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Summary

In the context of wave propagation through a three-dimensional acoustic medium, we develop an analytical
approach to study high-frequency diffraction by multiple reflections from curved surfaces of arbitrary shape.
Following a previous paper (of one of us) devoted to two-dimensional problems, we combine some ideas of
Kirchhoff's physical diffraction theory with the use of (multidimensional) asymptotic estimates for the arising
diffraction integrals. Some concrete examples of single and double reflection are treated. The explicit formulas
obtained by our approach are compared with known results from classical geometrical diffraction (or Ray-)
theory, where this is applicable, and their precision is tested by a direct numerical solution of the corresponding
diffraction integrals.

PACS no. 43.20.î, 43,55.-n

L. Introduction

Diffraction theory in acoustics gives a bright example of
combination between different approaches, namely, those
based on heuristic methods with those constructed through
strictly formal (mathematical) procedures. Many impor-
tant and interesting solutions were originated from heuris-
tic ideas - like Huygens-Fresnel principle, Fermat princi-
ple, etc. - giving even rise to well-known classical the-
ories. In this context, the most impressive one is in fact
the Kirchhoff's physical diffraction theory, which is based
upon a clear "light and shadow" concept for diffracted
wave fields. On the other hand, strict mathematical meth-
ods did also yield significant progresses in the develop-
ment of coffect solutions, different sometimes from those
predicted by the common intuition.

The background of diffraction theory was laid by the
founders of the modern mathematical physics: a good sur-
vey can be found in lI, 21. Some interesting analytical
representations were developed for diffraction by obsta-
cles with smooth convex boundaries (as well as by thin
screens) in the high-frequency range, which is irnportant
for many practical applications, including Room Acous-
tics. HoweveE asymptotic results like these show poor
precision in border domains, such as semi-shadow, caus-
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tics, etc. Moreover, they generally involve only the leading
asymptotic term of the amplitude for the diffracted wave.

Recently, the rapid progress in computer science led
to an absolutely new approach based on direct numerical
treatments of the diffraction problems. When implemented
on appropriate computers, this approach allows one to ob-
tain numerical results with any desirable precision. How-
ever, in the high-frequency range for three-dimensional
problems, such an approach leads, as a rule, to huge al-
gebraic systems which cannot be treated in real time even
by the use of modern computers. In fact, to obtain reliable
results by any grid numerical method, one has to take at
least 10 nodes per wavelength; if one takes the frequency
band f = 2kHz, whose wavelength in air is 17 cm, then in
a room of average size lJ m one must apply at least 1000
nodes along the room length. In a three-dimensional prob-
lem, this will result in 108 - 10e nodes in the room, a too
large dimension even for powerful super computers.

Thus, having realized that a direct numerical simulation
cannot provide real-time computations, many researchers
proposed various combinations of numerical and heuris-
tic approaches. This gave rise to a number of theories, but
only two of them showed good practical properties when
implemented on computers. These are those based on Vir-
tual Image and Ray Tracing methods 13,4,51. Leaving to
such references the description of the former, we turn our
attention to the latter one which is rather involved in this
paper.
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The Ray (Tracing) method in acoustics was proposed on
the basis of a certain physical analogy with the propaga-
tion of light rays; the corresponding theory is also referred
to as "geometrical diffraction theory". In the case of multi-
ple reflection, the propagation is traced sequentially from
one reflection to another, each one obeying to the specular
(minor) reflection geometric law. Generally, Ray method
gives answer to the two basic questions: (i) what is the tra-
jectory of the acoustic ray in the multiple reflection pro-
cess? (the same of the light ray) (ii) what is the amplitude
at the final receiving point? In the case where all reflectors
are plane and acoustically rigid, such an amplitude is as-
sumed to be the same as in the case of no reflection, when
the distance between source and receiver is taken as the
full path of ray's travel. Really, in the sense of mathemat-
ical justification, this simple idea has been proved strictly
only for the case of single reflection from a plane surface,
giving such a result through the leading high-frequency
asymptotic term. Nobody proved this statement neither for
multiple reflections, even when all reflectors are plane, nor
in the case where the ray may change - after some reflec-
tion - the plane of its propagation. Moreover, even assum-
ing the ray geometrical scheme for an arbitrary geometry,
nobody knows what is the amplitude of the multiply re-
flected ray if at least one reflecting surface is curved. Fol-
lowing the basic idea of the Ray method 16,71, the am-
plitude of the wave ray arriving at the receiver is defined
by the geometry of the beam's cone-tube surrounding the
ray's trajectory, when the ray is irradiated from the source.
Obviously, after each reflection, the cone modifies its ge-
ometry, and this change depends upon the geometry of the
current reflecting surface, as well as upon that ofprevious
and next ones.

Giving a short review on Ray reflection from curved
surfaces, let us note that, for a smooth convex reflecting
shape, it is strictly derived a high-frequency asymptotic
result in the case of single reflection [7]. This result con-
tains the angle of incidence, the distances from the source
and receiver to the reflecting point, as well as the two prin-
cipal curvatures of the surface at the reflecting point. The
respective formula, which is based indeed on the change
of geometry of the beam's cone, gives an explicit expres-
sion for the reflected amplitude at some receiving point x,
as follows [7]:

p,oy(x) - exp ltclt + ro)] ltr + rof + 2LL0(L + Lo)

k1 sinz p t k2sinz u t  - l / 2

+4L2LtK2l  , '  (1)
cos /

where k = @/c (- *) is the wave number, Ls and L
are the distances of the source and receiver, respectively,
from the reflecting point, k1 and k2 the principal curva-
tures at the reflecting point, K = ktkz the Gaussian cur-
vature. A local Cartesian coordinate system is chosen on
the surface with its center at the reflecting point, two coor-
dinate axes aTong ky and k2 and the third axis along the
outer normal. The unit vector along the incident ray is

{-cosa, -cosp, -cosy}, the unit vector along the re-
f l ec ted ray i s  { - cos0 ,  - cos / ,  cosy } .

Such a formula cannot be extended neither to concave
surfaces nor to the case of multiple reflections. We thus
can conclude that. even for the double reflection from arbi-
trary smooth surfaces, there are no results of general kind,
so that the most interesting cases, particularly for Room
Acoustics applications, need a special investigation.

Other important approaches to high-frequency diffrac-
tion problems can be found in [8, 9, 10, 11,12,13,14,l5l.
Note that we don't pay attention to papers in which non-
plane surfaces are approximated by a number of plane
facets, since the correctness of such a simulation is very
doubtful: indeed, asjust noticed, even for single reflection
the reflected amplitude contains the principal curvatures at
the reflecting point; hence, putting these curvatures equal
to zero cannot produce correct results. The same for pa-
pers which propose direct or quasi-direct numerical simu-
lations, even if the suggested algorithms can significantly
reduce the size of the resulting algebraic system. This is
because the effìciency of such procedures fails in any case
with the frequency increasing, and thus their results cannot
be useful for the problems here considered.

In order to set up a strict general theory for (high-
frequency) multiple reflections, one of us developed a
new approach which combines certain ideas of Kirch-
hoff's physical diffraction theory with the use of multidi-
mensional asymptotic estimates for some arising dffiac-
tion integrals, in the case of two-dimensional problems

[16]. The main goal of the present work is to develop an
analogous approach for three-dimensional (3-d) problems,
where much more diffìculties are involved.

At the end of this introduction, it should be noted that,
aiming to improve its precision, some authors construct a
conection of the Ray theory by adding to the ray-reflected
amplitude also the contribution of the wave diffracted on
the boundary (edges) of the surface [17]. The question is
outside the goals of this paper, but the authors plan to de-
vote their next efforts to studv such a verv interestins mat-
ter.

2. The Basics of the Proposed Method

As just stated, in this paper we aim to propose an analytical
approach which leads to clear explicit formulas for high-
frequency 3-d diffraction by obstacles with multiple reflec-
tions. This approach, arising in the ambit of Kirchhoff's
physical diffraction theory, will yield the leading asymp-
totic term with the frequency increasing. Another goal is
to test the precision of such analytical representations by a
direct numerical treatment of the corresponding diffraction
integrals.

So, let us start from the foundations of the quoted Kirch-
hoff theory. This is interpreted in different ways by dif-
ferent authors; thus, we give a certain view that may be
different from other interpretations. The theory is based
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on the following hypotheses which are valid for high fre-
quencies, acoustically hard surfaces, and smooth convex
obstacles (no repeated reflections), see Figure 1:
1. If the obstacle is convex, then its full boundary surface

S consists of two different parts S+ and S- called re-
spectively as "light" and "shadow" zones. The formal
definition is as follows: if any finite-length line segment
connecting source xs and arbitrary point y e S does not
intersect any other part of S, then this point belongs to
,S+. Otherwise, it belongs to S-.

2. Full acoustic pressure in the shadow zone S- is trivial:

P(Y) = 0,  Y e S- .
3. The diffraction in a small vicinity of any point in the

light zone S+ happens so as it would happen if the in-
cident wave would be plane.

4. The diffraction in a small vicinity of any point y in the
light zone S+ happens so as it would happen in the
problem of reflection of a plane incident wave from a
semi-space whose boundary plane is tangential to S at
point y.

As is known [5], these hypotheses imply an explicit defi-
nition of the full pressure p(y) in the light zone: iî we de-
note by p''"(y) the wave incident on surface S from some
source, it holds

p ( y ) = 2 p ' " ( y ) ,  y € ^ 9 * .  ( 2 )

It can be proved as a mathematical theorem that this Kirch-
hoff's prediction coincides with the leading asymptotic
term at any fixed point y € S+, as frequency goes to in-
finity [18]. We are assuming a time dependence of har-
monic type, omitting henceforth the corresponding factor
exp(-iarl), a = kc where k and c are wave number and
wave speed, respectively.

Now, we can apply the exact form of the Kirchhoff-
Helmholtz integral to get the scattered wave field at any
receiving point [5]:

| '  I  do (v ,  x )  òp t v t  -  .  . lp ' " ( x \  =  |  l p ( y )# -  
" i " ' o ( y , x ) l  ds

Js L Ofly Ony J

= | pryrP9.! os (3)
J r , " " '  ò n ,
|  ^  , , . , , d ( D ( Y , x )  , -= | zp '-\!)-----;- oJ,
Js* Òn n

^ikly-xl
O(Y,-r) = ;i-'  4n ly  -  x l

where we have used the boundary condition for acousti-
cally hard surface: òp / ònl5 = 0. In equation (3), nn is the
outer unit normal to surface S at point y € ^9 (see Fig-
ure 1), and O(y, x) is the (3-d) Green's function.

Now, let us assume a number of sequential multiple re-
flections from (smooth) curved surfaces Sr, 'S2,... Sni
see Figure 2. Following the Kirchhoff-Helmholtz integral
representation, with the above boundary condition, we can
write the scattered field at the final receiving point as

Figure 1. The sketch for Kirchhoff's physical diffraction theory.

Figure 2. Sequential multiple reflection from an array of curved
reflectors.

However, by analogy to what is done in (3), the value p(y),
y € ^S;, which gives the acoustic pressure on the N-th
reflecting surface, is twice the value at the same points y
as it would be if the surface S| would be absent, namely,
twice the value of a wave field "incident" onto the surface
S| for reflection from the (points of) surface S|_,:

|  ' .  dO(yN ,  x )  ,  ̂
P"(x) = | 2P(Y'' )---- d.SN. (5)

J.s l .  onN

Henceforth, y' (n = 1, . . . , iy') denotes the points on ,S,.
By the same analogy, one can evaluate that

p(yN )  = l  r r . * - \ ao ( { t - ' 'Y " )  dsN- r ,  (6 )
J slu-, ott N -t

and so on. As a consequence, by collecting all integrals
together, we obtain

r  |  , , " , , , ò Q ( v t , v 2 )p"(x) = 2Nl ... I p \y ) -=-----! 1;.a)
Js i  Js i  o t t t

dé(yN, x) ,  ̂. . .  :  
' d , _ t l . . . d . s N .

onN
o"(*) = I"inrrtPfllds* (4)
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where it holds

otkrsl
i n ? ,  l ,  I  r -  rp ' . . - l y -  )  I  _ ,  r \ t  =  y '  _  xo ,  /01  =  l r0 r  I

rot

(and we changed n, info tr1, . . . , nN according to the in-
volved surface).

By recalling the explicit expression in (3) for Green's
function, the following high-frequency asymptotic repre-
sentation can be deduced:

òQ(yn , yn+r )-# 
-  iko(  vn,  yn*r  )  cos (1. ,* ,na,)

òn"

ik ekrilr+l
= -- - cos(F, ,*rn-nr), (8)

47t f1.n1-1

n + l
f n . n + l  =  y ' -  y '  

' ,  
f  n . n + l  =  l f n . n + t l ,

n  =  I , .  . . ,  N  ( / t * t  =  x ,  Fw .u+ t  =  Fw) ;

thus, by combining equations (7a,b) and (8), we easily get

rryI cos (a.,*,"n r )
(9a)

. .  dSiv, k --+ a,

where

f (v.)

g  =  g ( y l  , . . . , y N )  =  i ' 0 1  *  L r n , , * ,
n=I

=  l y 1  -  x o l  * . . . +  l y N  -  x l

(eb)

gives the full path covered along the multiple reflections.
Further simplification for equation (7a) can be found

by applying a high-frequency estimate to the (multiple)
dffiaction integral in equation (9a,b). In this connection,
the principal contribution to the leading asymptotic term
is given by the statíonary point according to the following
representation holding for any M-îold integral taken over
some domain O t191,

f nf {n)"tur'' o, -

Figure 3. Single reflection from a plane rectangular screen.

sign gi, is the sign of Hessian, i.e. the difference between
the number of its positive and negative eigenvalues, and
frnally det {j, is its determinant (ginj*) : gi).
In the forthcoming examples, the geometrical points on the
reflecting surfaces corresponding to the values yi, . , yh,
will also be referred to as stationary poínts.
Thus, the novelty of our approach for 3-d problems con-
sists in the derivation of the quoted diffraction integral
along with the method of solving it (asymptotically) given
by formula (10).

3. Examples on Single Reflection from Flat
and Spherical Surfaces

3.1. Let us first consider the classical high-frequency
diffraction by a plane rectangular (rigid) screen ,S of size
a x b, only to show the details of the mathematical tech-
nique proposed in this paper, which will be then extended
to more complex geometries.

The geometry of the problem is shown in Figure 3. If
xo = (€0, /to, $) is the source point and x = (€,7t, o
the receiver point, the leading asymptotic term can be con-
structed by the geometrical diffraction (or Ray-)theory,
which in this simple example amounts to introduce the vir-
tual source fto = (€0, qo, -€ù symmetric to the real one xs
with respect to the reflection plane lz = 0, and to consider
the full path of the ray from Íe to x, It is interesting to
verify whether this result can also be obtained by using
equations (9a,b) and (10) in the ambit of our approach.

In this case, it holds iy' = 1 (,Sr = ,S), /r = y =

Ot,yz,O),  n1 = (0,0, lJ  and cos (Fr ,nu )  = - ( / rn.

Hence, equation (9a,b) for the amplitude of the reflected
wave becomes

eikg(yt,yt) dyt dyz

(7b)

p ' " ( x )  -  ( - * ) ' [ ,

(k --+ m),

d y  =  d y r  . . . d y v .

n = 1

d^s

(+)''' "*n f'ur1r.) 
+ f, signg'i,1v.7]

I" l
J S ;

. eiks

r01

laet gin1y.; l1/2
Y  =  ( Y 1 , . . . , Y u ) ,

Here y* denotes the so-called stationary point,
(M-valued) point at which the phase function
vanishing gradient,

d e ( y - ) : . . . = d q ( y . ) _ 6 ,

òyt òyu

Si, is the Hessian matrix of function g :

n ' . ' . . . = {  
a ' g  

}  m . u = 1 . . . . . M .Òyy 
\òy,òy,  J  

,  ' . . ,  r "

2r Js wz(yt,  yùEjt ,  yz)
k  -+  q ,  (13a)

where we put

ror = [(yr - €ù2 + (yz - ryùz * G]"'= q(yt,yù,

ru = l(yt - 02 + (yz - ,ù2 +(zlt/'= v(yr, yr), (13b)

g = U / + ( p .

(10)

namely, a
g(y) has

( 1 1 )

p"(x) - -'#l

1 1 8
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It is evident that condition
Ieads to the systems

(11) for the stationary point

- 0

- 0

1
L

À 2 o

- aoy;
v=v'

(18b)

(1e)

1
- L o

It follows from the first system above that differences (y1 -

O and (y2-4) have opposite signs with respect to (y1 -60)

and (y2 - 4s); therefore, the last system in (14) yields

0 i - t ) 0 í - t t )
L3

O i - t ù O í - 4 0 )
L3o

Its determinant, after some transformations, turns out to
hold

- {

- {

( y t - € ) ' E ' = ( y t - € ù 2 v 2

0 z - r ù 2 E 2 = ( y z - q ù 2 v 2

$ - 9 2 ( 3 = ( Y r - € ù 2 ( z

0 z - r ù 2 ( 3 = ( y z - 4 ù 2 ( 2

| ("Yr - q)to = (50 - /r)6

| (yz - 4\h = Qto - yù(

p,"(x) _ (#) (T)

(15)

whence the stationary point y* = (yí, yí,0) is easily de-
duced as

In order to calculate the sign of the Hessian, we use the
Sylvester criterium l20l: any symmetric matrix, whose
all principal determinants are positive, is positive-definite.
Our Hessian has only two principal determinants: the full
determinant itself, equatin (19), and the element ò2 S /òy?
given in equation (18b). The former is evidently posi-
tive; the latter is positive too since L > lyt - (l and
Lo > lyt - 6ol. If the Hessian is positive-definite, then
all its (two) eigenvalues are positive, hence signgf = l, in
equation (10).

Now, let us calculate the integral in (13a,b) by means
of equation (10) with M = 2, Cl = S (the rectangle) and
f :- I / (W2 ò. By collecting all results obtained, we get

4h + (40

Q4)

(16)

Of course, further results are valid only if this point be-
longs to the reflection arca, i.e., if y* e S. Note that, as
expected, y* coincides with the point of mirror reflection
between xo and rú.

Let us introduce the distances L = t{ly- = VOi,yí),
Lo = ely. = EOi,yí) and the incident angley = it -

@ol nù. By the systems in (14), we get 4f' = 62ff;,and
thus

(11)

which implies the well-known law of equality between re-
flection and incident angles (actually, a consequence ofthe
stationarity condition); see Figure 3.

The Hessian is calculated directly as

Ò'g
- )
ovl

ò"9
,  ( 18a )

òvìvz

(20)

Such a formula expresses just what Ray theory implies,
and we aimed to verify; cf. also with equation (1) on
putting kt = kz - 0.

It should be noted that this result is free of the size of
the reflecting surface - parameters a and b - that seems to
be strange at first sight. Really, a more precise asymptotic
representation should include further terms in the asymp-
totic expansion. As can be proved in the ambit of Ray
theory, the contribution of the second (after the leading)
asymptotic term would complete the above formula as fol-
lows:

èik(L+Lo)
p " ' ( x ) - " ,  ,  l + o l / t c l ] ,  k - - + a .  ( 2 1 )

L + L s  L  '  ' J

However, the principal contribution is brought by the sta-
tionary points ofthe boundary edges, ifthere are arry ll7l.
If this contribution would be taken into account, then the
asymptotic estimate in the square bracket of equation (21)
would be written as follows: tI + O(I/k1/2)1. All rhar is
clearly shown by Figures 4a,b,c, where we compare the

*  b b u  I  b b u
V ' = - . V ^ =

7  |  ,  '  ' Z

5 0 - r b

ei[k(L+Lù+r /2]

L2 Lsldet g:jr(y*)11/2
plk(L+Lo)

= -;--:---=-, K --+ @
L - f L gs 0 g

,  = V  - C O S / ,
L O L

I

L

1
- L ,

where

1 1 9
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Figure 5. Single reflection from a spherical surface,

It is obvious that the difference between geometrical
(Ray) and physical (Kirchhoff) diffraction theories de-
creases with the frequency parameter increasing. How-
ever, this approaching is very slow when frequency grows,
that conform to the slow decay of the asymptotic estimate
O(Ilt<t/z; for k --+ co.

3.2. The next example we consider here is a (non-
symmetric) single reflection from a sphere of radius a; see
Figure 5. Such a case can still be studied in the ambit of
Ray theory, by equation (1); let us see whether it can be as
well studied by the method proposed here.

It is evident that for arbitrary two points x and xe in
the space, the coordinate system can be chosen so that
both of them are located in the (vertical) plane t,,r = 0.
The axis y3 is taken so as to contain the mirror reflec-
tion point !: ! = (0,0,a). So, let us put x = (0, n, O,
xe = (0, lto, h).In this case, one should substitute into
equation (9a,b), where only on:llrfugg lL = S remains

and y1 - y = (yt, y2, y3 = ll o' - y? - y'rl, the expres-

SlONS

f r x
I r

= l ri * tyz - ù'z + ( ,1f",- ,t- ,l
L \

= Ur\h ' !z) '

I r
= lr t (yz - nù' + ( F -,t, - r:

L \
=  Q l l t ' ! z ) '

,  z1  l /2-') l
-tù'lrol

f  l t  l z  l z \
\ ; ' ; ' ;  J  '

(22)
Figure 4. a,b,c. Comparison between Ray-theory prediction (21)
(dashed line) and exact numerical calculation of integral (13a,b)
(sol id l ine): plane ref lector, a = b, Éo = 075a, ( = 925o,
q0 = 4 = 0.5a (a): (  = (o = 0 5a, y = arctan(1/2) - 265o
(b): ( = 6 = a, y = arctan(l/4) = 14" (c): ( = $ = 2a,
y = arctan(l /8) = 7o .

asymptotic result (21) with a direct numerical calculation
of integral (13a,b) (which reflects the Kirchooff diffrac-
tion theory). For all three cases considered, the station-
ary (reflecting) point is located at the center ofthe square:

Y i = Y ) = 0 . 5 a .

g = v + Q ,  î 4 =

ds = a dyrdyz,
!z

/ -  A  -  \
c o s  f  r , .  n t  |  =  \ r t y / t U ) .  n t  =

\  l x

a 2 - ( y z r + l : € )

aV\ ! t '  ! z )

After that, equation (9a,b) for the reflected amplitude be-
comes

lo' 
- (yrrt + yt1] eike(Yt'Yz)

dyt dyz,*L.
k - - + a

120

p'"(x) -
h v/2 (yr , yù EQ1. , yz)

(23)
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À o

òyz

( yz/ to Y2/

(where not specified, it holds ,, = 
{ú 

- f- rEl. O,

made before, let us now estimate this expression, as k -->

oo, by the use of equation (10). Since the phase function
gO1, yù in (22) is even with respect to yl , it is clear that
òs /òyt = 0 when lr = 0, so that for the stationary point it
holds yi = 0. Moreover, on putting

Such a representation is to be compared with the general
formula (1) given by Ray theory. In this example of re-
flection, the principal curvatures are k1 = kz = 1/a, so
K = ktkz = I/a2. Further, the (unit) incident ray is

{0 , - s i n7 , - cos7 } ,  whence  s in2a  =  7 , s i nz  B  -  coszy .
By substituting these values into (1), we can see that Ray-
theory prediction coincides with our asymptotic solution
(26). This analytic result is finally compared with a direct
numerical calculation of the diffraction integral (23), îor
which we kept only the part of the upper half of the sphere
of size 0l + yllttz < a/2, see Figures 6a,b,c.

The qualitative properties pointed out for reflection
from the plane screen are also valid in this example ofre-
flection from the sphere. It is worth noting that formula
(26) can be as well applied for reflection from the concave
side of the sphere, by only substituting therein the value
-a instead of a. In such a case, there are some combina-
tions of the geometric parameters for which the denomina-
tor vanishes, and this actually implies the well-known/o-
cusing effect. However, such irregular cases must be stud-
ied in a different way.

For this example of reflection, we also considered the
behaviour of the phase angle of the reflected wave with
respect to frequency. Of course, this behaviour is trivial
in formula (26) arising from our approach (and Ray the-
ory); what is probably worthy of mentioning is that the
behaviour coming out from the numerical treatment of in-
tegral (23) is practically the same. This means that the
phase is - in one sense - poorly involved in the mathe-
matical structure of such integral, a fact which is not so
evident a-priori. In Figure 6d, we show (a fragment of)
such a behaviour with respect to frequency: the two lines,
dashed from equation (26) and solid from equation (23),
are fairly coincident; note that the interval for the phase
angle is taken as -180', 180'.

4. Double Reflection from Flat Surfaces

The general results expressed in equation (9a,b), (10) al-
low us to study multiple reflections for arbitrary curved
surfaces. It is very interesting to verify whether this study
will conform to the simple heuristic predictions originated
from Ray theory and usually accepted by physicists in
Room Acoustics, where these are applicable (see point 6 in
the forthcoming Conclusions). In this connection, we now
will first consider the double reflection from two plane
rectangular screens Sr, Sz To be more specific, we as-
sume that: the ray remains on the same plane along its full
path, and the reflectors form a right angle between each
other; see Figure 7.

Leî xs again denote the source point and x the receiver
point; !1 designates the first mirror reflection point and 12
the second one. It can be easily proved that in order to
provide all line segments xo - lt , yt - tz, j2 - x be lo-
cated in the same plane, the latter one must be orthogonal
to the edge between the rectangles. One thus can arrange
this plane to be vertical by a simple rotation. The Carte-
sian coordinate system is chosen so that the plane 1ls = 0

- 0

(24)

(2s)

V
(at  yr  = vÍ  = 0) .

it can be seen from Figure 5 that the chosen coordinate
system provides the equality rt /V = -qto /q, and thus we
deduce that yy = 0 = y; solves equatian (24). Therefore,
the stationary point is y* = I = (0, 0, a) (see the comment
after equation 17).

Let us calculate the Hessian and its determinant. After
introducing the distances

L = vrl r. = vn(0, q = tfrít + (o - (Y,

L o = e l r . = O ( 0 , 0 1  =

and the incident angle

f = n - ( % 1 , ? 1 ) ( + cos /  -
Lg

(  h  ^ c o s /  I  I=  
o L -  o / . 4 = '  o  

-  
T -  ^ '

- 0 ,

ò ' s

^ )oy;
v=v '

43
L3

h)*r,
* )

.  
* ) " o , ' r ]  

,

whence it is also clear, by the same reason as in the previ-
ous example, thaf sign gi = 2.

On applying equation (10) with M = 2, f) = S+
(the "light" part of the sphere) and f = la2 - (yzq +
yz)l / Oz ryz cp), the final result can be put in the following
form(k -+ oo):

p'"(x) - (26)

cosy eik(L+Lo)

, ,  / ^ c o s y  1
O e l g *  =  l Z -  - l - = r

\ a L

l^ cosy / t
- t - - T l -

I  a  \ t

o' - v3- qoo r _ y 3 _ r t

n f ;+6 -6012

12'l
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Figure 6. a,b,c. Comparison between Ray-theory prediction (26) (dashed line) and exact numerical calculation of integral (23) (solid
l i n e ) :  s p h e r i c a l r e f l e c t o r , 4 o = 0 . 5 a , 4 = - 0 5 a ( a ) : ( = 6 = l 2 5 a , y = a r c t a n ( Z ) - 6 3 ' ( b ) :  ( = h = 7 . 5 a , y = a r c t a n ( l ) = 4 5 ú
( c ) : ( = € o = 2 a , y = a r c t a n ( 0 . s ) - 2 7 " . ( d ) :  C o m p a r i s o n a s a b o v e f o r t h e p h a s e a n g l e :  s p h e r i c a l r e f l e c t o r , 4 0 = - q = 0 . 5 a ,
( = h = 1.25 a, y = arctan(2) = 63o.

Figure 7. Double reflection from plane orthogonal rectangular
screens.

is the plane of the first reflector and y1 = 0 that of the
second reflector. Taking suitably the origin, we can put

xo = (€0,0,(ù, x = (4,0, O. For convenience, we now
denote by (É, , rti , &) the coordinates of points y' , i = | ,2;
ofcourse, it is (t = 8z = 0.

As a consequence, in the case at hand it holds

ror = [ (6r  -€ù2 +, f t+r | ] ' / t  =q(€, , , rù,

,r,, = lÉl + 0n - nz)2 + $]t/ '  = t (€r, \,q2, h),
,r* = lÉ' + 43 + Gz - 02lt/' = v@r, (r),

g = e + p + V ,  Q 7 )
/ - A - \  h  / - ^ - \  €cos \rl,t nt ) = - 

tt 
cos (r2; nz) = 

ty
dSr -  dhdr t t ,  dSz= 61166r.

Substitution of these relations into equation (9a,b) gives
rise to the following formula (k --+ oo):

bZF |  |  f ^e ìk1
p"(x) - -- | | :+ 

" 
dtt dryt drtzd(2. (28)

47t '  Js. r  Js!  Ql t 'V '

The conditions to Rna tne stationary points
y ' . = G i , q : , n , i = r , 2 :
òs. ^ òs, ^ òq òq
i 3 = 0 ,  { r = 0 ,  3 = 0 ,  3 = 0 ,  ( 2 9 )
o€t onr o42 oez
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lead to the following 4 x 4 algebraic system

h - 4 0 . h  ^  4 t  4 t - / t z
T - = w , - T - = u ,

a p ( p p
4 2 + 4 2 - t t r  _ 0 ,  h - ( * b = 0 .  ( 3 0 )
V P v l'l

It can be strictly proved, though not so simply, that equa-
tions (30) give qi = ql = 0, as well as

€ o - € i- =
aci ,0)  uGi ,o ,o ,6;1 '
r _ r 4  r +
'  - z

,a,Ò 
= pciffi ' (31)

which is a system to get fi and $. Note that the above
relations imply the reflection angles law at the stationary
points y l  = Gi ,0,0)  = l r  andyl  = (0,0,  ( ) )  = i2 ;see
Figure 7.

If we introduce the distances

Lo :  aGí,o) = [ (6î  -  €ù,  + G] ' , '  ,
r  ^  ^ t 1 / 2

L t  =  p G i , o , o , ( ; )  =  l ( 6 î ) '  +  ( $ ) ' l '  Q 2 )\ - z  /  
|

L = v(0,6) = f€, + ((; - 0rl'/' ,

the components of the Hessian (at the stationary points),
here a 4 x 4 matrix, are calculated as follows:

r ? lo's, I
- l

òt? |- 1  |  *

a r lo's I- l
^ t loryi l .
o-9. I-----: I- r lÒ4; 1.

^ l
ò's. I- l
ar2 |

t)

Figure 8. Comparison between Ray-theory prediction, equation
(36), (dashed line) and exact numerical calculation of integral
(28) (solid line) in the double reflection from a x a plane orthog-
onal ref lectorsi xs = (a,0, a/2),1s = (a/2,0, a), n = Tz = 45o.

In order to obtain the sign of the Hessian, we can see that

ò ' s  I
A r  =  * l  > 0 ,

òtí |- l  
|  *

r î - r l
Ò ' o  ò " o  I

Az  =  *31  >  0 ,  (35 )
a€í a4í | "

.  /  I  r \ /  I  I  I  \
A : = f - - - * - l f = - - + - +  

-  
l c o s 2 7 1  > 0 ,-  

\ ro Lt /  \LoLt  LLr  
'  

tLo/

which implies the matrix to be positive definite; thus,
sign gi = 4.

The combination of (28) and (10) (with M = 4, {ù =
si x si, f = $/(qp2,{2;1, alongwith the above results,
yields the following asymptotic representation for the am-
plitude of the doubly reflected wave field

p'"(x) -
t^ ik(Lo+Lt+L) f*
b v  , 2

sin v, cos u, 
Lo r Lt * L Ls L2, L2

LsL lL

" i k ( L s + L t + L )
L s - l L y I L

k --> a. (36)

By comparing this result with equation (20) and the sub-
sequent sentence, we can see that, at least in this particu-
lar example of double reflection from plane surfaces, the
heuristic predictions ofRoom acousticians are valid.

In connection with the numerical treatment of the dif-
fraction integral (28), whose result is shown in Figure 8
for the sake of comparison, it is useful to underline what
follows: when evaluating the required number of nodes
to correctly calculate the arising four-fold integral by a
quadrature formula, the extremely high frequencies in-
volved in Figure 8, like around the value ak - 500, make
necessary to take at least N = 300 nodes for each of
the four directions (&,rtù, (nz,h).Hence, each one of

l r  1 \  .=  [  - + ;  l c o s ' y 1 ,
\ ! 0  u l  /

1 l
=  - + _

L o  L t '

1 1
/?? l

L '  L r '  
\ r e /

l r  l  \= l ; + .  f c o s ' y 2 .
\ r -  r ,1  /

ò€úrtr

oCtolz
1 )

o-g 1

- -  
-  

L ,òrlt òrtz

where 71 = r - (Fol n) andyz = @t)n2) are the incident
angles (y1 * yz = n /2), so that cos h = h/Lo = $/Lt,
c o s y z -  € / L = É i / t t .

Its determinant, after some transformations, can finally
be evaluated in the form

A+=  de tg í=  s i n2 / r  cos '  /  t o+  z r  *  r \ 2" " \  
t r t , t  )  

' o  ( 3 4 )

r?o-g
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respectively; axes f1, €2 are clearly parallel and orthogo-
nal to the plane. Thus, we have two coordinate systems
centered in 01 and 02. We denote by h,Vz the angles
of mirror reflection from the spheres, and by a, B the an-
gles between O1O2 and axes Q2,41, respectively; note that
a * B = n - V t - V z .

Of course, if any point P has Cartesian coordinates

€i , ni ,6f in the first system, then its coordinates in the
second system are

rP  -  rP  t 11 \
5 t  

-  
b t  '  \ J t )

,t! = n'."oro a ufcos(a * p) - q sin(a + B),

$ = nsina * nl sin(a + P) + (f cos(u + 81.

It holds

v t  =  ( & , q t , ( t =

yz  =  (€2 ,42 , ( z=

for points on the first or second sphere in the correspond-
ing coordinate system.,Finally, we put xo = (0,qo,h)
as coordinates of the source point in the first system and
x = (0, n,6) as coordinates of the receiver in the second
system.

Thus, in the case at hand we have

r l . z

- { e - 6 ' - ú s i n ( a *  i l - t t z

/ rs ina* rys in (a+0)

. {t' 
- (-,t cos(a * /)

Figure 9. Asymmetric double reflection from a pair of spheres of
different radii.

so large value of ak requires approximately 300a av 1010
arithmetic operations. Altogether, to construct the diagram
in Figure 8, four days of continuous uninterrupted com-
putations implemented on PC AMD-Athlon Core Due,
6.OGHz clock frequency, were required.

Finally, it is very interesting to compare the behaviour
of the reflected amplitude with respect to frequency in the
two cases of single and double reflection from plane re-
flectors: see Figures 4a,b,c versus Figure 8. In both these
cases, the (solid) oscillating line resulting from the (ex-
act) numerical solution of the corresponding diffraction
integral approaches to the (dashed) constant line reflecting
Ray theory, as frequency increases. However, the oscillat-
ing behaviour for single reflection is more regular, while
for double reflection is more chaotic. Physically, this may
be explained in the following way. The next asymptotic
term, after the leading one, is connected with the diffrac-
tion by the edges of the rectangular plate. The trajectory
of the wave packet, when sliding over the edges, seems to
be more regular for one reflector than for two ones, and
so is the contribution of such a packet to the full pressure
amplitude. Indeed, in the case of double reflection, there
exist many more possible combinations of different beams
which can arrive at the receiver after any passage over the
edges of the two rectangular plates; hence, the contribution
of such edge-diffracted waves turns out to be more chaotic
with the change of frequency.

5. Asymmetric Double Reflection from a
Pair of Spheres

All examples previously considered on application of the
method proposed in this paper, could be (apparently)
treated by this or that alternative method, even with final
explicit results. Now, we give an example of double re-
flection which cannot be studied explicitly by any existing
method known to the present authors. The reflectors are
two spheres ,S1 and ,S2 of radius a and b, respectively; ft is
the distance between their centers Ot, Oz (see Figure 9).

Like in the foregoing case, we assume all acoustic rays
to be in the same plane (that of the sheet). This plane is
chosen so as to contain axes {1, 42, h, b, the last two of
which passing for the mirror reflection points j\ and !2,

fzx

I  r  \ 2 l r l 2
=  

L r î *  
( 4 r -4ù2  + ( / r  - €? - r î - ^ )  

)
=  E ( € t , t t ù '

f  -  1 t / 2= 
Fî 

* @z - 4)z + (\\f b2 - €3 - q3 - (fl

= v(€z,rrù, (38a)
( " I= 
{ 

(6r - tz)' + 
lf 

cos a + qt cos(a + 0)

- 1 2 \  I / 2
1 , "  - )  t l  I

I  b' - É; - 4;] j  = u(Ét, 4r,62, 4z),

g  =  q + t t + V ,  d . S r  =  :  d t r d r t t ,
e t

h
dS, = - dtrdnc.

/ -  A  -  \c o s  \ r r . t  n r )  =  \ r 1 . 2 /  p ) ' n l

= (l / aùlo' - Ét€t * h(41 cos 0 - h sin f)
+ (rtzh - qúù sin(a-f l)
-  @tqz  +  hh)cos(a  +  p) ]

= f t (h,rn,Éz,rtù,  (39)

b r - 4 - q 3 )
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/ -  ^  -  \
cos (t ; '  n2) = (F2*/ty) .  n2

= (l /by)(b2 - aryz _ Kz)
= fz(€z,rtù.

After proper substitutions, equation (9a,b) becomes

p, . (x ) -  - ! l  |  
f i f ze ik r  (40)

+1t.  Jsi  Js! q UV
ab
* dÉr dnt dEzdnz (k --+ a).
h h

(where not specified. it is 6r = 
{", 

- É'-,f , (z =
t -

! b ' - 8 í - r t ) '
The stationary points are defined by the following rela-

2cosy1  ,  |  1

"  

-  
L o -  L r '

I

L 1 '

2 c o s y 1  ( 1 ,  1 \- ; .  
( ;  .  

u ) c o s z y 1 ,

cos f1 cos ]22
L1

2cosy. ;  1  I

b  L '  L t '

2 c o s y 2  ( l  1 \"#*(Z* l ) "o" ' r ' '

a ,

o-g

òt? |
1 ) l

" Ò  |
O C l O < t  I

t ) lo_E I- ; l

òni I

ò2s I
: - - : - l
Ò4tÒ42 | *

., Io-s, I
- l

ò e l
a t l
o-9, I-----: I
-  t l04;  l .

(43)

òg

òÉz
F.

+ -

tions

og 6o 6r
ò A -  h E

h  t ,  ,  ^ .  1

, 6r [f i stn F - 4zstn(a] íJ) + 6zcos(a+ f)l - €26

P 1 1

b r l
€zlhsrna l-41sin(aIp) + (1 cos(a+p)]

p b
s  hq t -qoh .  h (hcos |+rys in | )

h a I't Ct
(rnh-rtzh) cos(a * 0) - GÉz+rn4)sin(a+B)

l.r Lt
òS  _  (42 -4b  ,  h ( r t zs ina - (2cosa )

- r -  
" ,  

-  
l ' , a

_ (4úz-ttzh ) cos(a+B) --(hbI4rtù sin(a+B)

i lez

= ,

andtheincidentangles n = n-(Fol 
-n) 

andyz = (Ft)nz),
so that

h - acos/t = 
J;

=  -cos

hsina

where we introduced the distances

L o : E ( O , q = l n o z + @ - h Y ,

L = v Q , O 1 = t f 4 z + 1 n - g y ,
L t  :  U (0 ,0 ,0 ,0 )

QOS|2 =
L 1

a 3 =

(44)

h s i n p * ó c o s ( a + 0 ) - a
L 1

(r ,,) nt) | _ = -.r, (0, 0, 0, 0) (4s)

* a c o s ( a + p ) - b  ( - b

$ra)

= O

(41b)

- n

(4Ic)

- n

(41d)

- 0 .

òg

òrtt

, ( r
T _

L

We can see that h = 0 = €i, €z = 0 = 6j automatically
turn (41a) and (41b) to identities. It is also obvious that
4t = 0 = 4i, rtz = 0 = 4; convert the other two relations
(41c) and (41d) to

U o  h c o s l - b s i n ( a + 0 )  A

4  a s i n ( a + p ) - h c o s a
(42)

V

which are again two identities, since both the fractions in
the former give sin 11 and both the fractions in the latter
gle sini2. Thus, the stationary points are y.l = (0, 0, a) =

! 1 , y ? = ( 0 , 0 , ù = i 2 .
Now, after some transformations, the components of the

4 x 4 Hessian matrix (at the stationary points) can be writ-
ten out as

1)o-8 -,o'g
òÉzòrtt

- 0 ,

= -cos (rr inr) l .  = -/2(0,0)

The reflection angles law is satisfied (and of course 71 =

Vt, yz = Tù.
Regarding its determinant and sign, we have

a 2 ^ l
A ,  =  T l  t O r

òEí I- 1  
t *

t ) 1 ) l

^ o-8 0-8 |Az =  - - i - - i l  >0 ;
ò€í òryí | _

l+". (***)""."']
l(':'. *.;)
(r+" * l *;) il 'o'

detg i=  
i (+" . * . ; )  

(46)

(n=*|*+) +l
òhòrtt

a 4 =
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Figure 10. Comparison between asymptotic result (47) (dashed

line) and exact numerical calculation ofintegral (40) (solid line)
in the double reflection from spherical reflectors: b = a/2,
Lo = L = a,Lt = 2a, xo = Q,Lo/^/z,a + Lo/\/z), x =

Q, - L / A, b + L / ̂ /r, rr = yz = 45o .

valid for such reflectors too. The only additional comment
could be to emphasize that this irregularity is even more
chaotic than for plane reflectors.

6. Conclusions

1. We have proposed a new method to estimate the lead-
ing high-frequency asymptotic term for the (complex-
valued) amplitude of an acoustic wave in the multi-
ple reflection from a set of acoustically hard surfaces.
Such a method is based on a further development of the
classical Kirchhoff's ideas, by extending the physical
diffraction theory from single to multiple reflections.
This allows us, for an arbitrary number of reflecting sur-
faces, to write out the amplitude at the receiving point
as a multiple dffiaction integral.

2. In the particular case of a single reflection, this inte-
gral is simply reduced to Kirchhoff's standard integral.
In the case of a multiple reflection, this multi-fold inte-
gral is estimated asymptotically by means of the multi-
dimensional stationary phase meihod, which gives the
sought leading asymptotic term for high frequencies.
We thus can see as the Ray-theory asymptotic represen-
tation is constructed on the basis of the other. namelv
Kirchhoff 's, high-frequency theory.

We consider some simple examples on single or dou-
ble reflection only to show the basic concepts ofthe pro-
posed method. Then, we consider an example of dou-
ble reflection (from spherical surfaces) which cannot
be studied by other known approaches, as far as the au-
thors are acquainted.

3. The method can be well applied to reflections from both
convex and concave surfaces, as soon as the geometry
of the multiply re-reflected ray is calculated. The only
difference between these two cases is that for convex
surfaces the radii of curvature should be taken with a
positive sign, while for concave surfaces - with a neg-
ative sign. One can also apply the obtained results to
reflecting surfaces where two principal curvatures may
be of opposite sign.

4. In principle, the Hessian determinant in the denomina-
tor of the basic asymptotic estimate (10) may vanish
at the stationary point. Physically, these cases are re-
lated to concave surfaces (negative curvatures) and im-
ply some focusing effect. Obviously, the diffraction in-
tegral (9a,b) in such cases must be estimated in an alter-
native way, since this typically means that the stationary
point is not isolated. In the considered examples, where
all curvatures are positive, we always found a strictly
positive value of the principal determinant. However,
this fact does not prove that a certain combination of
multiple reflections from a set of convex surfaces may
not yield a focusing effect. Such an interesting question
requires a special study.

5. The basic Ray-theory representation is symmetric with
respect to the sequence of reflections, which implies the
amplitude of the multiply reflected wave to remain the
same if the source and the receiver would be exchansed

f l z c o s y t , ( 1  l \ - - ,  I
t L  ,  * \ r . * I , ) c o s - / r l

l 2 c o s y z  / 7  l \  ,  I
I  t  * l z *  

h )cos 'Y ' z ]

_  ( c o s T t c o s y z ) ' Ì  r  o ,
\  L r  / )

whence signgf = {.
By applying equation (10) to equation (40) (with M =

4, Cù - sI .^Si, f = hfz/@tryhh)), and using the
above results, we finally get the following asymptotic rep-
resentation for the doubly reflected amplitude:

COS /1  COS Y rg i k (Lo+L t+L )p" ' (x)  -  - - - - ,  k- ->a.  (41)
L L1 Ls t/det gi

A comparison with a direct numerical treatment of the
(four-fold) diffraction integral (40) is shown in Figure 10
in the case when: b = a/2, yl = y2 = n/4, axis 41 is
parallel and co-directed with axis (2,axis 42 is parallel and
anti-directed with axis (1 . It should be noted that, with in-
tegration over variables €t, 4t, $,42, fhe phase function
g varies more rapidly, so that an adequate calculation re-
quires more grid nodes than in the case of double reflec-
tion from plane reflectors. Therefore, in order to construct
Figure 10, one needs even more computation time when
compared to Figure 8 (by our experience, approximately
in a double time). Like in the case of a single sphere, we
restricted the numerical integration to the domains with

É? + q? < @/2)2, 4 + ry3 < (b/D2.
Finally, as in the foregoing section, let us compare with

each other the cases of single and double reflection for
spherical reflectors: see Figures 6a,b,c versus Figure 10.
The general remark that the behaviour in the double reflec-
tion is more chaotic than in the sinsle reflection remains
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in their spatial locations. One thus can see that a reci-
procity principle, of general validity in acoustics, can
also be stated in the problem of (high-frequency) mul-
tiple reflection from arbitrary curved surfaces.

6. In the particular case when all reflectors are flat, the cal-
culation of the reflected amplitude is reduced to a well-
known heuristic formula, which claims that this is the
same as in the case of no reflection if one assumes the
distance between source and receiver to be equal to the
full path of the propagating ray. It should be noted that
the present authors do not know any published work
where such a simple idea is strictly proved as a math-
ematical theorem. In the present paper, we prove the
above result only in the case of double reflection with
the same (ray's) plane of propagafion; the investigation
of more general cases, though feasible in the ambit of
our approach, requires some more detailed mathemati-
cal techniques, and thus is left for brevity to forthcom-
ing studies.

7. In all the examples treated, the precision of the Ray
theory (namely, of the leading asymptotic term) is es-
timated numerically by a direct calculation of the cor-
responding (multi-fold) diffraction integrals. Typically,
this investigation shows a gradual approach of the nu-
merical diagram to a constant value as predicted by
the Ray theory with the frequency increasing. However,
sometimes the approach reveals to occur very slowly
with k -+ oo, and one could suppose that the second
term of the full high-frequency asymptotic representa-
tion is not predicted by the Ray theory, but is defined
by some contribution of the stationary points located
on the boundary edges of the reflecting surfaces. This
important question is also left to forthcoming studies.
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