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Abstract

 

In southern Italy, 

 

Spartium junceum

 

 (Spanish broom) is severely affected by a phytoplasmal disease, Spartium witches’-
broom (SpaWB). The volatile fractions extracted from flowers of healthy and diseased plants, examined by gas
chromatography and gas chromatography–mass spectrometry, appeared to be quantitatively and qualitatively different. In
both the healthy and the diseased plants, the main components were 

 

n

 

-alkanes, which occurred at a rate of 55.2% and
38.8%, respectively. The level of aliphatic acids was considerably lower in flowers of the diseased plants than in those of
the healthy plants (4.5% vs. 18.7%). Sesquiterpenes were detected only in the diseased plants. It is possible that the changes
in the composition of secondary metabolites of diseased plants can be related to plant defense responses.

 

Abbreviations:

 

 AP, apple proliferation; EY, elm yellows; SpaWB, Spartium witches’-broom

 

Keywords: 

 

Phytoplasmas, plant defense responses, sesquiterpenes, 

 

Spartium junceum

 

, volatile fraction

 

Introduction

 

Spartium junceum

 

 L. (Spanish broom) (Fabaceae) is
a thornless shrub, up to 3 m tall, with deep golden-
yellow flowers, that is common in Mediterranean
areas (Pignatti 1982). This rapidly growing plant is
highly adaptable to various environmental conditions
(Bezic et al. 2003) and is of considerable importance
due to its role in decreasing soil erosion. The plant is
also used as an ornamental shrub and, mainly in the
past, for fiber production. In addition, it has medicinal
properties. The young herbaceous tips of flowering
shoots, harvested in spring, are considered cardio-
tonic, emetic and purgative; the entire plant is claimed
to be a strong diuretic, whereas the seeds have both
properties (Gastaldo 1987). The flowers possess a
potent anti-ulcerogenic activity (Yesilada et al. 1993;
Yesilada & Takaishi 1999). 

 

S. junceum

 

 is also
commonly called fragrant broom due to the fragrance
of its flowers, containing a volatile fraction widely used
in perfumery (Miraldi et al. 2004; Lawrence 2006).

In southern Italy, Spanish broom is severely
affected by a lethal phytoplasmal disease, Spartium
witches’-broom (SpaWB). The most characteristic
symptoms of the disease are pronounced “witches’-
brooms,” shortened internodes, off-season growth
and, ultimately, death of the plant (Figure 1).
SpaWB is associated with two genetically different
phytoplasmas that induce the same symptoms.
These are (1) “

 

Candidatus

 

 Phytoplasma spartii,” a
member of the apple proliferation (AP) phylogenetic
group, and (2) a phytoplasma that belongs to the
elm yellows (EY) phylogenetic group (Marcone
et al. 1996, 2004; Seemüller et al. 1998). Most of
the diseased plants are doubly infected with the two
phytoplasmas, one of which is predominant and
readily detectable by direct (“one-round”) poly-
merase chain reaction (PCR) assays, whereas the
other occurs at a very low titer and can be detected
only by the highly sensitive nested PCR method
(Marcone et al. 1996, 1998, 2004). In contrast to
the progress made in the detection, differentiation
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and phylogenetic classification of phytoplasmas, very
little is known about the effects of phytoplasmal
infections on the biochemical content of diseased
plants. Phytoplasmas are wall-less, unculturable
bacteria of the class Mollicutes that induce diseases
in more than 1000 plant species worldwide. In
diseased plants, they reside almost exclusively in the
phloem sieve tube elements and are transmitted
from plant to plant by phloem-feeding homopteran
insects, mainly leafhoppers (Cicadellidae).

 

Figure 1. Witches’-brooms on diseased 

 

Spartium junceum

 

 (Spanish broom) plants.

 

The aim of this work was to identify possible
changes in the chemical composition of the volatile
fraction from flowers of SpaWB-affected Spanish
broom plants in comparison with healthy ones.

 

Material and methods

 

Plant material

 

Sampling of fully symptomatic and non-
symptomatic 

 

S. junceum

 

 L. plants was carried out in
one location near Salerno in the Campania region
(southern Italy) in the spring of 2008 at the full flow-
ering stage. Voucher specimens of healthy and
diseased plants are deposited in the herbarium of the
Medical Botany Chair at the state university of
Salerno.

 

Phytoplasma reference strains

 

For comparison, DNA samples from Spanish broom
plants infected by “

 

Candidatus

 

 Phytoplasma spartii”
and the EY-related phytoplasma, which were previ-
ously examined (Marcone et al. 1996), were
included in the study. In addition, the phytoplasma
reference strains AT of “

 

Candidatus

 

 Phytoplasma
mali,” ULW of “

 

Candidatus

 

 Phytoplasma ulmi” and
ALY of the alder yellows agent, which were previ-
ously transmitted to 

 

Catharanthus roseus

 

 (L.) G. Don

(periwinkle) and maintained in this experimental
host by periodic grafting, were used (Marcone et al.
1996; Seemüller et al. 1998).

 

DNA extraction, PCR amplification and RFLP analysis

 

For DNA extraction, phloem preparations from 2-
to 4-year-old stem portions of the healthy and the
diseased Spanish broom plants were used. Phloem
tissue was prepared as described by Ahrens and
Seemüller (1994). Young shoots, including leaves,
were taken from healthy and diseased periwinkles.
DNA was isolated from approximately 1.0 g of
fresh tissue using a phytoplasma enrichment proce-
dure as described previously (Ahrens & Seemüller
1992).

PCR amplification (“one-round”) was performed
using either the universal phytoplasma primer pair P1/
P7 or the primer pair fB1/rULWS, which specifically
amplifies phytoplasmal ribosomal DNA (rDNA)
from the EY agents (Marcone et al. 1996). In nested
PCR assays, initial amplification was carried out with
the primer pair P1/P7. The products obtained were
then re-amplified with primer pairs fB1/rULWS or
P1/rSP. The reverse primer rSP is specific for “

 

Candi-
datus

 

 Phytoplasma spartii” (Marcone et al. 1996,
2004). PCR conditions, gel electrophoresis of PCR
products and restriction fragment length polymor-
phism (RFLP) analysis of P1/P7 and fB1/rULWS
amplicons were carried out as described in a previous
work (Marcone et al. 1996, 1997, 1998).

 

Volatile fraction extraction

 

For volatile fraction extraction, flowers from the
healthy and the diseased Spanish broom plants were
used. Due to difficulties in obtaining flowers from a
single diseased plant in sufficient amounts, pooled
flowers taken from 15 plants that were phytoplasma-
positive were employed. Also, flowers from a repre-
sentative number of healthy plants were pooled. The
volatile fraction was extracted from 50 g of fresh
flowers by hydrodistillation for three hours and
following the procedure described by the European
Pharmacopoeia (Council of Europe 2004). The
extraction procedure was repeated three times.

 

GC and GC–MS analyses

 

The volatile fractions were analysed by gas
chromatography (GC) and gas chromatography–
mass spectrometry (GC–MS). Analytical GC was
carried out on a PerkinElmer Sigma 115 gas chro-
matograph fitted with an HP-5 MS capillary column
(30 m 

 

×

 

 0.25 mm i.d., 0.25 

 

µ

 

m film thickness). The
column temperature was initially kept at 40

 

°

 

C for
5 min, then gradually increased to 250

 

°

 

C at a rate of

Figure 1. Witches’-brooms on diseased Spartium junceum
(Spanish broom) plants.
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°

 

C/min, held for 15 min and finally raised to 270

 

°

 

C
at a rate of 10

 

°

 

C/min. Amounts of 1 

 

µ

 

l were injected
at 250

 

°

 

C, manually and in the splitless mode. Flame
ionization detection was performed at 280

 

°

 

C. The
analysis was also run by using a fused silica HP
Innowax polyethylene glycol capillary column (50 m

 

×

 

 0.20 mm i.d., 0.20 

 

µ

 

m film thickness). In both
cases, helium was used as the carrier gas (1 ml/min).
GC–MS analysis was performed on an Agilent 6850
Series II apparatus; fitted GC–MS analysis was
performed using an Agilent 6850 Ser. A apparatus,
equipped with a fused silica HP-5 capillary column
(30 m 

 

×

 

 0.25 mm i.d., 0.33 

 

µ

 

m film thickness),
linked on line with an Agilent Mass Selective Detec-
tor MSD 5973 (ionization voltage 70 eV, electron
multiplier energy 2000 V). Gas chromatographic
conditions were as given above; transfer line was
kept at 295

 

°

 

C.
Most components were identified from their GC

retention indices, either with those reported in the
literature (Jennings & Shibamoto 1980; Davies
1990) or with those of authentic compounds
purchased from Sigma-Aldrich Co. (Milan, Italy).
The retention indices were determined in relation
to a homologous series of 

 

n

 

-alkanes (C

 

8

 

–C

 

24

 

) under
the same operating conditions. Further identifica-
tion was made by comparison of their MS spectra
either with spectral data stored in NIST 02 and
Wiley 275 libraries or with mass spectra from the
literature (Jennings & Shibamoto 1980; Adams
2001) and our home-made library. The relative
concentrations of the components were calculated
based on GC peaks without using correction
factors.

 

Results

 

PCR assays

 

By PCR assays using primers derived from rDNA
sequences, phytoplasmal infections were detected in
all symptomatic Spanish broom plants examined.
Neither by direct (“one-round”) nor by nested PCR
assays was DNA amplified from template DNA
isolated from any of the non-symptomatic plants.
On the basis of primer specificity and RFLP analysis
of PCR-amplified phytoplasmal rDNA, all 15
diseased plants examined proved to be primarily
infected by the EY-related phytoplasma, whereas
“

 

Candidatus

 

 Phytoplasma spartii” occurred in low
concentration and thus could be detected only
through nested PCR. Examples of PCR amplifica-
tion and RFLP analysis of PCR-amplified phyto-
plasmal rDNA from SpaWB-affected Spanish
broom plants have been previously shown (Marcone
et al. 1996, 1997, 1998) and are also shown in
Figures 2 and 3.

 

Figure 2. Detection of “

 

Candidatus

 

 Phytoplasma spartii” by nested PCR assays using the universal phytoplasma primer pair P1/P7 followed by the primer pair P1/rSP.Note: Ca. P. spartii, “

 

Candidatus

 

 Phytoplasma spartii” Sp.ju.1 trough Sp.ju.10, samples from diseased Spanish broom plants; Healthy, healthy Spanish broom; M, 1-kb DNA ladder (BRL Life Technologies).Figure 3.

 

Alu

 

I (A) and 

 

Rsa

 

I (B) restriction profiles of phytoplasma ribosomal DNA amplified by PCR using the universal primer pair P1/P7.Note: AT, strain of “

 

Candidatus

 

 Phytoplasma mali” Ca. P. spartii, “

 

Candidatus

 

 Phytoplasma spartii” Sp.ju.1 trough Sp.ju.4, samples from diseased Spanish broom plants; ULW, strain of “

 

Candidatus

 

 Phytoplasma ulmi” M, 1-kb DNA ladder (BRL Life Technologies).

 

Analysis of volatile fraction

 

Flowers from the healthy and the diseased plants
yielded a volatile fraction at a rate, calculated on a
fresh weight basis, of 0.022 

 

±

 

 0.017% and 0.015 

 

±

 

0.004%, respectively. Also, the qualitative profile of
the oil extracted from the healthy and the diseases
plants differed significantly. The composition of the

Figure 2. Detection of “Candidatus Phytoplasma spartii” by nest-
ed PCR assays using the universal phytoplasma primer pair P1/
P7 followed by the primer pair P1/rSP.
Note: Ca. P. spartii, “Candidatus Phytoplasma spartii”; Sp.ju.1
through Sp.ju.10, samples from diseased Spanish broom plants;
Healthy, healthy Spanish broom; M, 1-kb DNA ladder (BRL
Life Technologies).

Figure 3. AluI (A) and RsaI (B) restriction profiles of phytoplas-
ma ribosomal DNA amplified by PCR using the universal primer
pair P1/P7.
Note: AT, strain of “Candidatus Phytoplasma mali”; Ca. P.
spartii, “Candidatus Phytoplasma spartii”; Sp.ju.1 through
Sp.ju.4, samples from diseased Spanish broom plants; ULW,
strain of “Candidatus Phytoplasma ulmi”; M, 1-kb DNA ladder
(BRL Life Technologies).
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essential oils are reported in Table I, in which the
components are listed in the order of elution on an
HP-5 MS column (w/w). Twenty-four components,
accounting for 76.7% of the volatile fraction compo-
sition, were identified in the healthy plants, whereas
23 components, accounting for 75.9% of the volatile
fraction, were present in the diseased plants. In both
the healthy and the diseased plants, the main
components were 

 

n

 

-alkanes, which occurred at a
rate of 55.2% and 38.8%, respectively. Among
them, tricosane (14.4%), pentacosane (7.3%) and
heptacosane (4.6%) were the main components in
the healthy plants, whereas tricosane (5.5%), nona-
cosane (5.3%) and triacontane (5.0%) were preva-
lent in the diseased plants. The amount of aliphatic
acids was considerably lower in flowers of the
diseased plants than in those of the healthy plants. In
the healthy plants, such compounds amounted to
18.7% of the volatile fraction, with tetradecanoic

acid (7.7%) and hexadecanoic acid (6.9%) present
at the highest amounts. In the diseased plants, the
aliphatic acid level was 4.5%. Monoterpenes were
almost absent in the healthy plants except pulegone,
which occurred at a rate of 0.6%. Conversely,
approximately one-third of the volatile fraction of
the diseased plants was represented by six sesquiter-
penes (30.5%). Among them, five (25.5%) were
oxygenated compounds. 

 

τ

 

-Cadinol (19.2%) was the
main component.

 

Discussion

 

Our data demonstrate that the volatile fraction yield
was reduced in the diseased plants and that there
was a marked increase in the amount of sesquiterpe-
nes and a decrease in the amount of 

 

n

 

-alkanes and
aliphatic compounds. The results of our study
largely agree with the findings of Bruni et al. (2005),

 

Table I. Volatile fraction composition of flowers from healthy and spartium witches’-broom-affected 

 

S. junceum

 

 plants.

 

K

 

i

 

a

 

K

 

i

 

b

 

Compound Healthy (%) Diseased (%) Identification

 

c

 

1234 1662 Pulegone 0.6 

 

±

 

 0.1 ND

 

R

 

i

 

, MS
1435 1650

 

γ

 

-Elemene ND 5.0 

 

±

 

 0.3

 

R

 

i

 

, MS
1563 2050 (

 

E

 

)-Nerolidol ND 3.6 

 

±

 

 0.5

 

R

 

i

 

, MS
1567 2503 Dodecanoic acid 1.6 

 

±

 

 0.1 ND

 

R

 

i

 

, MS, Co-GC
1574 2069 Germacrene D-4 ol ND 0.5

 

R

 

i

 

, MS
1578 2008 Caryophyllene oxide ND 1.1

 

R

 

i

 

, MS, Co-GC
1640 2187

 

τ

 

-Cadinol ND 19.2 

 

±

 

 0.4

 

R

 

i

 

, MS
1686 2219

 

α

 

-Bisabolol ND 1.1 

 

±

 

 0.1

 

R

 

i

 

, MS
1758 2713 Tetradecanoic acid 7.7 

 

±

 

 0.1 1.8 

 

±

 

 0.1

 

R

 

i

 

, MS, Co-GC
1959 2931 Hexadecanoic acid 6.9 

 

±

 

 0.1 ND

 

R

 

i

 

, MS, Co-GC
1983 2234 Hexadecanoic acid ethyl ester 1.6 

 

±

 

 0.1 1.0 

 

±

 

 0.1

 

R

 

i

 

, MS, Co-GC
2100 2100 Heneicosane 0.8 

 

±

 

 0.1 ND

 

R

 

i

 

, MS
2163 2569 (

 

Z,Z,Z

 

)-9,12,15-Octadecatrienoic acid ethyl ester ND 1.7 

 

±

 

 0.2

 

R

 

i

 

, MS, Co-GC
2187 2467 (

 

Z

 

)-9-Octadecenoic acid ethyl ester 0.9 

 

±

 

 0.3 ND

 

R

 

i

 

, MS, Co-GC
2200 2200 Docosane 0.6 ± 0.1 0.5 ± 0.2 Ri, MS, Co-GC
2300 2300 Tricosane 14.4 ± 0.7 5.5 ± 0.1 Ri, MS, Co-GC
2400 2400 Tetracosane 2.9. ± 0.5 1.9 ± 0.8 Ri, MS, Co-GC
2500 2500 Pentacosane 7.3 ± 0.6 3.1 ± 0.5 Ri, MS
2592 Hexacosene 0.3 ± 0.1 ND Ri, MS
2600 2600 Hexacosane 2.5 ± 0.1 2.8 ± 0.7 Ri, MS
2700 2700 Heptacosane 4.6 ± 0.4 3.8 ± 0.5 Ri, MS
2800 2800 Octacosane 3.3 ± 0.6 3.2 ± 0.5 Ri, MS
2827 3063 Squalene 1.5 ± 0.2 1.5 ± 0.1 Ri, MS
2894 Nonacosene 0.4 ± 0.1 0.6 ± 0.4 Ri, MS
2900 2900 Nonacosane 4.4 ± 0.1 5.3 ± 0.5 Ri, MS
2985 Methyltriacontane 1.2 ± 0.3 ND Ri, MS
3000 3000 Triacontane 4.5 ± 0.5 5.0 ± 0.4 Ri, MS
3100 3100 Hentriacontane 3.3 ± 0.4 2.8 ± 0.1 Ri, MS
3200 3200 Dotriacontane 2.7 ± 0.1 2.4 ± 0.2 Ri, MS
3300 3300 Tritriacontane 2.0 ± 0.6 2.5 ± 0.7 Ri, MS
3400 3400 Tetratriacontane 0.7 ± 0.1 ND Ri, MS

aRetention index on HP-5 column.
bRetention index on HP Innowax column.
cRi, retention index identical to bibliography; MS, identification based on the comparison of mass spectra; Co-GC, retention time identical 
to authentic compound.
Note: ND, not detected.D
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who found sesquiterpenes as defense compounds in
ash yellows phytoplasma infections in Hypericum
perforatum. Moreover, Miraldi et al. (2004) found
that the main components of the volatile fraction
extracted from flowers of apparently healthy S.
junceum plants sampled in Tuscany, Italy, were
hydrocarbons, which altogether accounted for about
48% of the total volatile fraction composition.

The presence of substantial amounts of sesquiter-
penes in the volatile fraction of SpaWB-affected
Spanish broom plants and their absence in the
healthy plants may be related to the role of phyto-
plasmal infections in triggering plant defense
responses. Plant antimicrobial compounds include a
broad array of low-molecular-weight secondary
metabolites known as phytoalexins. Among these,
sesquiterpenes have been shown to be induced in
several plants challanged by fungi, bacteria and
abiotic and other biotic factors (Hammerschmidt
1999; Xu et al. 2004; Cardoza & Tumlinson 2006).
The relationship between the pest or pathogen and
the infected plant has been studied previously as
well. Rajeswara Rao et al. (2004) reported that leaf-
sucking insects affected the composition of the essen-
tial oil of Cymbopogon winterianus Jowitt and that the
total amount of sesquiterpenes increased with the
increase in the severity of the disease. The effects of
Fusarium oxysporum var. redolens (Wollenweb.) on the
yield and quality of oils of Pelargonium species have
also been reported (Rajeswara Rao et al. 1999).

Thus, the present work can contribute to expand-
ing our knowledge of the effects of phytoplasmal
infections on the secondary metabolism of plants.
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