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Random response of linear Base Isolated Systems, mounted on elastomeric 
bearings, subject to horizontal random excitations, is analyzed in comparison 
with the one of the fixed-base structures. Considering the superstructure motion 
described by its first modal contribution, a two-degree-of-freedom equivalent 
linear model, under stationary Gaussian excitations modelled by the modified 
Kanai-Tajimi power density spectrum, has been used in the analysis. The 
response sensitivity to design parameters for the superstructure and the isolators 
have been evaluated for a wide range of parameters. Optimum viscous damping 
and isolation degree values which minimize structural response are also obtained. 
Some implications of these results for the design  and code requirements are 
discussed. 

 
 

INTRODUCTION 
 
The objective of this study is to compare the seismic random response of Base Isolated 

Systems (BIS) with the one of the conventional Fixed-Base Structures (FBS). 
As known, base isolation is a mean of protecting buildings against earthquakes  which  

mainly consists in reducing the transmission of horizontal ground motion to the buildings by 
using special support devices interposed between the foundations and the superstructure. 
The effectiveness of Base Isolated System (BIS) depends on the interface low-pass filtering 
capacities of the excitations entering the superstructure. The filtering effect is stronger if the 
isolation layer supporting the superstructure presents a fundamental vibration frequency 
much lower than both the superstructure and ground motion predominant frequencies.  

The filtering concept generally requires some knowledge of the input signal which might 
occur during the life time. However, the exact characteristics of the earthquake ground 
motion that may occur at a given site cannot be predicted. Seismic excitations dramatically 
differ from each other being characterized by a high randomness. Consequently, the filtering 
action has to be applied to an unpredictable excitation having an aleatory frequency content. 

Design of FB structures for seismic loads is mainly based on experienced performance 
of constructions in past earthquakes. 
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Current design codes for FB structures have been developed with the aim of ensuring 
life safety during major earthquakes accepting extensive damage in the constructions. 

Seismically-Isolated buildings need different design criteria in order to provide an 
acceptable protection level against both potentially seismic damaging and collapse.  

Considering the young state of the art of Base Isolation, the small number of systems 
effectively tested by  severe earthquakes  and the particular sensitivity of these systems to 
the seismic motion, random vibration approach should have a central role in  establishing  
the general design criteria and code requirements. However, not much work has been carried 
out in the field of Base Isolated System random response. Constantinou and Tadjbaknsh 
(Constantinou 1985) have investigated  the optimum fundamental BIS period under random 
excitations. Lin et al. (1989-1990) used the Clough-Penzien model of stochastic input to 
study the response of various isolation systems in a way similar to the approach followed in 
this paper. Optimum damping has been recently investigated by Inaudi and Kelly (Inaudi 
1992) and by Ahmadi et al. (Ahmadi 1993) using different approaches. Pinto and Vanzi 
(Pinto 1992) presented a probabilistic analysis in which a critical sensitivity to the 
superstructure strength factor has been pointed out. Warburton (Warburton 1992) presented 
an interesting review on several vibration reduction strategies. 

In this investigation, the response of Base Isolated Systems with elastomeric bearings, 
subject to a stationary Gaussian random process is analyzed. The stationary filtered white 
noise modelled by Kanai (Kanai 1957) and Tajimi (Tajimi 1960) and modified by Clough 
and Penzien  (Clough 1975) has been used as the stochastic model of seismic excitation. 

The analysis was focused on a response comparison between isolated and non isolated 
structures. The investigation was carried out by analyzing a two-degree-of-freedom 
equivalent linear model,  considered as the simplest general isolated building model when 
the superstructure is represented by its 1st modal contribution. The probabilistic 
characteristics of the response (mean, covariance and power spectral density) of Base 
Isolated linear systems have been evaluated to explore the sensitivity of the response to the 
design parameters. The parametric  study is focused on three particular points whose 
consequences are particularly relevant in establishing the design criteria and code 
requirements: 

- the influence of the isolating degree as defined by Palazzo 1991; 
- the influence of the equivalent viscous damping at the isolation interface; 

      - the influence of the fundamental non isolated structure period. 
The first two points are relevant in establishing the optimum isolating degree and 

damping factor to choose the appropriate isolation system to be applied to the structures. 
Further considerations are also  derived in order to establish the favorable applicability range 
of the  isolation strategy.  

 

STOCHASTIC  MODEL OF SEISMIC EXCITATIONS 
 
In this study, the horizontal ground acceleration ag(t)  is modelled as a  stationary 

Gaussian filtered  white noise random process with a zero mean and characterized by its 
Power Spectral Density (PSD) Sag(ω).  

As known, PSD is the Fourier transform of the autocorrelation function  R (τ ) : 
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The mean square value or variance of the ground acceleration is given by: 
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Fig. 1: Modified Kanai-Tajimi Power Spectral Density 

The formulation of Power Density Spectrum of the absolute ground accelerations (fig.1), 
proposed by Kanai and Tajimi (Kanai 1957, Tajimi 1960) and  later modified by Clough and 
Penzien (Clough 1975), by applying a low frequency filter, is used in this study:  
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where HCP(ω) is the Clough & Penzien low band frequency filter given by: 
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HKT(ω) is the Kanai and Tajimi filter given by: 
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So is the white noise power density considered in the Kanai-Tajimi model. 
In this model ωg and ξg are respectively the natural frequency and damping ratio describing  
the soil deposit characteristics, ωl and ξ1 describe the low band filter introduced by Clough-
Penzien. Three types of soils were considered in the analysis by assuming the following  in 
the spectrum model: 

Firm soil :      ωg = 31.4 rad/sec;   ξg = 0.55      



Medium soil :  ωg = 15.6 rad/sec;  ξg = 0.6      
       Soft soil   :      ωg = 10.5 rad/sec;  ξg = 0.65  

For all cases the Clough-Penzien modification low-band frequency filter characteristics are 
assumed as ω1 = 1 and ξ1 = 0.7. 

 
 

EQUIVALENT LINEAR MODEL OF BASE ISOLATED SYSTEMS 
 
Consider  the two-degree-of-freedom equivalent linear model represented in fig.2, which 

can be considered as the simplest model to represent a more general isolated multi-storey 
building if  the superstructure is represented  by its 1st natural vibration mode. 

As shown by Kelly (Kelly, 1996) by retaining only one mode of the fixed-base structure 
the approximate 2-DOF model gives results that are very close to the ones obtained 
considering a M-DOF model. 
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Fig. 2 : Base Isolated model 

As known, while the isolator behaviour is generally non linear the superstructure should 
be generally designed to remain in the linear range under the strongest design excitation 
(Pinto 1992, Palazzo 1993). Several equivalent linear models for the isolator behaviour 
using effective stiffness and viscous damping have been carried out  and used by isolation 
design guidelines (Fuller 1991 ; Hwang 1993 ; SEAOC -Tentative 1986 ; General 1989 ; 
Partial Draft 1994 ; UBC 1991 ;  AASHTO 1991 ;  JPWRI, 1992 ;  NZMWD 1983) .  

By using such type of equivalence criteria the system behaviour is described by the 
coupled  linear second-order differential equations: 
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where ug is the ground displacement;  mb,  cb, kb, respectively represent the mass, the 
equivalent damping and stiffness referred to the isolating base; ms, cs, ks, respectively are 
the 1st modal mass, damping and stiffness of the superstructure; u and v respectively 
represent the absolute and relative  displacement.  It has been shown (Kelly 1990, Palazzo 
1991) that, if ωs and ωb indicate the superstructure and isolated system fundamental 
frequencies, parameter Id = ωs/ωb, defined as isolating degree, regulates the behaviour of an 
isolated system. The mentioned authors showed that  Id influences the decoupling capacity 
of the superstructure motion in respect to the ground horizontal movement. 

Equation (6) can also be represented in the state-space form : 
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where x represents  the four-dimensional state vector and u, v respectively indicate the 
absolute and relative displacement vectors given by : 
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 represent the system in the state-space representation, while the followings matrices 
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respectively represent the damping factor matrix ∑ and the frequency matrix Ω. 
The transfer functions of the system (7) are obtained by applying the Fourier transform 

assuming the initial conditions to be  zero: 
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where X(ω) and Ug(ω) respectively represent the Fourier transform of x(t) and ug(t). 
The complex frequency response  H(ω) relates  the system response to the ground 

motion. Therefore the response spectral density vector Sout(ω) is related to the acceleration 
spectral density Sag(ω) by : 
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Some background information regarding the procedure can be found in Soong (Soong, 
1993). Therefore, the mean square of the response is given by: 
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COMPARATIVE RESULTS 
 
Using the power density spectrum described above, the root mean square or "rms" 

response of the model with and without isolation, has been evaluated for several values of 
main parameters. The calculated rms response values of the base isolated model are 
normalized with respect to those of the correspondent fixed-base model. The analysis has 



been focused on the evaluation of the influence of the isolating parameters (Id, ξb) on the 
seismic response for several values of fixed-base structural periods Ts.  

In all cases a standard 2% damping factor has been considered in the superstructure. 
Figures 3-10 show the influence of Ts and ξb on relative displacements, absolute velocities 
and accelerations. Results show that the isolator damping plays a significant role in reducing 
the isolator relative displacement, absolute acceleration and velocity (Figg. 5-6).  
Diagrams clearly show that by increasing the isolation damping factor ξb, the base response 
is always reduced while the superstructure response reaches minimum values for particular 
damping factors (Figg. 3-4,7-10). Therefore there are optimum values of isolation damping 
factors which minimize the superstructure response, varying with the superstructure main 
period Ts, as shown in the two-dimensional diagrams. The optimum damping factor ξb 
mainly influences relative displacements, absolute velocities and absolute accelerations. 
Results show that the optimum damping factor which minimizes both the superstructure 
acceleration and relative displacement slightly varies by about 25 % of critical damping for 
usual cases. Optimum damping levels can be defined as those which minimize the relative 
displacements of the superstructure. The optimum value of the isolation damping factor 
increases quite linearly with the superstructure main period varying from 20% for  Ts=0.10 
sec.  to 50%  for Ts=2.70 sec.. Figures 11-18 show the influence of both the isolating degree 
Id and fixed-base period Ts on the system response. Results show that by increasing the 
isolation degree, positive effects on the superstructure response are always produced. 
However, for most cases of interest having original fixed-base periods in the range 0.4 to 1 
sec. by choosing Id values greater than 3-4 doesn’t produce any other significant benefit. On 
the other hand base relative displacements strongly increase with the Id increment, 
particularly for superstructures having a long natural vibration period. With respect to 
superstructure accelerations greater benefits occur when isolating low period structures than 
long period ones. The almost flat dependence of the base displacement response in the range 
of high values of isolating degree and original period Ts would have been less predictable.As 
shown in figures 13-14, the rms isolated base displacement ratio to the non isolated structure 
strongly increases with the isolating degree in the range of small damping values.The rms 
base relative displacement can significantly be larger than the one of the non isolated 
structure, but its ratio  significantly decreases by increasing the damping factor ξb. The same 
ratio tends to be lower for structures having an elevated original Ts  period. For a given 
isolation damping factor, the superstructure relative displacement is already substantially 
reduced for isolation degrees greater than 2.5-3 and Ts > 2π / ωg. It is important to notice 
that in all investigated cases the  superstructure response is always more favorable than the 
one of non isolated structures.The influence of both Id and ξb  isolation parameters, plotted 
in figures 19-20, confirm the results described above. From these figures it is possible to 
notice that the influence of the damping factor in the isolating system is greater for long 
period structures than for short period ones. Therefore, in these cases the choice of a value 
close to the optimum damping is more important. The study of the results allows the 
evaluation of the reduction effects on the superstructure response produced by a well 
isolation system by about 70%-80% respect to the non isolated seismic response. The 
influence of the foundation soil on the stochastic response is represented in figures 21-25. In 
the case of soft soil results indicates that the benefits on the superstructure response due to 
the isolation are lightly reduced but the base displacements are strongly increased respect to 



the case of firm or medium soil. Figure 25 shows the rms response ratios of BIS compared 
to the one of non-isolated structures versus the χ mass ratio and the original Ts period. 
Observing the diagram the χ mass ratio does not have a significant effect on the  seismic 
response. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
 
 
 
 

Isolated to non Isolated RMS Response ratio
Isolator Relative Displacements

0.00

0.50
1.00

1.50
2.00

2.50

3.00
3.50

4.00
4.50

5.00

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95 ξξξξ is

R
M

S
 r

at
io

Ts=2.70 sec (Step 0.20 sec.)

Ts=0.10 sec.

Id=3

χ=0.7
Firm Soil

 
 



 
Fig. 6 

 
 
 
 

0.
10

0.
90

1.
70

2.
50

0.
05 0.

20 0.
35 0.
50 0.

65 0.
80 0.
95

0.10

1.00

10.00

R
M

S
 r

at
io

Ts ξξξξ b

Isolated to non Isolated RMS Response ratio
Superstructure Absolute Accelaration

Id=3
c=0.7
Firm Soil

 
 

Fig. 7 
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Fig. 8 
 

0.
10

0.
90

1.
70

2.
50

0.
05 0.

20 0.
35 0.
50 0.

65 0.
80 0.
95

0.10

1.00

10.00

R
M

S
 r

at
io

Ts ξξξξ b

Isolated to non Isolated RMS Response ratio
Superstructure Absolute Velocity

Id=3
c=0.7
Firm Soil

 
 

Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 13 
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Fig. 20 
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Fig. 22 
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CONCLUSION 
 

Results regarding the response comparison between base isolated systems and fixed-base 
structures subject to a stationary Gaussian process, modelled according to the modified 
Kanai-Tajimi power density spectrum, lead to the following conclusions: 
  
1 - The linear base isolated system random response expressed in term of ratio to the 
correspondent non isolated system has been evaluated and plotted for a wide range of 
parameters in order to be used as a preliminary design chart. Since isolators exhibit a 
significant hysteretic behaviour, the presentes results have some limitations having replaced 
the governing set of non-linear differential equations by an equivalent linear one. 
 
2 - Results have shown a great influence on the BIS random response of the isolation 
damping factor and the isolating degree. 
  
3 - Optimum damping factors of the isolation system, which minimize relative 
displacements depend on the original period and  the isolating degree. The optimum 
equivalent viscous damping factor increases with the superstructure fixed-base period 
varying from 20% to 50%.  
  
4 - The optimum values are greater than those generally considered and used in the 
applications. From a technological point of view, it seems extremely hard to reach optimum  
damping values by only using rubber bearings at the isolating interface eventhough high-
damping rubber is used. Therefore, in order to realize optimum damping factors, it seems to 
be more convenient to combine  isolators in parallel with other damping devices. Therefore 
supplementary hysteretic or viscous dampers should be added to the isolators in order to 
reduce the isolation interface displacements. 



 
5 - The evaluated effect of an isolation damping greater than 5% doesn't correspond to the 
scaling procedure considered for damping by the UBC 1991. 
 
6 - Structures having fundamental non isolated periods less than the ones where the spectral 
amplitude is maximum, need a higher value of  isolating degree in order  to obtain 
significant advantages from the isolation and therefore shift out the frequency range where 
the spectral amplitude is high.  
  
7 - For structures having non isolated periods greater than ones where the power density 
spectra have maximal amplitudes, an isolating degree of the order of 3-4 is generally 
sufficient to reduce the superstructure response by about 70%-80%. 
 
8 - Long period structures can also be favorably isolated with a low isolating degree and 
optimum damping. 
 
9 - In all isolated cases, the superstructure response is always more favorable than the 
correspondent non isolated structure. Therefore the isolating degree should be designed as 
high as the isolator displacement limit allows.  
 
10 - Soft soil effect generally leads to double the base displacement response of the BIS 
placed on firm soil. 
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