary tests have shown that the efficientyhis
system (BIS&TMD) in the amplitude reduction of seis motion is significant when
compared to the case without TMD. The positive bieha is due to the appropriate
combination of three fundamental properties ofabmbined system : 1) the reduction
of the ground motion transmission to the supersirac 2) the vibration mode
modification due to the isolation; 3) the first rakion mode reduction by means of the
damping mass tuned to this frequency.

However, the system presents some difficulty iningnthe TMD optimal
parameters to a natural vibration frequency, végiakith the excitation intensity,
caused by non-linearity of the isolation systemalvédur. In this study, a new hybrid
system, conceived by the authors, deriving fromomhination of Base Isolation,
Mass Damping and Active Control strategies is itigased. Hybrid Mass Dampers-
HMD. For an isolated system the aim of an Activentto should reduce the
absolute accelaration and the relative displacesne3ince the typical frequency
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response of Base Isolation presents amplitude geaksarrow frequency range, the
frequency-shaping method is proposed as a corlgotithm for these systems.

A frequency-shaped performance index has beendinted using weighting
matrices defined in the frequency domain. The &pptechnique allows the designer
to simultaneously control some state variables withquency specifications
compared to the well known time performance index.

2 The model

Figure 1 shows the model of a base isolated stiaquipped with a hybrid mass
damper located at the base. The superstructurensidered to be linearly elastic
because designed as so. The isolation systemascalssidered as an equivalent
linear system according to some equivalence caftéri

Sensors Computer
=

O

771 TMD
"- Actuator

Fig. 1 : The BIS and HMD model

The motion of system model, Assuming the stateabdeix =[y,y]", is described
by the following

m {—Mo-lx ™ C}B}{:}u +[M %qu 1)

whereM , C and K respectively represent mass, damping and stiffnegsces of
the model,uy and f, are the ground displacement and the control factéag on

the TMD.
3 Shaping the Dynamic Response by Frequency Specifications
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The design of the feedback controller, assumecktinearly dependent on the state,
is based on the minimization of the following indexthe frequency domain

J= 1 +jm[xD(jmg),UD(jmo)][FQ(jm’) o [ﬁﬁgjgﬂdw (4)

400 O R(jm)
where X(«) and U(«) represent the Fourier transform of the state bégiand
control force, and wheré denotes the complex conjugate transpose of thecest
In this performance index defined by the (4) twaente contribute to the
integrated function control: the quadratic foris(jw) Q(jw) X(jw) and term
U'(jw) R (jw) U (jo) which, respectively, penalize the deviation of ttate X (jw)

from the origin and the control cost. Weighting riets Q(j)Q(j6) 20 e

R(j@)R(j )" >0 are diagonal real functions of complex variabMmimization

of the function (4) may be achieved by transformihg problem in an equivalent
form written in the time domain.

Let's consider the matrix factorization @f(j @) and R(j &) matrices as:

Qi) = Pa(jo) Po(iw)  R(j ) = Pr( w) [Pr( ) (5)
where matrix Pg(jw) has rxr dimensions, while matrixPg(jw) has oxn

dimensions, witho the Q(j) matrix rank. Let's introduce the twa,(t) and
up(t) vectors chosen so that the Fourier transformviergby:

Xp(j0o)= Po(j o) X(j o) U g{j o) =Pgfj o) U o) (6)

The performance index (4) can be rewritten as:

Ttmbtis]gy Oy o g

+ 0o,
\]:i j
4001

In (7) weighting matrices are constant in the fitgy domain. Using Parseval’s
theorem the performance index can be written as:

B oR] el o ®

up(t)

+ 00

I=]
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Therefore the optimum gain problem is expresseteims of another set of state
variables x,(t) andu,(t), which consider the penalties described abovehin t

frequency domain.
From (6), the new variables,(t) andu,(t) can be considered as output of two

new auxiliary systems:

X p(j ) = Pofj o) X(j ) <> {ZQ(t): AqZo(t)t BoX(t) (g
xp(t)= CoZg(t)+ D ox(1)

U p(j ) = Pr(j ) () ) <> {5R82RER((:)): Eﬂﬁi (10)

Therefore it is possible to reformulate the origjithgnamic problem by using a new
state vector describing both the real and auxilmoglels (9) and(10), given by:

X, (t)= A, X(t)+ B, (1) (11)
where the new set of matrices are
x(t) A 0 O B
Xp = ZQ(t) X AA: BQ AQ 0 X BA =l O (12)

Considering (11), performance index (8) can be ittawr as:

© QA N XA(t)
J= [x T(9,u(t EE } dt 13
{) A () () NT R u(t) ( )
where
T T 7
QA: CQ DDQ CQ H:Q 0 N= 0 RA :DR DDR (14)
0 0 CRICg Ck D

The new formulation is correct only @(j @) ed R(j6) matrices can be factorized
as in (5) and the terms ofq(jw) and Pr(jw) matrices are proper or strictly proper
rational functions ofjc. In order for the auxiliary problem to have a $iol it
needs the conditionR, >0, and that the new system should be stable and
observable. The new system block diagram is repteden figure 2.
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Fig. 2 : Block Diagram of Control Algorithm

Figure 2 shows how this control algorithm may peeastate variables both in time
and in the frequency domain.

Let's consider thaiu < n state variables have to be controlled in the feagy
domain with the aim of suppressing the responsenarrow frequency band around
w; . In this case the correspondent weighting ma&@rshould be expressed by

Q nxn(jw) = dlanpr ( j(’o)!on—pxn—u}

a’

. i=1...,u (15)

Q'(j m)) = diag (oof—ooz)z ;i

TE

which can be factorized using

Po(jw)  0un-
Py (j00) =[ ¥ e }
© Oc-uw Oo-uxn-u

' a

Pol(jv) = diag{———; i=1...,u (16)
oli®) {w?-(m»)2 }
Note that the generic diagonal tequi(ii_)z represents the response of a simple
wj - ]E}O

degree dumpless oscillator. Matri, can be considered as the transfer function of
a set of u simple oscillators. This particular system canelpressed in the state-
space by



i 0] I
_ (Irlxlrl) (Irlxlrl) _ O(pxp) o(pxn-p)
AQ(HX”) - diad_wiZ, i= 1'_.,“} O(pxu)] BQ(ﬂxn) - lil (1xp) O(len-u)

_d. ,i=1.., 0 x Ouxu Opxn-u
o _ iad 4, i u} (kxu) 1 DQ(cxn):{O(( ) 0 (wxn-u) 1 (17)

Q(er]) i O(c-pxp) O(O—pxp) G-HXH) (U‘HX”’U)

In (10), an algebraic problem for these particdases, the only non-null matrix
Dr has to be set by considering tat =Df Dg =R .
Therefore, problem (11) is characterized by a wlithension vectorzg, a

weighting matrix Q 4 qxnen) ={0u,0n_u,diag(af, i=1. .p),Ou} » Npigxr =0 and
Rawxny =R . The firstp values inQ, represent null penalty in correspondence of

frequency penalized main state variables, the mexft values are penalties for
main state variables not penalized. The otervalues inQ, are the weighting in
the frequency domain for main state variables.

4 Results

Seismic responses of models controlled by the &Bqgushaping algorithm have
been obtained using numerical simulations. Therseisesponse of the same models
controlled by using the LQR algorithm in the timenthin has also been tested in
order to make comparison€ontrol forces, energies and powers are also etelua
for both control algorithms in the time and freqeggdomain.

Figures 3, 4 and 5 show response comparisons t&#nsgscontrolled by time and
frequency-shaping algorithm under the El Centro {-$510) earthquake.



-0.15 |- El Centro Earthquake N-S 1940 -

0 5 10 15 20 25 30
[sec]

Fig. 3 : Base Relative Displacement Time Histories
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Fig. 4 : Top Relative Displacement Time Histories

In particular figg. 3-4 show base and top relatiigplacements, while fig. 5 shows
the tuned mass damper response.

With the frequency shaping technique the perforreammex penalizes the
response around the fundamental natural dampedédney. Two methods have been
compared designing control systems to have simpgaformance in the structure to
investigate the energy, power and force requirethbycontrol system.

Figures 6-8 show control force, power and energyethistories for the two
control methodologies. Results show that controdde, energy and power required
by the frequency shaping method are strongly lativen the ones required by the
optimum control in the time domain.
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Fig. 5 : TMD Relative Displacement Time Histories
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Fig. 6 : Control Force Time Histories
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Fig. 7 : Control Power time histories
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Fig. 8 : Control Energy Time Histories

Figure 9 shows the comparison in the frequency dowiacontrol force for the two
considered algorithms. The control power spectrumws that the power is
maximally used to control the assigned frequenaydbi the frequency-shaping
control algorithm.
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Fig. 9 : Control Force Time Histories
5. Conclusion
This paper describes an active control algorithreedaon the frequency shaping
control techniques applied to a new hybrid systesetd on the combination of the

isolation strategy with active mass damping.
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The performance of the new control method has bewified by numerical
simulation in comparison with the response of #maes system optimally controlled in
the time domain. Responses of the hybrid systeowtraled by the two different
methods, have shown that better performance maptsned using the frequency-
shaping techniques which require less control nessu
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