
Some new uses of the ηm(Z) functions

D. Conte a,1, E. Esposito a, B. Paternoster a, L. Gr. Ixaru b,c

aDipartimento di Matematica e Informatica, Università di Salerno,
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Abstract

We present a techique and a MATHEMATICA code for the conversion of formu-
lae expressed in terms of the trigonometric functions sin(ωx), cos(ωx) or hyperbolic
functions sinh(λx), cosh(λx) to forms expressed in terms of ηm(Z) functions. The
possibility of such a conversion is important in the evaluation of the coefficients of
the approximation rules derived in the frame of the exponential fitting. The con-
verted expressions allow, among others, a full elimination of the 0/0 undeterminacy,
uniform accuracy in the computation of the coefficients, and an extended area of
validity for the corresponding approximation formulae.
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1 Introduction

The functions ηm(Z), m = −1, 0, 1, . . . have been introduced in [1] to provide a conve-
nient framework when building up CP methods for the Schrödinger equation. However,
as observed later on, the area of applications is much larger, including the possibility of
a systematic treatment of oscillatory functions or of functions with an exponential be-
haviour. In particular this set of functions has been used successfully in building up a
number of approximation formulae based on the exponential fitting (ef), see [2].
In most applications the argument Z and ηm(Z) are real, and in these cases the ηm func-
tions are closely related to the Bessel functions of real/imaginary argument, see property
(v) below, but there are also cases when the argument and the function values are complex.
Fortran subroutines for these functions are available, e.g., subroutines GEBASE in [3] and
CGEBAS in [4] (up to m = 6), and GEBASE, GEBASEV, CGEBASE, CGEBASEV in
[5]. A matlab version is in [6] and on the web-page http://www.dmi.unisa.it/people/conte/
www/codici.html.
In this paper we focus on some new applications when building up formulae in the frame
of the exponential fitting procedure. The coefficients in such formulae are functions of
the involved frequencies with the property that they tend to the constant values of the
coefficients in the associate classical approximation formulae when the frequencies tend
to zero.
To fix the ideas we concentrate on the case when only one frequency µ is involved. Its value
is real, µ = λ, for functions which behave like exp (±λx) or like sinh(λx) and cosh(λx),
and imaginary µ = iω for oscillatory functions with sin(ωx) and cos(ωx). In all these
cases the coefficients are functions of the product z = µh which is either real or purely
imaginary. An alternative notation consists in using one and the same real parameter v
defined as v = |z| = |µ|h in both cases but in this situation we have to take care that
either hyperbolic or trigonometric functions are involved.
An unpleasant feature with the expressions of the coefficients in the ef-based formulae is
that quite often these exhibit an undeterminacy of the form 0/0 when z = 0 or v = 0 and
therefore additional expressions consisting in power expansions in z or v must be provided
for use when |z| or v is smaller than some threshold value. This is how it is done in many
papers, to mention only [7], [8], [9], [10], [11], [12].
In this paper we show that the functions ηm(Z) where Z = (µh)2 (or, with the other
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notation, Z = −v2 / Z = v2 in the trigonometric/hyperbolic case) provide a powerful
tool for eliminating the 0/0 behaviour entirely, and develop a technique to be used for
this aim. The new formulae will then cover all z or v, with no need to invoke series. One
and the same expression is then enough irrespective of whether Z is positive or negative,
small or big. Even more, the new expression can be used also when Z is complex.

2 Definition and properties of functions ηm(Z), m = −1, 0, 1, . . .

These functions have been introduced in [1] as real functions of a real variable, and de-
noted ξ̄(Z), η̄0(Z), η̄1(Z), . . .. The present notation is that from [2] except for η−1(Z) which
was there denoted ξ(Z). Later on, [4], these functions have been extended for complex
argument Z.

The functions η−1(Z) and η0(Z) are defined in terms of some standard functions. When
Z is real the familiar trigonometric or hyperbolic functions are used :

η−1(Z) =


cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0

, η0(Z) =



sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0 .

(2.1)

Notice that when Z < 0 function η0(Z) is closely related to the sinc function, η0(Z) =

sinc(
√
|Z|).

When Z is complex the functions sin and cos of a complex argument are involved, as it
follows:

η−1(Z) = cos(iZ1/2) , η0(Z) =


sin(iZ1/2)/iZ1/2 if Z 6= 0

1 if Z = 0 .

(2.2)

Finally, an equivalent definition is through exponential functions of a complex argument,

η−1(Z) =
1

2
[exp(Z1/2) + exp(−Z1/2)] ,

η0(Z) =


1

2Z1/2
[exp(Z1/2)− exp(−Z1/2)] if Z 6= 0

1 if Z = 0 ,

(2.3)

as in [5].
The functions ηm(Z) with m > 0 are further generated by recurrence

ηm(Z) = [ηm−2(Z)− (2m− 1)ηm−1(Z)]/Z, m = 1, 2, 3, ... (2.4)

3



if Z 6= 0, and by following values at Z = 0:

ηm(0) = 1/(2m+ 1)!!, m = 1, 2, 3, ... (2.5)

Some useful properties when Z is real are as follows :
(i) Series expansion :

ηm(Z) = 2m
∞∑
q=0

(q +m)!

q!(2q + 2m+ 1)!
Zq , m = 0, 1, 2, . . . (2.6)

(ii) Asymptotic behaviour at large |Z| :

ηm(Z) ≈


η−1(Z)/Z(m+1)/2 for odd m,

η0(Z)/Zm/2 for even m.

(2.7)

(iii) Differentiation properties :

η′m(Z) =
1

2
ηm+1(Z) , m = −1, 0, 1, 2, 3, . . . (2.8)

(iv) Generating differential equation: ηm(Z), m = 0, 1, . . . is the regular solution at
Z = 0 of

Zw′′ +
1

2
(2m+ 3)w′ − 1

4
w = 0. (2.9)

(v) Relation with the spherical Bessel functions :

ηm(−x2) = x−mjm(x), m = 0, 1, . . . (2.10)

Most of these, in particular (i) and (iii), remain valid also for complex Z.

The property presented in the following theorem will be crucial for the development of
the method described in the next section. It is valid irrespective of whether Z is real or
complex.
Theorem. The functions ηm(Z) satisfy the following relations

ηm(Z) = ηm(0) + ZDm(Z), m = −1, 0, 1, 2, 3 . . . (2.11)

where

Dm(Z) = ηm(0)
[
1

2
η2

0

(
Z

4

)
−

m+1∑
i=1

(2i− 3)!!ηi (Z)
]
. (2.12)

Proof: We at first observe that, from definition (2.4),

ηm(Z) =
ηm−1(Z)− Zηm+1(Z)

2m+ 1
, m = 0, 1, 2, ... (2.13)

4



and proceed by induction on m. For m = −1, we have (see book [5])

η−1(Z) = 1 +
1

2
Zη2

0

(
Z

4

)
= η−1(0) + ZD−1(Z).

Let us suppose m ≥ 0 and let (2.11)-(2.12) be valid for m− 1, i.e.

ηm−1(Z) = ηm−1(0) + ZDm−1(Z) (2.14)

with

Dm−1(Z) = ηm−1(0)
[
1

2
η2

0

(
Z

4

)
−

m∑
i=1

(2i− 3)!!ηi (Z)
]
. (2.15)

By substituting (2.14) in (2.13), and by using (2.5), which shows that ηm+1(0) = ηm−1(0)/(2m+
1), we have

ηm(Z) =
ηm−1(0) + Z (Dm−1(Z)− ηm+1(Z))

2m+ 1

= ηm+1(0) + Z
Dm−1(Z)− ηm+1(Z)

2m+ 1
.

From (2.15) we have

Dm−1(Z)− ηm+1(Z)

2m+ 1
=
ηm−1(0)

[
1
2
η2

0

(
Z
4

)
−

m∑
i=1

(2i− 3)!!ηi (Z) − (2m− 1)!!ηm+1(Z)
]

2m+ 1
= Dm(Z),

which concludes the proof.

3 Description of the method and of the program

Let φ(v) be a linear combination of products of either trigonometric or hyperbolic func-
tions of v (coexistence of these species is not allowed), with the property that φ(0) = 0. In
this section we develop a method for converting this into a function of the form vrZkF (Z)
where r and k are non-negative integers, and F (Z) is a linear combination of products
of η(Z) functions of the argument Z = −v2 in the trigonometric case and Z = v2 in the
hyperbolic case, with the property that F (0) 6= 0.
The advantage with such a conversion is that the elements which make the original func-
tion φ(v) vanishing at v = 0 are now concentrated in the factor vrZk. The applicability
is straightforward: since the coefficients of the formulae built up in the frame of the ex-
ponential fitting procedure are expressed by ratios of two such functions, the use of our
procedure analytically eliminates the mentioned unpleasant 0/0 behaviour.

The most general form of φ(v) to be covered by our procedure is

φ(v) =
N∑
n=1

αn(v)

l−1,n∏
i=1

ψ−1 (β−1,n
i v)

l0,n∏
i=1

ψ0 (β0,n
i v)

 , (3.1)
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where N , l−1,n and l0,n are known integers, the pair ψ−1, ψ0 is either ψ−1(v) = cos(v) and
ψ0(v) = sin(v) or ψ−1(v) = cosh(v) and ψ0(v) = sin(v), αn(v) are polynomial coefficients,
and β−1,n

i , β0,n
i are nonnegative constants.

Indeed, it can be proved that this function can be brought to the announced form,

φ(v) = vrZkF (Z) where F (0) 6= 0,

in which F (Z) is of the form

F (Z) =
M∑
n=1

an(Z)
k∏
j=0

lj,n∏
i=1

ηj (bj,ni Z)

 , (3.2)

where M ≥ N , bj,ni ≥ 0 and an(Z) is a polynomial in Z.

The first, introductory stage of the procedure consists in expressing the function φ(v) as a
linear combination of products of the functions η−1(Z) and η0(Z), by using the definition
of these functions. This means a direct replacement of cos(βv) or cosh(βv) by η−1(β2Z),
and of sin(βv) or sinh(βv) by βvη0(β2Z), which leads to

φ(v) = vrf(Z), (3.3)

where f(Z) has the form

f(Z) =
N∑
n=1

an(Z)

[
l−1,n∏
i=1

η−1 (b−1,n
i Z)

] l0,n∏
i=1

η0 (b0,n
i Z)

 . (3.4)

This introductory step is implemented in the Mathematica module ”etaTransf” reported
in the Appendix.

Example 3.1 Let us consider

φ(v) =− v cosh(θv)2 + v cosh(v/2) cosh(2θv) + 2 cosh(θv) sinh(v/2)+

− 2 cosh(v/2) cosh(2θv) sinh(v/2)− cosh(θv) sinh(v) + cosh(θv)2 sinh(v).

The function φ(v) is of the form (3.1). Indeed, it contains only one species of functions
(hyperbolic), and corresponds to N = 6, α1(v) = −v = −α2(v), α3(v) = −2 = −α4(v),
α5(v) = −1 = −α6(v), l−1,n = 2 for n = 1, 2, 4, 6, l−1,n = 1 for n = 3, 5, l0,n = 0 for
n = 1, 2, l0,n = 1 for n = 3, 4, 5, 6,

β−1,n
i =

 θ n = 1, 6, i = 1, 2 and n = 3, 5, i = 1;

2θ n = 2, 4, i = 1, 2;

and

β0,n
i =

 1/2 n = 3, 4, i = 1;

1 n = 5, 6, i = 1.
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Then, by replacing cosh(θv) = η−1(θ2Z), cosh(v/2) = η−1(Z/4), cosh(2θv) = η−1(4θ2Z),
sinh(v/2) = v

2
η0(Z/4), sinh(v) = vη0(Z), we obtain the expression (3.3) with r = 1 and

f(Z) = η2
−1(θ2Z)[η0(Z)−1]+η−1(θ2Z)[η0(Z/4)−η0(Z)]+η−1(Z/4)η−1(4θ2Z)[1−η0(Z/4)].

(3.5)

Two situations are now possible depending on whether f(0) is vanishing or not. If f(0) 6= 0
the procedure is stopped but if f(0) = 0 (as is the case also with the function in the above
example) it is continued until we can express f(Z) as

f(Z) = ZkF (Z)

where F (0) 6= 0. The determination in advance of the value of k is important because
it helps in conveniently organizing the subsequent steps of the procedure. In fact, the
module ”etaTransf” has also a section in which this k is evaluated.
Once k is known, an iteration scheme is activated, starting with f (0)(Z) = f(Z) of the
form (3.4). Specifically, in a finite number k of steps we determine the functions f (s+1)(Z)
such that

f (s)(Z) = Zf (s+1)(Z), s = 0, ..., k − 1.

The final output of this iteration chain is assigned to the desired F (Z), viz.: F (Z) =
f (k)(Z). This is of the form (3.3) and F (0) 6= 0.
As a matter of fact, the form of F (Z) is not unique, and different iteration procedures
may result in different forms. All these forms are equivalent, of course, but it makes sense
to give preferrence to the one which produces the shortest form of F (Z). After comparing
different conversion versions we decided to present below the one which seems the most
advantageous from this point of view.
With this scheme we meet two situations:
If k = 1 we simply substitute in f (0)(Z) the expression given by (2.11) for ηj(Z), j = −1, 0,
thus determining f (1)(Z) with f (1)(0) 6= 0 and in this way the conversion is completed.
If k ≥ 2, we care that the last step is slightly different from the previous ones. Thus,
at each step s = 0, ..., k − 2 (we call these regular steps), if f (s)(0) = 0, then we define
f (s+1)(Z) = f (s)(Z)/Z but, if f (s)(0) 6= 0, then we write

f (s)(Z) = f
(s)
0 (Z) + Zf

(s)
1 (Z) + ....+ ZMsf

(s)
Ms

(Z),

where f
(s)
0 (Z) is a linear combination of products of the functions ηj(Z), with j = −1, 0

for s = 0, and j = 0, ..., s for s > 0, and f
(s)
0 (0) 6= 0. Then we substitute in the term f

(s)
0 (Z)

the expression given by (2.11) for ηj(Z), thus determining the expression of f (s+1)(Z). In
particular, at the second-last step s = k − 2 we will have determined the expression of

f (k−1)(Z) = f
(k−1)
0 (Z) + Zf

(k−1)
1 (Z) + ....+ ZMk−1f

(k−1)
Mk−1

(Z),

with f
(k−1)
0 (Z) being a linear combination of products of the functions ηj for j = 1, ..., k−1,

η2j
0 for j = 1, ..., k. If f

(k−1)
0 (0) = 0, then f (k)(Z) = f (k−1)(Z)/Z. If f

(k−1)
0 (0) 6= 0, then at

the last step s = k−1 we substitute in f
(k−1)
0 (Z) the expression given by (2.11) for ηj(Z),
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j = 1, ..., k − 1 and the following expression for η2j
0

η2j
0 (Z) = 1 +

(
ηj0(Z)− 1

) (
ηj0(Z) + 1

)
= 1 + (η0(Z)− 1)

(
ηj−1

0 (Z) + ...+ 1
) (
ηj0(Z) + 1

)
= 1 + ZD0(Z)

(
ηj−1

0 (Z) + ...+ 1
) (
ηj0(Z) + 1

)
,

thus determining f (k)(Z) with f (k)(0) 6= 0. The desired F (z) therefore is F (Z) = f (k)(Z).

This scheme is implemented in the Mathematica module ”ZpowerTransf”, reported in the
Appendix.

To make the scheme more transparent we come with details on cases when f(Z) is of the
form (3.4) where an(Z) are simply constants, and k = 1, 2, 3.
For further simplicity we also assume that the first I terms of the sum over n represent a
linear combination of the values of η−1 with different arguments, the subsequent J terms
are for a linear combination of the values of η0, and the last term is simply a constant.
Thus we have N = I + J + 1, with

l−1,n = 1, l0,n = 0 n = 1, . . . , I,

l−1,n = 0, l0,n = 1 n = I + 1, . . . , I + J

and

l−1,I+J+1 = 0, l0,I+J+1 = 0,

which can be briefly written as

f(Z) =
I∑
i=1
aiη−1(biZ) +

J∑
j=1
cjη0(djZ) + e, (3.6)

where, of course,
∑I
i=1ai +

∑J
j=1cj + e = 0 in order to secure that f(0) = 0.

This is perhaps the case which is the most frequently met in current evaluations related
to the ef approach.

CASE k = 1. One step is only involved here and this is treated as a regular step. By
substituting the expressions (2.11) for η−1(Z) and η0(Z), i.e.

η−1(Z) = 1 + ZD−1(Z), η0(Z) = 1 + ZD0(Z), (3.7)

with

D−1(Z) =
1

2
η2

0

(
Z

4

)
, D0(Z) =

1

2
η2

0

(
Z

4

)
− η1 (Z) ,

we obtain

f(Z) =
I∑
i=1
ai +

J∑
j=1
cj + e+ Z

(
I∑
i=1
aibiD−1 (biZ) +

J∑
j=1
cjdjD0 (djZ) ,

)
.
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i.e., f(Z) = Zf (1)(Z) with

f (1)(Z) =
I∑
i=1

aibi
2
η2

0

(
biZ

4

)
+

J∑
j=1

cjdj
2
η2

0

(
djZ

4

)
−

J∑
j=1
cjdjη1 (djZ) . (3.8)

We then assign F (Z) = f (1)(Z), and this concludes the conversion procedure.

CASE k = 2. Here there are two steps, the regular step s = 0 and the final step s = 1.
The output of the regular step is f (1)(Z) of eq.(3.8) which we write as

f (1)(Z) =
I∑
i=1
aiη

2
0 (biZ) +

J∑
j=1
cjη1 (djZ) , (3.9)

where, for simplicity of notation, we use the same name for the coefficients ai, bi, cj, dj.
Of course, the coefficients ai and ci are related,

∑I
i=1 ai +

∑J
j=1 cj = 0.

The second step is also the last step and therefore, as explained before, we replace in (3.9)

η2
0(Z) = 1 + ZD0(Z) (η0(Z) + 1) , η1(Z) =

1

3
+ ZD1(Z), (3.10)

with

D0(Z) =
1

2
η2

0

(
Z

4

)
− η1 (Z) , D1(Z) =

1

2
η2

0

(
Z

4

)
− η1 (Z)− η2 (Z) . (3.11)

Then we obtain
f(Z) = Z2f (2)(Z),

where

f (2)(Z) =
I∑
i=1

aibi
2
η2

0

(
biZ

4

)
(η0(biZ) + 1) +

J∑
j=1
cjdj

(
1

2
η2

0

(
djZ

4

)
− η1 (djZ)− η2 (djZ)

)
,

(3.12)
and this completes the procedure, with F (Z) = f (2)(Z).

CASE k = 3. In this case we have two regular steps, s = 0, 1. The output (3.8) of s = 0 is
just accepted but the output (3.12) of s = 1 is inadequate because it has been derived by
a technique for the last step. This step must be repeated anew with the technique for a
regular step, i.e., we go back to an expression of type (3.9) for f (1)(Z) in which we replace

η0(Z) = 1 + ZD0(Z), η1(Z) =
1

3
+ ZD1(Z), (3.13)

with D0(Z), D1(Z) given by (3.11), to obtain

f(Z) = Z2f (2)(Z),

where

f (2)(Z) =
I∑
i=1
ai (1 + biZD0(biZ))2 +

J∑
j=1
cj

(
1

3
+ djZD1 (djZ)

)
(3.14)

= f
(2)
0 (Z) + Zf

(2)
1 (Z)
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with

f
(2)
0 (Z) =

I∑
i=1

2aibiD0(biZ) +
J∑
j=1
cjdjD1 (djZ) ,

f
(2)
1 (Z) =

I∑
i=1
aib

2
i (D0(biZ))2 .

The last step follows, with its specific technique. It is applied only on f
(2)
0 (Z), which

satisfies f
(2)
0 (0) = 0 and has the form

f
(2)
0 (Z) =

I∑
i=1
aiη

2
0(biZ) +

J∑
j=1
cjη1 (djZ) +

J∑
j=1
cjη2 (djZ) , (3.15)

where, as before, for simplicity of notation, we use the same name for the coefficients ai,
bi, cj, dj. The other term in (3.14) needs no extra treatment because it already contains
a factor Z. We replace the expressions (3.10) and

η2(Z) =
1

15
+ ZD2(Z), (3.16)

D2(Z) =
1

2
η2

0

(
Z

4

)
− η1 (Z)− η2 (Z)− 3η3 (Z) ,

in (3.15) thus obtaining

f(Z) = Z3f (3)(Z),

and this concludes the run, with F (Z) = f (3)(Z) 6= 0.

Example 3.2 Let us consider the function

f(Z) = 2η−1

(
θ2Z

)
− 2η−1

(
4θ2Z

)
,

with f (0)(0) = 0, which is in the form (3.6). By substituting the expression (3.7) for η−1(Z)
we obtain

f (1)(Z) = θ2

(
η2

0

(
θ2Z

4

)
− 4η2

0

(
θ2Z

))
,

with f (1)(0) = −3θ2 6= 0.

Example 3.3 We consider the function of Example 3.1.

In this case f(Z) is not of the form (3.6), then we have to apply the generical proce-
dure. We have k = 2 and we start with f (0)(Z) = f(Z) given in (3.5).

For s = 0 we have

f
(0)
0 (Z) = f (0)(Z),
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and, by substituting the expression (2.11) with ηj(Z), j = −1, 0 we obtain:

f (1)(Z) = − Z
64

[
η4

0

(
Z
16

)
(1 + 2Zθ2η2

0 (Zθ2)) +

−2η2
0

(
Z
16

) (
η1

(
Z
4

)
+ 2θ2

(
η2

0

(
Zθ2

4

)
+ η2

0 (Zθ2)
(
−4 + Zη1

(
Z
4

))))
+

+8θ2
(
−η2

0

(
Z
4

)
η2

0

(
Zθ2

4

) (
2 + Zθ2η2

0

(
Zθ2

4

))
− 4η2

0 (Zθ2) η1

(
Z
4

)
+ 2Zθ2η4

0

(
Zθ2

4

)
η1 (Z) +

+η2
0

(
Zθ2

4

) (
η1

(
Z
4

)
+ 4η1 (Z)

))]
.

For s = 1 = k − 1 we have f (1)(0) = 0 and f (2)(Z) is defined by

f (2)(Z) = f (1)(Z)/Z. (3.17)

4 Applications

The coefficients and the error factor of any ef-based approximation formula are typically
expressed by ratios of two functions of the form (3.1) and therefore they exhibit a 0/0
behaviour at v = 0. To eliminate this we apply the conversion procedure described in the
previous Section separately on the numerator and denominator. Finally, when evaluating
the ratio Den/Num the factor vrZk disappears, and this eliminates the undeterminacy.
In the following we report on results obtained with this technique on some coefficients
derived in the papers [9], [10], [11]. All these are of the mentioned form, see eqs.(4.1-4.3)
below. In particular, the case considered in Examples 3.1 and 3.3 is just the numerator
of α3 in (4.1) after the mentioned expression of γ1 has been introduced.

• In the paper [9] some sixth order symmetric and symplectic exponentially fitted modified
Runge-Kutta methods of Gauss type were derived. The authors give the formulae of
the coefficients in terms of hyperbolic functions. We consider three of them, chosen at
random. These are

b1 = v−2 sinh(v/2)
2v(1−cosh(θv))

,

γ1 = 2 sinh(v/2)−v cosh(2θv)
2 sinh(v/2)−sinh(v)+(sinh(v)−v) cosh(θv)

,

α3 = γ1 cosh(v/2)−cosh(θv)
v sinh(θv)

,

(4.1)

whose series expansions in powers of v are also listed in that paper for θ =
√

15/10 :

b1 = 5
18

+ v4

302400
− v6

62208000
+ 17v8

212889600000
− 15641v10

41845579776000000
+ ...,

γ1 = 1− 3v6

56000
+ 649v8

44800000
− 983177v10

275968000000
+ 2248000621v12

2583060480000000
+ ....,

α3 =
√

15
30

+
√

15v2

3600
− 71

√
15v4

1890000
+ 1849

√
15v6

302400000
− 47169209

√
15v8

33530112000000
+ 178746672227

√
15v10

523069747200000000
+ ...
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By applying the procedure described in the previous section we obtain the expressions

b1 =
η20( Z16)−2η1(Z4 )

8θ2η20

(
Zθ2

4

) ,

γ1 =
(1+2Zθ2η20(Zθ2))(η20( Z16)−2η1(Z4 ))

η20( Z16)−2η1(Z4 )+2Zθ2η20

(
Zθ2

4

)
[η20(Z4 )−2η1(Z)]

,

α3 = Num(Z)
Den(Z)

where Num(Z) is given by (3.17), and

Den(Z) = 4θ
(
η2

0

(
Z
16

)
− 2η1

(
Z
4

)
+ 2Zθ2η2

0

(
Zθ2

4

) (
η2

0

(
Z
4

)
− 2η1 (Z)

))
·

·
(
2 + Zθ2

(
η2

0

(
Zθ2

4

)
− 2η1 (Zθ2)

))
.

Of course, the argument Z associated to v from eq.(4.1) is positive, Z = v2. However
the new formulae automatically cover also the analog of (4.1) for oscillatory functions,
that is when the hyperbolic functions are replaced by trigonometric functions; in this
case Z will be negative, Z = −v2. We also mention that the new formulae are valid for
any value of θ. Finally, the new formulae allow computing the coefficients with uniform
accuracy for any Z.

• In paper [10] some sixth order symmetric and symplectic exponentially fitted Runge-
Kutta methods of Gauss type were derived. We consider for example the coefficient

b1 = sinh(v)−2 sinh(v/2)
2v(cosh(θv)−cosh(2θv))

, (4.2)

for which the authors report the Taylor expansion when θ =
√

15/10

b1 = 5
18

+ v4

14400
− 191v6

87091200
+ 623v8

8294400000
− 78713v10

30656102400000
+ ...

The new formula for this coefficient, obtained by applying our procedure, is

b1 =

[
η2

0

(
Z
16

)
− 2η1

(
Z
4

)]
8θ2η2

0

(
Zθ2

4

) .

It has the same practical advantages as in the previous case.
• In [11] a family of four-step trigonometrically fitted methods has been derived. We focus

on one of the coefficients reported there, viz.:

b0 =
sin(2v)− 4v cos(v) + 4 sin(v)− 2v

−3v2 sin(2v) + 4v3 cos(v) + 2v3
, (4.3)

whose Taylor expansion is

b0 = 1
15

+ 17v2

1575
+ 163v4

94500
+ 60607v6

218295000
+ 1697747v8

37837800000
+ 519335027v10

71513442000000
+

+ 12254045443v12

10420530120000000
+ 609739626367891v14

3201499468767600000000
+ ...
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The expression of this coefficient in terms of ηm(Z) functions is:

b0 =
−η20(Z4 )(2+3η0(Z))+8η20(Z)+4η1(Z)+6η0(Z)η1(Z)−16η1(4Z)−2η2(Z)−16η2(4Z)

3(η20(Z4 )−6η20(Z)+12η1(4Z))
.

The latter covers not only the trigonometric case, as in the original derivation, but also
the hyperbolic case. Also the series expansion is no more needed.

5 Test Program

The main program which follows applies the conversion procedure to the coefficient b1 in
(4.1).

(* PROGRAM formConv : converts a rational formula, containing oscillatory or hyperbolic
functions, in terms of ηm(Z) functions and allows a full elimination of the 0/0 undeterminacy *)

Num =v − 2 sinh(v/2) ;

Den = 2v(1− cosh(θv)) ;

type = 2 ;

Off[General::spell]

degNum = vDeg[Num]; {NumEta, kNum, rNum} = etaTransf[Num, degNum];

NumNew = ZpowerTransf[NumEta, kNum];

degDen = vDeg[Den]; {DenEta, kDen, rDen} = etaTransf[Den, degDen];

DenNew = ZpowerTransf[DenEta, kDen];

Print[”Transformed coefficient:”, FullSimplify[NumNewDenNew ]]

6 Conclusions

We have presented a method for the conversion of formulae obtained in the frame of the ex-
ponential fitting for various approximation schemes, to forms expressed in terms of functions
ηm(Z). The new forms secure automatic elimination of 0/0 behaviour, enable a uniform accu-
racy in the evaluation and allow an extended area of applicability. We also presented a code for
this conversion. Another possible application, mentioned but not detailed in the text, consists in
obtaining converted expressions for the corresponding factor in the error formula, thus making
possible an evaluation of the accuracy.
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Appendix

Below are listed the MATHEMATICA main program formConv.nb and modules vDeg, etaTransf
and ZpowerTransf.

Main program: formConv.nb

(* PROGRAM formConv : converts a rational formula, containing oscillatory or hyperbolic
functions, in terms of ηm(Z) functions and allows a full elimination of the 0/0 undeterminacy *)

Num = (* Please insert here your numerator *) ;
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Den =(* Please insert here your denominator *) ;

type = (* Please insert 1 for oscillatory case and 2 for hyperbolic case*) ;

Off[General::spell]

degNum = vDeg[Num]; {NumEta, kNum, rNum} = etaTransf[Num, degNum];

NumNew = ZpowerTransf[NumEta, kNum];

degDen = vDeg[Den]; {DenEta, kDen, rDen} = etaTransf[Den, degDen];

DenNew = ZpowerTransf[DenEta, kDen];

Print[”Transformed coefficient:”, FullSimplify[NumNewDenNew ]]

Module vDeg

(* Function that computes the powers of v to highlight *)

vDeg[funz ] := Module[{Nmax, tmp, deg}, Nmax = 100; tmp = 0;

For[deg = 1, (deg < Nmax && tmp == 0),

tmp = SeriesCoefficient[Series[funz, {v, 0, Nmax}], deg]; deg++];

deg = deg - 1; deg ]

Module etaTransf

(* Function that reveals the full power of v and changes in the eta functions*)

etaTransf[funzSt , deg ] := Module[{degNew, deg1, tmp, Nmax, r, k, funz},

funz = funzSt; tmp = 0;

For[deg1 = 1, (deg1 < Nmax && tmp == 0),

tmp = Coefficient[Denominator[Together[ funz/(vˆdeg1)]], v]; deg1++; ];

deg1 = deg1 - 2;

If[deg1 > 0, funz = Together[funz/(vˆdeg1)]; degNew = deg - deg1,

degNew = deg; ];

k = IntegerPart[degNew/2]; r = Mod[degNew, 2];

funz=Together[ 1
vr (funz /. {HoldPattern[Cos[a : ]] :> η−1[-aˆ2],

HoldPattern[Cosh[a : ]] :>η−1[-aˆ2],
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HoldPattern[Sin[a : ]] :> a*η0[-aˆ2],

HoldPattern[Sinh[a : ]] :> a*η0[-aˆ2]})

/. {vˆ2 -> ((-1)ˆtype))*Z})];

If[(Mod[(deg1 + r)/2, 2] == 1) && type == 1, funzMod = -funzMod;];

If[deg1 > 0, r = r + deg1;]; {funz, k, r} ]

Module ZpowerTransf

ZpowerTransf[funzSt ,kSt ]:=Module[{funz,Nmax,tmp,deg,k,deg1,s},

Nmax=100; funz=funzSt; k=kSt; η−1[0] = 1;

ηm [0] = 1
Factorial2[2∗m+1] ;

Dm [Z ] = ηm[0] ∗
(

1
2 ∗ η0

[
Z
4

]
∗ η0

[
Z
4

]
−
m+1∑
i=1

(Factorial2[2 ∗ i− 3] ∗ ηi[Z])

)
;

η̄m [Z ] := ηm[0] + Z ∗Dm[Z];

s=0; st=-1;

If[k ≥ 0,funz=Together[funz/.Table[ηi−>η̄i,{j,st,s}]Z ];];

funz=Simplify[funz]/.Table[v2∗j− > (((−1)ˆtype) ∗ Z)j , {j, 1, s+ 1}];

tmp=0;

For[deg1=1,(deg1 < Nmax&&tmp==0),

tmp=Coefficient[Denominator[Together[funz/(Zˆdeg1)]],Z]; deg1++];

deg1=deg1-2;

If[deg1>0,funz=Together[funz/(Zˆdeg1)];k=k-deg1;];

st=0;

For[s=1,s¡k-1,s++,

funzCoeff=CoefficientList[funz,Z]; funzTNot=funzCoeff[[1]];

funzTNot=funzTNot/.Table[ηi− > η̄i, {j, st, s}];

M=Length[funzCoeff];

funz=Together

[(
M∑
k=2

(
funzCoeff [[k]] ∗ Zk−1

)
+ funzTNot

)
/Z

]
; ];

16



If[s==k-1,

funzCoeff=CoefficientList[funz,Z]; funzTNot=funzCoeff[[1]];

funzTNot=funzTNot/.Flatten[Table[
{
a : ((η0) [ ])2j : − > 1 + Factor[a− 1]

}
,

{j, 1, s+ 1}]];

funzTNot=funzTNot/.Flatten[{a : (−1 + (η0) [ ]) : − >

ReplaceAll[a, η0− > η̄0], Table [ηi− > η̄i, {j, st, s}]}];

M=Length[funzCoeff];

funz=Together

[(
M∑
k=2

(
funzCoeff [[k]] ∗ Zk−1

)
+ funzTNot

)
/Z

]
; ]; funz ]

TEST RUN OUTPUT

Transformed coefficient:
η20(

Z
16)−2η1(Z4 )

8θ2η20

(
Zθ2

4

)
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