
U.P.B. Sci. Bull., Series A, Vol. 73, Iss. 3, 2011 ISSN 1223-7027

SECOND ORDER SHANNON WAVELET APPROXIMATION
OF C2-FUNCTIONS

Carlo CATTANI1

In aceasta lucrare este prezentata aproximatia de ordinul doi a unei
functii C2 bazata pe functiile tip Shannon Wavelets. Aproximatia este com-
parata cu formula de reconstructie a functiilor tip wavelet, eroarea de aprox-
imare fiind calculata in mod explicit.

In this paper, the second order approximation of a C2-function,
based on Shannon wavelet functions, is given. The approximation is com-
pared with the wavelet reconstruction formula and the error of approxima-
tion is explicitly computed.
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1. Introduction.

In this paper it the approximation formula of C2-function based on the
fundamental instances of the wavelet family is given. The main advantages of
this approximation are that

(1) locally this reconstruction holds for a broad class of functions than the
L2(R)-function family where the wavelet theory is valid

(2) up to the second order this approximation is more efficient than the
wavelet theory approximation

(3) any C2-function can be locally expressed in terms of wavelets.

In recent years wavelets have been successfully applied to the wavelet
representation of integro-differential operators [1-4], thus giving rise to the so-
called wavelet solutions of PDE and integral equations. However, there are
only a few examples of wavelets having some physical meaning [5,6]. In the
sense, that there are not so many examples where wavelets mostly coincide
with the solution of a physical problem or with special functions which have
been shown to be classical solutions of physical problems.
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Wavelets are L2(R)-functions, having a decay to zero, which are used in
many different analytical problems, such as operator analysis, PDE solving,
integral equations (see e.g. [1-4] and references therein). The main reasons
of their successful applications is that they are localized and mostly they en-
able us to easily and completely reconstruct any L2(R)-function. However,
the reconstruction is confined to the L2(R)-functions and it is based on the
computation of wavelet coefficients through some integrals on infinite domain
(or Fourier integrals).

In the following, it will be shown that Shannon wavelets can well ap-
proximate not only C2-functions, but also some special functions [7,8] (Bessel
functions) which define the solution of Weber equation, thus giving a physical
meaning to Shannon wavelets, since Bessel function are the classical tool for
investigating wave propagation in cylinders. Bessel functions decay to zero as
the L2(R)-functions do, and the basic instances of Shannon wavelets, i.e. the
scaling and Shannon wavelet, give the best approximation of L2(R)-functions.
However, it should be emphasized that this equivalence holds only in an open
small interval. Among the many families of wavelets, Shannon wavelets [1-
4] offer some more specific advantages, which are often missing in the others.
Shannon wavelets are analytically defined, infinitely differentiable, and sharply
bounded in the frequency domain. Starting from the approximation of Bessel
function, a more general formula will be given for the (local) approximation of
any C2-function. The approximation error will be explicitly computed and a
comparison with the wavelet reconstruction will be also given.

2. Shannon Wavelet

Shannon scaling function φ(x) and wavelet function ψ(x) are defined as



φ(x) =
sin πx

πx
=
eπix − e−πix

2πix

ψ(x) =
sinπ(x− 1

2
)− sin 2π(x− 1

2
)

π(x− 1
2
)

=
e−2 i π x (−i+ ei π x + e3 i π x + i e4 i π x)

(π − 2π x)

(1)

The corresponding families of translated and dilated instances wavelet [1-4],
on which is based the multiscale analysis, are
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

φnk(x) = 2n/2φ(2nx− k) = 2n/2
sin π (2nx− k)

π (2nx− k)

= 2n/2
eπi(2

nx−k) − e−πi(2
nx−k)

2πi (2nx− k)

ψnk (x) = 2n/2ψ(2nx− k)

= 2n/2
sin π(2nx− k − 1

2
)− sin 2π(2nx− k − 1

2
)

π(2nx− k − 1
2
)

=
2n/2

2π(2nx− k + 1
2
)

2∑
s=1

i1+sesπi(2
nx−k) − i1−se−sπi(2

nx−k)

(2)

being

φ0
k(x) = φk(x), ψ

0
k(x) = ψk(x) .

Both families of Shannon scaling and wavelet are L2(R)-functions, therefore
for each f(x) ∈ L2(R) and g(x) ∈ L2(R) the inner product is defined as

< f, g >=

∫ ∞

−∞
f(x)g(x)dx,

where the bar stands for the complex conjugate.
Shannon wavelets fulfill the following orthogonality properties (for the

proof see e.g. [2-4])

⟨ψnk (x) , ψmh (x)⟩ = δnmδhk⟨
φ0
k (x) , φ

0
h (x)

⟩
= δkh,⟨

φ0
k (x) , ψ

m
h (x)

⟩
= 0 , m ≥ 0,

δnm, δhk being the Kroenecker symbols.
Shannon wavelets (2.2) can be particularly useful when they are evalu-

ated at some special points. From the definition (2.1) it can be easily seen
that [4]

φ0
k(h) = δkh , (h, k ∈ Z) ,

and

ψnk (h) = − 21+n/2

(2n+1h− 2k − 1)π
.

For the wavelet functions it is also [4]

lim
x→2−n(h+

1
2
)

ψnk (x) = 2n/2δhk

and
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ψnk (x) = 0 , x = 2−n
(
k +

1

2
± 1

3

)
, (n ∈ N, k ∈ Z) . (3)

It can be seen that ψnk (x) is o (x) in the two sets of points

x± = 2−n
(
k +

1

2
± 1

3

)
because

lim
x→2−n(k+ 1

2
± 1

3)

ψnk (x)

x− 2−n
(
k + 1

2
± 1

3

) = ±9 · 2−1+3n/2 . (4)

Since

lim
x→0

φ(x)− 1

x2
= −π

2

6
, (5)

the scaling function φ(x)− 1 is o (x2) in x = 0.
Both families of scaling and wavelet functions belong to L2(R) , and they

have a (slow) decay to zero, in fact, according to their definition (2.2)

lim
x→±∞

φnk(x) = 0 , lim
x→±∞

ψnk (x) = 0 .

The maximum value of the scaling function φ0
k(x) can be found in corre-

spondence of x = k

max[φ0
k(xM)] = 1 , xM = k .

The min value of φ0
k(x) can be computed only numerically [4] and it is

min[φ0
k(x)]

∼= φ0
k(xm) =

sin
√
2π√

2π
, xm = k − 1±

√
2 .

The minimum of the wavelet ψnk (x) is located in the middle point of the
zeroes so that

min[ψnk (xm)] = −2n/2 , xm = 2−n−1(2k + 1)

and the max values of ψnk (x) are

max[ψnk (xM)] = 2n/2
3
√
3

π
, xM =


−2−n

(
k + 1

6

)
2−n−1

3
(18k + 7).

Let f(x) be a L2(R) function such that∣∣∣∣∫ ∞

−∞
f(x)φ0

k(x)dx

∣∣∣∣ ≤ Ak <∞ ,

∣∣∣∣∫ ∞

0

f(x)ψnk (x)dx

∣∣∣∣ ≤ Bn
k <∞, ∀n, k ∈ Z
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and B ⊂ L2(R) be the Paley-Wiener space, i.e. the space of band limited
functions; as a generalization of the Paley-Wiener space, we have the space
Bψ ⊇ B of functions f(x) such that the integrals

αk = < f(x), φ0
k(x) >=

∫ ∞

−∞
f(x)φ0

k(x)d x

βnk = < f(x), ψnk (x) >=

∫ ∞

−∞
f(x)ψnk (x)d x

(6)

exist and have finite values. There follows that, if f(x) ∈ Bψ ⊂ L2(R) the
series

f(x) =
∞∑

h=−∞

αh φ
0
h(x) +

∞∑
n=0

∞∑
k=−∞

βnkψ
n
k (x),

on the right side converges to f(x) , with αh and βnk given by (2.6). With a
fixed upper bound we have the approximation

f(x) ∼=
K∑

h=−K

αh φ
0
h(x) +

N∑
n=0

S∑
k=−S

βnkψ
n
k (x) . (7)

The error estimate of the approximation (2.7) was given in [4] .

3. Similarities between Bessel functions and Shannon wavelets

Bessel functions are some special functions, which are used to define
the solution of some fundamental equations like the (homogeneous) Weber
equation [7,8]. In particular, the Bessel function Jn(x) of order n is defined as
the solution of the Weber equation

x2y′′ + xy′ + (x2 − n2)y = 0 , n ∈ C . (8)

So that with n = 1 the solution of

x2y′′ + xy′ + (x2 − 1)y = 0

is
y (x) = c1J1 (x) + c2J2 (x) .

The Taylor series for Bessel function is

Jn(x) =
∞∑
k=0

(−1)k

k!Γ(n+ k + 1)

(
1

2
x

)2k+n

, x ∈ (−ε, ε)

with Γ(n) gamma function.
It can be easily seen that J2n(x), (n ∈ N) are even functions and J2n+1(x), (n ∈

N) are odd functions, while both have a slow decay to zero (Fig. 1).
Since Bessel functions are L2(R) they can be easily represented in terms

of Shannon wavelets, in particular, around x = 0 they nearly coincide with
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Figure 1. Bessel Functions J1(x) and J2(x) (dashed).
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Figure 2. Bessel Functions J2(x) and (dashed) the

Shannon scaling function −1
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the Shannon scaling and wavelet, so that the even J2n(x), (n ∈ N) can be well
approximated by the scaling Shannon functions (Fig. 2) while the odd Bessel
functions J2n+1(x), (n ∈) can be well approximated by the Shannon wavelets
(Fig. 3)

Although this approximation for both is restricted to a small interval, we
can assume that in the interval |ε| ≤ 1, where the Bessel functions substantially
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Figure 3. Bessel Functions J2(x) and (dashed) the

Shannon scaling function −1

2
ψ

(
x

3
√
2
+

1

5

)
− 0.08.

coincide with the Shannon wavelet families, Shannon scaling functions and
Shannon wavelets are solution of the Weber equation in this interval.

The Taylor expansion (in x = 0) for the scaling wavelet is

φ (x) =
∞∑
n=0

(−1)n
π2nx2n

(2n+ 1)!

while for the Shannon wavelet ψ(x) in x = 0, it is

ψ (x) =
∞∑
n=0

akx
k

ak+1 = 2ak + bk+1, k ≥ 0

bk =
[(

1 + (−1)k
)
(−1)[k/2] 2

(k−1)!k
+
(
1 + (−1)k+1

)
(−1)[(k+1)/2] 2k+1

k!

]
πk−1, k ≥ 1

a0 =
2
π
, b0 = 0,

where [k/2] is the integer quotient of k and 2.
Up to the second order, we have

ψ (x) ∼=
2

π
− 4

(
π − 1

π

)
x−

(
π2 + 8π − 8

π

)
x2

therefore we can assume that

J1(x) = −1

2
ψ

(
x

3
√
2
+

1

5

)
− 0.08 , x ∈

(
−π
2
,
π

2

)
J2(x) = −1

2
φ
( x

2.7

)
+

1

2
, x ∈ (−π, π)
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so that the solution of the Weber equation (3.1) is

−1

2
ψ

(
x

3
√
2
+

1

5

)
− 0.08 , x ∈

(
−π
2
,
π

2

)
.

4. Second order approximation by Shannon wavelets

In order to generalize the results of previous section, let us define the 2nd
order approximation of a function f (x) ∈ C2 in x0 by

f (x) ∼= f (x0) + au (x) + bv (x)

where u (x) , v (x) are chosen in a such a way that

u (x0) = 0 , v (x0) = 0

u′ (x0) ̸= 0 , u′′ (x0) = 0

v′ (x0) = 0 , v′′ (x0) = 0 .

(9)

It can be easily shown, by deriving f (x) up to the second order that

Lemma 4.1. Under the conditions (9), any f (x) ∈ C2 can be approximated
in x0 by

f (x) ∼= f (x0) +
f ′ (x0)

u′ (x0)
u (x) +

f ′′ (x0)

v′′ (x0)
v (x) . (10)

Theorem 4.1. Let f (x) be a given function, such that for a fixed n, k, in one
of the two points

x± = 2−n
(
k +

1

2
± 1

3

)
(11)

it is at least C2 and f ′ (x+) > 0, f ′ (x−) < 0. In an open interval centered at
x± , f (x) can be approximated up to the second order by

f (x) ∼= f (x±) +
21−3n/2

9
[f ′ (x±)ψ

n
k (x)]−

6

π2
f ′′ (x±) [φ (x− x±)− 1] . (12)

Proof: It follows from the previous lemma, in particular from Eqs. (2.4),
(2.5) and the series expansion of f(x).

�
However, in practical approximation problem usually what it is given

is f (x) and the point x0 where we want to have the approximation (12).
Therefore we can solve the equation

x0 = 2−n
(
k +

1

2
± 1

3

)
by fixing one of the two parameters n, k and computing the other. Indeed since
the two parameters must be integers for this reason it is convenient to take

k =

⌊
x0 −

(
1

2
± 1

3

)⌋
, n =

⌊
log2

k + 1
2
± 1

3

x0

⌋
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Figure 4. Approximation by Shannon scaling and
wavelet function according to (12) of (from top): x3 with
n = 0,−2 ≤ k ≤ 2 (left) and −2 ≤ n ≤ 2, k = −1; J1 (x):

n = 0,−2 ≤ k ≤ 2 (left) and n = 0,−2 ≤ k ≤ 2; e−x
2/8:

−2 ≤ n ≤ 2, k = −1, (left) and n = 4,−2 ≤ k ≤ 4 .

being ⌊x⌋ the floor of x, i.e. the greatest integer less than or equal to x.
Under some further hypotheses on the given function f(x) it is possible

to estimate the approximation error as follows.

Theorem 4.2. Let f(x) be a given bounded function, such that, for fixed n , k,
in one of the two points (11) it is at least C2 and f ′ (x+) > 0, f ′ (x−) < 0 with

f (x) < K , x ∈ I± = (x± − δ, x± + δ) . (13)
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In I± the approximation error of (4.4) is

ε± ≤ K +

∣∣∣∣∓21−3n/2

9
[f ′ (x±)ψ

n
k (x± ∓ δ)] +

6

π2
f ′′ (x±) [φ (δ)− 1]

∣∣∣∣ , x ∈ I± .

(14)

Proof: Let ε be the error, from (4.4) there follows

ε = max
x∈I±

∣∣∣∣f (x)− f (x±)−
21−3n/2

9
[f ′ (x±)ψ

n
k (x)] +

6

π2
f ′′ (x±) [φ (x− x±)− 1]

∣∣∣∣ .
It is∣∣∣∣f (x)− f (x±)−

21−3n/2

9
[f ′ (x±)ψ

n
k (x)] +

6

π2
f ′′ (x±) [φ (x− x±)− 1]

∣∣∣∣
≤ |f (x)− f (x±)|+

∣∣∣∣−21−3n/2

9
[f ′ (x±)ψ

n
k (x)] +

6

π2
f ′′ (x±) [φ (x− x±)− 1]

∣∣∣∣
and, by taking into account (4.5)

ε ≤ K +

∣∣∣∣−21−3n/2

9
[f ′ (x±)ψ

n
k (x)] +

6

π2
f ′′ (x±) [φ (x− x±)− 1]

∣∣∣∣ .
Thus we have to separate the computation in two different intervals.

In I+ it is f ′ (x+) > 0 so that we have

ε+ ≤ K +

∣∣∣∣−21−3n/2

9
[f ′ (x+)ψ

n
k (x)] +

6

π2
f ′′ (x+) [φ (x− x+)− 1]

∣∣∣∣
≤ K +

∣∣∣∣−21−3n/2

9

[
f ′ (x+) min

x∈I+
ψnk (x)

]
+

6

π2
f ′′ (x+)max

x∈I+
[φ (x− x+)− 1]

∣∣∣∣
Analogously, in I− where f ′ (x−) < 0 we have

ε− ≤ K +

∣∣∣∣21−3n/2

9

[
|f ′ (x−)|max

x∈I−
ψnk (x)

]∣∣∣∣+ ∣∣∣∣ 6π2
f ′′ (x−)max

x∈I−
[φ (x− x−)− 1]

∣∣∣∣
so that, according to the definitions (2.2) it is

min
x∈I+

ψnk (x) = ψnk (x+ − δ) , max
x∈I−

ψnk = ψnk (x− + δ)

max
x∈I±

[φ (x− x±)− 1] = φ (−δ)− 1 = φ (δ)− 1 .

Therefore we have

ε+ ≤ K +

∣∣∣∣−21−3n/2

9
[f ′ (x+)ψ

n
k (x+ − δ)] +

6

π2
f ′′ (x+) [φ (δ)− 1]

∣∣∣∣ , x ∈ I+

and

ε− ≤ K +

∣∣∣∣21−3n/2

9
|f ′ (x−)|ψnk (x− + δ)

∣∣∣∣+ ∣∣∣∣ 6π2
f ′′ (x−) [φ (δ)− 1]

∣∣∣∣ , x ∈ I−

from where, (4.6) follows.



Second order Shannon wavelet approximation of C2-functions 83

-1 1-2 2

1

HaL

HbL

-1 1-2 2

1

HaL

HbL

Figure 5. The function e−x
2/4 and its approximation

with n = 0, k = −1 with: (a) (4.4) and (b) (4.7).

�
If we compare (4.4) with the wavelet reconstruction (2.7) where N =

0, K = 0

f(x) ∼= α0 φ
0
0(x) + β0

0ψ
0
0(x) (15)

we notice (Fig. 5) that there are some advantages in using (4.4). In fact, up
to the second order approximation, (4.4) is better than (2.7) moreover (4.4)
can be used for a more general class of functions C2 while (2.7) is restricted
only to the L2 (R) -functions. In fact, only in this case the integrals (2.6) are
finite and the wavelet coefficients can be computed.

5. Conclusions

It has been shown that any C2-function can be easily approximated by
the basic scaling and Shannon function. The approximation error is computed
and a comparison with the wavelet reconstruction of L2(R)-functions is also
given. In the comparison it is shown that the proposed approximation is more
efficient.
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