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1. Introduction

Solution of integral equations is one of the main goals in various areas of applied science and engineering. The Fredholm
integral equation of the second kind is given as [1]
f ðxÞ ¼
Z b

a
Kðx; tÞf ðtÞdt þ gðxÞ; ð1Þ
where a and b are finite or infinite real numbers, Kðx; tÞ and gðxÞ are the known functions for Kðx; tÞ 2 L2ð½a; b� � ½a; b�Þ;
gðxÞ 2 L2½a; b�.

It is well-known that integral equations are usually difficult to solve analytically and exact solutions are very scarce.
Therefore, integral equations have been a subject of great interest of many researchers. The computational approach of solu-
tion of integral equations is an essential branch of the scientific inquiry. Indeed, in order to resolve integral equations, there
were developed many methods: such as collocation, Galerkin method, expansion method, product-integration method, Sinc-
collocation method, Taylor’s series method, etc.

There were many different orthonormal basis functions, such as the Fourier functions, the Chebyshev polynomials and
wavelet functions, had been developed and employed with collocation and the Galerkin methods to approximate solution
of partial differential equations as well as integral equations. All these functions have their advantages and disadvantages
in its application. Among these basis functions, wavelet basis is the most attractive for researchers due to its good approx-
imation properties and quick rate of convergence of the wavelet series [2,3].

In the present work, we employ PHW as basis functions [4,5] in the collocation method towards approximate solution of
the Fredholm type integral equations and make the comparison of our results with other methods and analytical solution on
two examples. Harmonic wavelets and its periodization are presented in Section 2. In Section 3, it is proved that PHW fulfill
properties of the multiresolution analysis. The method of solution is presented in Section 4. Section 5 is devoted to the
. All rights reserved.
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methods of the Haar and Legendre wavelets, which we employed to compare our results. The application of PHW as basis
functions towards the given integral equations is presented in Section 6.
2. Harmonic wavelets

Let the Fourier transform of a given function wðxÞ be defined as follows:
ŵðxÞ ¼
1=2p for 2p 6 x < 4p;
0 elsewhere:

�
ð2Þ
Then by calculating the inverse Fourier transform of ŵðxÞ, we obtain [6],
wðxÞ ¼ e4pix � e2pix

2pix
; ð3Þ
which is the fundamental function of the Littlewood–Paley theory [2]. It can be shown that this function is the starting point
for the construction of the multiresolution analysis of harmonic wavelets [5].

By changing the argument in (3) from x to 2jx� k, where j and k are the scaling and the translation parameters ðj; k 2 ZÞ,
the shape of the wavelet is not changed but its horizontal scale is compressed by the factor 2j, and its position is translated by
k units at the new scale (which is k=2j units at the original scale). The value of j determines the ‘‘level” of the wavelet. At level
j it occupies bandwidth from 2p 2j to 4p 2j which is j octaves higher up the frequency scale.

The Fourier transform of the scaling function of Eq. (3) is [5,6]
ûðxÞ ¼
1=2p for 0 6 x < 2p;
0 elsewhere;

�
ð4Þ
or in the space variable,
uðxÞ ¼ e2pix � 1
2pix

;

which is orthogonal to its own unit translates and the mother wavelet wðxÞ [5].
In general, harmonic wavelets can be referred to a physical family of wavelets because they were proposed for the anal-

ysis of physical problems [7,8]. In spite of their slow decay in the space variable ðwx�1Þ they have a perfect localization in the
frequency domain [5,6].

In their simplest form, orthogonal harmonic wavelets provide a complete set of complex exponential functions whose
spectrum is confined to adjacent (non-overlapping) bands of frequency. Their real part is an even function which is identical
to the Shannon wavelet [9]. Their imaginary part is akin but an odd function. Their equal spacing along the time axis is twice
that of the corresponding set of the so-called Shannon function. Harmonic wavelets have been found to be particularly suit-
able for vibration and acoustic analysis because their harmonic structure is similar to naturally occurring signal structures
and therefore they correlate well with experimental signals [8]. They can also be computed by a numerically efficient algo-
rithm based on the fast Fourier transform (FFT) [5,6,8].

In our paper we propose the PHW as basis functions for the approximate solution of the Fredholm integral equations de-
fined on a finite interval ½a; b�. Therefore, in the following we will consider a periodic expansion of harmonic wavelets. Peri-
odization is a standard technique in the Fourier analysis. Periodic scaling functions can be constructed by the standard
procedure [2,5]
uperðxÞ ¼
X1

k¼�1
uðx� kÞ; k 2 Z: ð5Þ
Notice, that periodization is not defined for every function on R, but obviously well defined, when u 2 L1ðR;CÞ. By substi-
tuting the Fourier transform of uðx� kÞ into (5), we obtain
uperðxÞ ¼
X1

k¼�1

Z 1

�1
ûðxÞe�ixke�ixxdx
and from the equality [5]
X1
k¼�1

eiðx1�x2Þk ¼ 2p
X1

m¼�1
dðx2 �x1 � 2pmÞ
it follows that
X1
k¼�1

e�ixk ¼ 2p
X1

m¼�1
dðx� 2pmÞ: ð6Þ
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Since ûðxÞ equals zero everywhere except the band 0 6 x < 2p, the only the term with m ¼ 0 needs to be retained in (6),
therefore
uperðxÞ ¼
Z 1

�1
ûðxÞeixx2pidðxÞdx;
which with (4) gives
uperðxÞ ¼ 1:
The same argument applies when uðx� kÞ in (5) is replaced by its complex conjugate.
For the general wavelet function wð2jx� kÞ, its periodic (circular) equivalent is
wperð2jx� kÞ ¼
X1

m¼�1
wð2jðx�mÞ � kÞ ¼

X1
m¼�1

2�j
Z 1

�1
e�ixk=2j

e�ixmŵðx=2jÞeixx dx; ð7Þ
where j ¼ 0; . . . ;N and k ¼ 0; . . . ;2j � 1. The summation over m is given by (6). Since ŵðx=2jÞ ¼ 1=2p for 2p2j
6 x < 2p2jþ1

and zero elsewhere. The only nonzero values of m that have to be considered in (6) are m ¼ 2j to 2jþ1 � 1. The substitution of
Eq. (6) into (7) yields us the following function:
wper
j;k ð2

jx� kÞ ¼ 2�j
X2jþ1�1

m¼2j

e
2pim x� k

2j

� �
: ð8Þ
Thus, we have received a function of periodic harmonic wavelets, which are defined on the unit interval [0;1] as shown in
Fig. 1 for several values of translation and dilation parameters, and extended by a unit periodization from �1 to 1.

3. Multiresolution analysis of harmonic wavelets

The idea of the decomposition of a function into a sum of approximate and detailed terms by using orthogonal and bior-
thogonal wavelets is realized in multiresolution analysis [2,3].

According to the stated above and under the assumption that
wper
j;k ðxÞ ¼

X
r2Z

wj;kðxþ rÞ; uper
j;k ðxÞ ¼

X
r2Z

uj;kðxþ rÞ ð9Þ
are bounded functions. Let Vj; j 2 Z be a sequence of subspaces of functions in L2ðR;CÞ. Then the finite set of spaces Vj; j 2 Z

with periodic harmonic wavelets as basis functions is called a multiresolution analysis (MRA) if the subsequent conditions
hold:

(i) Nested. Vj � Vjþ1;
(ii) for j ¼ 0;1;2; . . . the system uper

j;k with k ¼ 0;1; . . . ;2j � 1 is an orthonormal basis in Vj;
(iii) for j ¼ 0;1;2; . . . the system f1;wper

s;k g for s ¼ 0;1; . . . ; j� 1 and k ¼ 0;1; . . . ;2s�1 is an orthonormal basis in Vj;
(iv)

S1
j¼0Vj is the dense in L2½0; 1�, so the system wper

j;k is a complete orthonormal system in L2½0; 1�.

Then we can formulate the following theorem.

Theorem 1. Periodic harmonic wavelets fulfill axioms (i)–(iv) of the multiresolution analysis.
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Fig. 1. Real (solid line) and imaginary (dashed line) parts of periodic harmonic wavelets for w0
0ðxÞ and w1

1ðxÞ.
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Proof. From now on, we assume that u;w 2 L1ðR;CÞ. Notice that for s < j we have us;k ¼
P

r2Zaruj;r and ws;k ¼
P

r2Zbruj;r .
From (9) we infer that
X

r2Z
jar j ¼

X
r2Z
jhus;k;uj;rij 6 2s=2þj=2

X
r2Z

Z 1

�1
juð2sx� kÞj � juð2jx� rÞjdx ¼ 2s=2þj=2

Z 1

�1
juð2sx� kÞj �uperð2jxÞdx

6 C 2s=2þj=2
Z 1

�1
juð2sx� kÞjdx <1
and the same argument gives
P

r2Zjbr j <1. This implies that uper
s;k 2 Vj and wper

s;k 2 Vj. This gives the proof of (i). Thus, we have
to check the orthogonality in (ii)–(iv). For j P 0 we have
Z 1

0
wper

j;k ðtÞ�w
per
j0 ;k0
ðtÞdt ¼

X
r;s2Z

Z 1

0
wj;kðt þ sÞ�wj0 ;k0 ðt þ rÞdt ¼

X
s2Z

Z 1

�1
wj;kðt þ sÞ�wj0 ;k0 ðtÞdt ¼

X
s2Z

Z 1

�1
wj;k�2jsðtÞ�wj0 ;k0 ðtÞdt: ð10Þ
This shows that wper
j;k and wper

j0 ;k0
are orthogonal unless j ¼ j0 and k ¼ k� 2js for s 2 Z. Therefore, the system, which appears in

item (iv) of the properties of the MRA is orthonormal. If we repeat calculations (10) with j ¼ j0 and u instead of w, we obtain
that the item (ii) holds true. Thus, dimVj ¼ 2j.

In order to show the proof of (iv), let us consider the orthogonal projection Pj from L2ð½0; 1Þ;CÞ onto Vj. From (ii) we infer
that
Pjf ¼
X2j�1

k¼0

hf ;uper
j;k iu

per
j;k : ð11Þ
Let us fix an exponential e2pirt and compute the rth Fourier coefficient of Pjðe2pirtÞ. From (11) and the consequences of the
Parseval’s identity it follows that [3]
Pjðe2pirtÞ ¼
X2j�1

k¼0

he2pirt;uper
j;k ihu

per
j;k ; e

2pirti ¼
X2j�1

k¼0

jhuper
j;k ; e

2pirtij2 ¼
X2j�1

k¼0

jûper
j;k ðrÞj

2 ¼ 2pjûper
j;k ðrÞj

2
: ð12Þ
We may conclude [3] that Pjðe2pirtÞ ! 1 as j!1. Since kPjk ¼ 1 (because Pj is an orthogonal projection) and fe2pisgs2Z is an
orthonormal system in L2½0; 1Þ, we infer that Pjðe2pisÞ tends in L2½0; 1Þ to e2pirt as j!1. This implies that for every trigono-
metric polynomial f : Pjðf Þ ! f in L2ð½0; 1Þ;CÞ. Since (the Weirerstrass theorem) trigonometric polynomials are dense in
L2ð½0; 1Þ;CÞ, we conclude that

S1
j¼0Vj is the dense in L2ð½0; 1Þ;CÞ. h
4. Wavelet collocation method towards solution of integral equations

According to the previous section, PHW form a MRA and as it was shown in [12], a function f ðxÞ, which is defined on [0;1]
or a periodic function with a unit period can be represented as the sum of a convergent series
f ðxÞ ¼ a0 þ
X1
j¼0

X1
k¼�1
faj;kwj;kðxÞ þ ~aj;k

�wj;kðxÞg;
where a0; aj;k and ~ak
j 2 C. In particular, the projection onto the given subspace for j ¼ 0; . . . ;N and k ¼ 0; . . . ;2j � 1, is [5]
Pjf ðxÞ ’ a0 þ
XN

j¼0

X2j�1

k¼0

faj;kwj;kðxÞ þ ~aj;k
�wj;kðxÞg: ð13Þ
The substitution of (13) into (1) for the lowest level of approximation, i.e. N ¼ 0 and k ¼ 0 yields
a0 þ a0;0w0;0ðxÞ þ ~a0;0
�w0;0ðxÞ ¼

Z b

a
Kðx; tÞfa0 þ a0;0w0;0ðtÞ þ ~a0;0

�w0;0ðtÞgdt þ gðxÞ: ð14Þ
Let us solve Eq. (14) by using the collocation method. The collocation points are defined as follows: xi ¼ i
M, where M is the

number of unknown wavelet coefficients (and also collocation points) aj;k including the scaling coefficient a0. In the case of
N ¼ 0, we need to choose two collocation points x1; x2 2 ½a; b� and recall the equality ~a0;0 ¼ a0;0 [6]
a0 þ a0;0w0;0ðx1Þ þ ~a0;0
�w0;0ðx1Þ ¼

R b
a Kðx1; tÞfa0 þ a0;0w0;0ðtÞ þ ~a0;0

�w0;0ðtÞgdt þ gðxÞ;

a0 þ a0;0w0;0ðx2Þ þ ~a0;0
�w0;0ðx2Þ ¼

R b
a Kðx2; tÞfa0 þ a0;0w0;0ðtÞ þ ~a0;0

�w0;0ðtÞgdt þ gðxÞ;
~a0;0 ¼ a0;0:

8>><
>>: ð15Þ
Thus, for the lowest level of approximation we have reduced integral equation (1) to a system of linear equations. We skip
the detailed analysis of this system, and only notice that it could be solved for example by the Cramer method.
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To illustrate the efficiency of the application of PHW as basis functions in collocation method, we found solution of two
equations of type (1).

5. The Haar and Legendre wavelet methods

In order to demonstrate the efficiency of the proposed algorithm, we solved two examples and compared its solution with
the Haar wavelet method [11] and the method of the Legendre polynomials [10]. But first let us show a brief idea of each of
these methods.

5.1. The Haar wavelet method

The Haar wavelet family is defined for t 2 ½0; 1� as follows:
hi ¼
1; for t 2 k

m ; kþ0:5
m

� �
;

0; elsewhere;
�1; for t 2 kþ0:5

m ; kþ1
m

� �
;

8><
>: ð16Þ
where the integers m ¼ 2j; j ¼ 0;1; . . . ;N indicate the level of the wavelet and k ¼ 0;1; . . . ;m� 1 is the translation parame-
ter. The solution of the unknown function f ðtÞ in (1) is searched in the form
f ðtÞ ¼
X2M

i¼1

aihiðtÞ; ð17Þ
where ai are the unknown wavelet coefficients and M ¼ 2N is the number of grid points. The substitution of (17) into Eq. (1)
yields us the following expression:
X2M

i¼1

aihiðxÞ ¼
X2M

i¼1

aiGiðxÞ þ gðxÞ;
where GiðxÞ ¼
R 1

0 Kðx; tÞhiðtÞdt.
The application of collocation method towards the obtained expression gives us a system of linear equations with the

unknown coefficients ai
X2M

i¼1

ai½hiðxlÞ � GiðxlÞ� ¼ gðxlÞ; l ¼ 1;2; . . . ;2M:
Thus, the Haar wavelet method reduces the Fredholm integral equation towards a system of linear equations, where the
unknown function f ðtÞ represents a numerical superposition of the product of wavelet coefficients ai and hiðtÞ.

5.2. Legendre wavelet method

Compactly supported wavelets derived from the Legendre polynomials are termed spherical harmonic or Legendre wave-
lets. These wavelets wn

mðxÞ ¼ wðk; n̂;m; xÞ have four arguments k ¼ 2;3; . . . ; n̂ ¼ 2n� 1; n ¼ 1;2;3; . . . ;2k�1, m is the order of
the polynomial, which is defined on [0;1) as follows:
wn
mðxÞ ¼

2k=2 mþ 1
2

� �1=2Lmð2kx� n̂Þ; n̂�1
2k 6 x 6 n̂þ1

2k ;

0; elsewhere;

(
ð18Þ
where LmðxÞ are the Legendre polynomials of order m.
The Legendre wavelets serve as basis functions in [10] and a function f ðxÞ 2 L2½0; 1� can be expanded as
f ðxÞ ¼
X1
n¼1

X1
m¼1

cn
mwn

mðxÞ:
According to [10], integral equation (1) can be reduced to a system of nonlinear equations.

6. Examples

6.1. Example 1

Consider the Fredholm type nonlinear integral equation of the second kind
f ðxÞ ¼ x
Z 1

0
t
ffiffiffiffiffiffiffiffi
f ðtÞ

q
dt þ 2� x

3
ð2

ffiffiffi
2
p
� 1Þ � x2; ð19Þ
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which has the analytical solution f ðxÞ ¼ 2� x2.
The projection of the solution on the space with harmonic wavelets as basis functions at the lowest level N ¼ 0 with col-

location points x1 ¼ 0:25 and x2 ¼ 0:5 give us the values of the unknown wavelet coefficients, i.e. a0 ¼ 5=3 and a0
0 ¼ 1=p. The

corresponding function of such projection (13) is
Table 1
Compar

N

0
1
2

3
6

P0f xð Þ ¼ 5
3
þ 1

p sin 2px� 1
p cos 2px

	 

:

The corresponding plot of such projection is presented in Fig. 2 (left). We can see that the modulus of the approximation
error (20) is quite high and varies up to ’ 0:41.

On the scale N ¼ 1, the projection of the solution on the first level of approximation looks as shown in Fig. 2 (right). The
modulus of the absolute error still remains high’ 0:37, but on the qualitative level we see that the plot of the approximating
function better describes the unknown function on the interval (0;1). The results of numerical computations for N ¼ 6 are
presented in Table 1 and compared with the results, obtained by the Haar wavelet method.

To estimate the exactness of the achieved results, we considered the maximum of the modulus (at a certain level of
approximation) of the difference between the obtained f ðxÞ and exact values fexðxÞ of the unknown function
e ¼ max
0:16x60:9

ðjf ðxÞ � fexðxÞjÞ: ð20Þ
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Fig. 2. Exact solution (dashed line) and approximate periodic wavelet solution (solid line) at scales N ¼ 0 (left) and N ¼ 1 (right).
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Fig. 3. Exact solution (dashed line) and approximate periodic wavelet solution (solid line) at scale N ¼ 3.
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Note, that we cut out 1/10 from the boundary intervals. The explanation of such operation will be given later. The numerical
results are compared with the wavelet solution obtained by the Haar wavelet method [11].

One can see that for the low values of N, periodic harmonic wavelets give quite poor approximation of f ðtÞ. The error for
greater N’s is getting lower. Fig. 3 represents approximation of the function f ðtÞ when N ¼ 3.

6.2. Example 2

As for the second example we will consider the following integral equation:
Table 2
Error es

N

0
1
2
6

f ðxÞ ¼ ex � ð1þ 2e3xÞ
9

þ
Z 1

0
xt½f ðtÞ�3dt ð21Þ
with the analytical solution f ðxÞ ¼ ex and compare our results with the method, where the Legendre polynomials were used
as basis functions [10]. Similar computations that were made in the previous subsection give us the following results, which
are presented in Fig. 4 and Table 2.

We can see that for the low levels of approximation by PHW, the absolute value of the error is also quite high. In the paper
[10], where the Legendre wavelets were used, the absolute error is about 10�4. The result of such approach for N ¼ 3 is pre-
sented in Fig. 5.
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Fig. 4. Exact solution (dashed line) and approximate periodic wavelet solution (solid line) at scales N ¼ 0 (left) and N ¼ 1 (right).
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Fig. 5. Exact solution (dashed line) and approximate periodic wavelet solution (solid line) at scale N ¼ 3.
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7. Conclusion

In this paper, we have studied a method for solving the Fredholm type integral equations by using PHW as basis functions
in the collocation method. The problem was reduced to a system of linear equations. In order to demonstrate the applica-
bility of this method, two examples were solved and its results were compared with the Haar wavelet method and the meth-
od based on the Legendre polynomials. As a result of such comparison, we see two main disadvantages. The first, and the
most visible, is that PHW do not approximate the unknown function nearby bounds. PHW approximate a function so, that
this function on the unit interval represents one period of the resulting approximation. In the case if f ðtÞ represents a peri-
odic function, PHW approximate without such jumps [4]. The second disadvantage is that the absolute error at low levels of
projection of solution on the finite space with the corresponding basis functions is quite high. In order to get a good approx-
imation, which is comparable with (for example) the Haar wavelet method, we need to go on the higher scales.

The advantages of application of PHW are:

� The resulting function of every approximation is defined analytically, which differs it from the Haar approximation, which
is numerical.

� The higher orders of scaling parameter j give a good analytical approximation.

In conclusion, we would like to emphasize that our approach does not claim to be a universal, but extends our knowledge
on the research of integral equations.

Unfortunately, at the moment wavelet-analysis does not give any clear answer on the question ‘‘Why we have chosen
this, but not another wavelet?” [13]. Of course, there exist many traditional methods of solution of differential and integral
equations. It is known that every of such methods has its own disadvantages, which can be equilibrated by using other meth-
ods. In our opinion, wavelet method is one of such methods, which is getting more popular in many applications of engineer-
ing and applied mathematics.
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