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Abstract. We discuss the phenomenon of long-distance entanglement (LDE)
in the ground state of quantum spin models, its use in high-fidelity and robust
quantum communication, and its realization in many-body systems of ultracold
atoms in optical lattices and in arrays of coupled optical cavities. We investigate
X X quantum spin models on one-dimensional lattices with open ends and
different patterns of site-dependent interaction couplings, singling out two
general settings: patterns that allow for perfect LDE in the ground state of the
system, namely such that the end-to-end entanglement remains finite in the
thermodynamic limit, and patterns of quasi-long-distance entanglement (QLDE)
in the ground state of the system, namely such that the end-to-end entanglement
vanishes with a very slow power-law decay as the length of the spin chain is
increased. We discuss physical realizations of these models in ensembles of
ultracold bosonic atoms loaded in optical lattices. We show how, using either
suitably engineered super-lattice structures or exploiting the presence of edge
impurities in lattices with single periodicity, it is possible to realize models
endowed with nonvanishing LDE or QLDE. We then study how to realize models
that optimize the robustness of QLDE at finite temperature and in the presence
of imperfections using suitably engineered arrays of coupled optical cavities. For
both cases the numerical estimates of the end-to-end entanglement in the actual

6 Author to whom any correspondence should be addressed.

New Journal of Physics 12 (2010) 025019
1367-2630/10/025019+30$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:illuminati@sa.infn.it
http://www.njp.org/


2

physical systems are thoroughly compared with the analytical results obtained
for the spin model systems. We finally introduce LDE-based schemes of long-
distance quantum teleportation in linear arrays of coupled cavities, and show
that they allow for high-fidelity and high success rates even at moderately high
temperatures.
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1. Introduction

Quantum entanglement plays a crucial role in many areas of quantum information science [1],
including, among others, quantum cryptography and secure quantum key distribution [2], and
quantum communication [3]. For this reason, much work has been dedicated to single out
ways of producing useful entanglement for efficient and robust implementation of quantum
information tasks. The most natural way of creating entanglement between two or more
constituents of a quantum information device appears to be by means of direct interactions
because, intuitively, large amounts of entanglement should be associated with the presence
of strong quantum correlations. However, from a general quantum informatic perspective, an
even more desirable goal is to envisage ways of producing large amounts of entanglement
shared between distant and generally not directly interacting constituents. Along the way
to accomplishing this task, a first step has been realized by introducing the concept of
localizable entanglement [4], namely the rate of entanglement that can be concentrated on
a pair of arbitrarily distant constituents by performing optimal local measurements onto the
remainder of the system. More recently, it has been shown that the ground state of some spin
models with finite correlation length defined on one-dimensional chains with open ends can
support large values of the end-to-end entanglement between the initial and final points of
the chain, insensitive or only very weakly sensitive to the size of the system [5–8]. This type
of entanglement has thus been dubbed long-distance entanglement (LDE). In this approach,
the guiding principle is to look for systems whose ground state (GS) can support intrinsically
large amounts of (long-distance) entanglement, even at moderately high temperatures and in the
presence of bulk imperfections, without the need for performing operations and measurements
or for continuous dynamical controls and adjustments of the couplings. Clearly, the property
of LDE would be very appealing in the quest to design quantum information devices, which
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perform tasks efficiently and at the same time are sufficiently robust against decoherence,
based on (properly engineered) many-body systems of condensed matter that could possibly
be realized with currently available technologies, or technologies that might be developed in the
near future.

The scope of the present work is to investigate various theoretical aspects of the
phenomenon of LDE in quantum many-body physics, to introduce possible concrete
experimental implementations with currently available many-body systems of atomic physics
and quantum optics, and to discuss simple schemes of LDE-based efficient and robust quantum
communication. Concerning theoretical modeling, here and in the following we will consider
as paradigmatic test-beds some very simple isotropic quantum spin models on open chains
with X X -type interactions of site-dependent strength. For suitable choices of the sets of site-
dependent couplings, these models can show large values of the entanglement shared by the
end spins of the chain [7, 8]. Notwithstanding their apparent simplicity, they represent a very
powerful and useful tool to investigate, identify, classify and summarize the different possible
types of LDE, and the properties associated with different patterns of site-dependent interaction
strengths. Moreover, these different classes of X X quantum spin models with site-dependent
interaction couplings turn out to be very well suited to assess the experimentally relevant
problem of the vanishing of the energy gap as a function of the size of the system, and to identify,
unambiguously, the optimal range of parameters compatible with the largest achievable value
of LDE at fixed values of temperature and length of the chain.

After establishing the general theoretical framework, we will analyze some possible
realizations based on two many-body systems of current experimental interest and that are
moreover evolving and being developed at a fast pace, namely systems of ultracold neutral
atoms in optical lattices [9] and arrays of coupled cavities [10]. These two systems share some
common features. They can be seen as ensembles of local structures that interact with each other
via the exchange of bosonic particles, atoms in the case of optical lattices and photons in the
case of coupled cavities. Both systems allow one to simulate quantum spin models by effectively
reducing the dimension of the local state space, and by realizing spin–spin interactions via
inter-site hopping amplitudes. However, while the hopping amplitude in an array of coupled
optical microcavities can be tuned at will, at least in principle, either by adjusting the inter-
cavity overlaps or by tuning the cavities’ fundamental physical parameters (Rabi couplings,
quality factors, etc) of every single cavity (single-site addressing), this task appears to be much
more challenging in optical lattices, for which the inter-site properties are indissolubly woven
with the frequency of the external laser potentials; hence site-dependent interactions between
the effective spins can be engineered either by introducing atomic impurities or by designing
super-lattice structures. We will discuss the merits and disadvantages of both types of systems
in the quest for the experimental demonstration of LDE and its use in the realization of efficient,
robust and high-fidelity quantum information tasks.

The paper is organized as follows. In section 2, we introduce the general X X spin chain
Hamiltonian with arbitrary site-dependent couplings and review the methods to determine its
spectrum, its ground-state properties and end-to-end concurrence. In section 3, we investigate
the properties of LDE for different patterns of site-dependent interaction couplings, singling
out two different general situations: patterns that allow for perfect LDE, namely such that
the end-to-end entanglement remains finite in the limit of diverging size of the system, and
quasi-LDE (or imperfect LDE), namely such that the end-to-end entanglement vanishes with
a very slow power-law decay as the length of the chain increases. In section 4, we discuss
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how to realize or, better, how to simulate the models analyzed in section 3 with ensembles of
ultracold bosonic atoms loaded in optical lattices. In the literature there exist several proposals
to implement LDE-free spin models, with either uniform [11–13] or random [14] spin–spin
couplings, using optical lattices in various settings. Here we show how, either using suitably
engineered super-lattice structures or exploiting the presence of edge impurities in lattices
with single periodicity, it is possible to realize models endowed with nonvanishing LDE in
the ground state. In section 5, we investigate how spin models supporting LDE by the use of
suitable array structures of coupled cavities can be realized. In fact, these systems are being
intensively studied in relation to their ability to realize/simulate collective phenomena typical
of strongly correlated systems of condensed matter [10], [15–19]. Concerning the simulation
of spin models, we show how, at least in principle, this type of system allows one to simulate
straightforwardly X X models with arbitrary patterns of site-dependent couplings and different
types of LDE. In both sections, numerical estimates of the end-to-end entanglement in the
actual physical systems are thoroughly compared with the results obtained in the simulated
spin model systems. In section 6, we discuss the implementation of an LDE-based scheme
of long-distance quantum teleportation exploiting open linear arrays of coupled cavities. In
particular, we show that this scheme allows for high-fidelity teleportation even at moderately
high temperatures and in the presence of noise. Finally, in the conclusions we summarize
our findings and discuss some outlooks on possible future developments along this line of
research.

2. General structure of X X quantum spin models on open chains

As anticipated in the introduction, in this section we discuss the properties of X X quantum
spin-1/2 models defined on one-dimensional lattices with open ends, with specific patterns
of nearest-neighbor interactions. Such models are all special instances of the general X X
Hamiltonian

HX X =

N−1∑
i=1

Ji

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
, (1)

where Ji is the interaction strength between spins at nearest neighboring sites i and i + 1, Sα
i is

the spin-1/2 operator defined at site i and N is the total number of sites (spins) or, equivalently,
the length of the chain. The spectrum of this Hamiltonian can be determined exactly by a
straightforward generalization of the methods first discussed by Lieb et al [20]. The first step in
the procedure is to perform a Jordan–Wigner transformation [21],

S+
i = c†

i eiπ
∑i−1

j=1 c†
j c j , S−

i = e−iπ
∑i−1

j=1 c†
j c j ci , Sz

i = c†
i ci −

1

2
, (2)

where S±

j = Sx
j ± iSy

j . As a result, Hamiltonian (1) is mapped in the free fermion Hamiltonian

H =
1

2

N−1∑
i=1

Ji

(
c†

i ci+1 + c†
i+1ci

)
= c† Mc, (3)
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where c†
= (c†

1, . . . , c†
N ) (c) is the vector of the N fermionic creation (annihilation) operators,

one for each site of the lattice, and the adjacency matrix M reads

M =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 J1 0 . . . 0

J1 0 J2

0 J2 0
...

...
. . . JN−2 0

JN−2 0 JN−1

0 . . . 0 JN−1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4)

Given the GS of the system, we are interested in the evaluation of the end-to-end entanglement
in the reduced two-qubit state between the first spin at site 1 and the last spin at site N . One
thus needs to determine the spin–spin concurrence (entanglement of formation) between the
end points of the chain. This quantity can be computed exactly for any two-qubit state (pure
or mixed), thanks to the celebrated Wootters formula [22], and the task is left to obtain its
explicit expression in the reduced state of the two end-point spins. To this purpose, we need to
calculate explicitly all the possible forms of two-point correlations in the GS. Hamiltonian (1)
is symmetric under rotations of the spins around the z-axis, so that the only nonvanishing
correlations are 〈Sx

i Sx
j 〉 = 〈Sy

i Sy
j 〉, 〈Sz

i Sz
j 〉 and 〈Sz

i 〉. In the absence of external magnetic fields,
π -rotations around the x and y axes are symmetries of the model, which additionally implies
〈Sz

i 〉 = 0 at every site. Thanks to the aforementioned symmetries, the two-point reduced density
matrix ρi, j , obtained by tracing the ground-state density matrix of the entire system over all
spins except the ones at sites {i, j}, has the form

ρi, j =
1

4
+ 〈Sx

i Sx
j 〉 (σ x

⊗ σ x + σ y
⊗ σ y) + 〈Sz

i Sz
j 〉σ

z
⊗ σ z, (5)

where σ x,y,z are the Pauli matrices and 〈·〉 is the GS average at temperature T = 0, or the thermal
one at finite temperature β = (kBT )−1 with respect to the Gibbs state ρ = e−β H Z−1. We are
interested in the case in which i = 1 and j = N are the two end points of the chain. In this
instance, we have

S+
1 S−

N + S−

1 S+
N = −eiπN (c†

1cN + c†
N c1), Sz

1 Sz
N = (c†

1c1 −
1
2)(c

†
N cN −

1
2), (6)

where N =
∑N

i=1 c†
i ci is the total number operator. Applying Wick’s theorem and taking into

account that 〈c†
i ci〉 = 1/2, we obtain

〈S+
1 S−

N + S−

1 S+
N 〉 = −eiπ N/2(〈c†

1cN 〉 + 〈c†
N c1〉), 〈Sz

1 Sz
N 〉 = −〈c†

1cN 〉〈c†
N c1〉. (7)

Setting x ≡ 〈c†
1cN 〉 we see that the end-to-end reduced density matrix depends uniquely on

this parameter. For reduced states of form (5), the end-to-end concurrence C1,N is readily
computed [23]. In our case, we have

C1,N = 2 max
{
0, x2 + |x | −

1
4

}
. (8)

The concurrence is thus nonvanishing for |x | > (
√

2 − 1)/2 ' 0.207, and it reaches the
maximum value C1,N = 1 for |x | → 1/2.
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It is natural to expect that the existence of a strong quantum correlation between the two end
spins of the chain can be conveniently exploited for performing tasks in quantum information,
in particular considering teleportation schemes. In the standard quantum teleportation protocol,
two parties A and B share a maximally entangled state (Bell state). Party A holds also a
third qubit, whose unknown state is to be teleported. If the two end points of our X X chain
share a highly entangled state, that in some limit may even be asymptotically close to a Bell
state, they can be identified as the two parties, sender and receiver, for a long-distance, high-
fidelity teleportation protocol. The efficiency of a quantum channel in teleporting an unknown
state is quantified by the fidelity f between the output and the input states, averaged over
all input realizations. The fidelity depends on the actual properties of the entangled resource
ρ1,L (cf equation (5)) shared by the end spins of the chain. In fact, it has been demonstrated
that the optimal fidelity depends only on the ‘fully entangled fraction’ Ffull, according to
the formula f = (2Ffull + 1)/3 [24]. The fully entangled fraction is defined as the fidelity
between the resource ρ1,L and a maximally entangled state, maximized over all possible
maximally entangled states. For states of the form (5), it can be easily computed and reads
Ffull =

1
4 + |x | + x2 [25]. The associated teleportation fidelity is thus

f =
2

(
1
4 + |x | + x2

)
+ 1

3
, (9)

and, taking into account equation (8), from equation (9) we obtain the expression of the
concurrence C1,N as a function of the fidelity:

C1,N = 2 max
{
0, 3

2 f − 1
}
. (10)

This expression highlights the crucial interplay between entanglement and efficiency in quantum
information protocols. In fact, due to the high symmetry of states of the form (5), a nonvanishing
entanglement implies a nonclassical teleportation fidelity exceeding the classical threshold 2/3,
and vice versa. Moreover, the relation between the maximum fidelity that can be obtained in a
quantum teleportation between the end points of the spin chain and the end-to-end equation (10)
provides a simple route to probe, via experimental implementations of quantum teleportation
protocols, the actual values of the generated LDE C1,N .

All the physical information about model (3) can now be obtained by diagonalizing the
one-body matrix M . Let ξk be the eigenvector of M with eigenvalue 3k , where k is a quasi-
momentum label. Passing to new fermionic operators via the transformation ci =

∑
k ξ

(i)
k ck , the

Hamiltonian takes the form

HX X =

∑
k

3kc†
kck. (11)

The evaluation of the two-point correlation x is finally straightforward:

x =

∑
k,q

ξ
(1)

k ξ (N )
q 〈c†

kcq〉

=


∑
3k<0

ξ
(1)

k ξ
(N )

k for T = 0,∑
k

ξ
(1)

k ξ
(N )

k

1

1 + eβ3k
for T > 0,

(12)

where x depends on the set of the couplings Ji as well as on the temperature T , whenever T 6= 0.
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In conclusion, the full evaluation of the end-to-end entanglement in X X quantum spin
models defined on open chains, with arbitrary patterns of site-dependent nearest-neighbor
interactions, is strictly associated with the complete diagonalization of the M matrix in
equation (4). While in some particular cases it is possible to find the exact analytic expressions
of the eigenvalues and of the eigenvectors of M [7, 26], in the most general case the problem
has to be solved by exact numerical diagonalization.

3. End-to-end entanglement properties of X X spin chains

Having reviewed the basic definitions and mathematical tools needed to analyze the end-to-end
entanglement properties in X X spin chains with arbitrary site-dependent interaction strengths,
we need to look for those sets of couplings that allow for large values of LDE, possibly robust
against thermal decoherence and bulk imperfections, the required entanglement properties. The
basic idea for concentrating a large amount of entanglement on the two end spins of the chain
is inspired by the observation that for some frustration-free systems, like the antiferromagnetic
Heisenberg model [5, 6], and some X X -type models [7, 8], the total energy is minimized by
states tending to form a global singlet. This fact, together with the property of monogamy for
bipartite entanglement [27], is the primary cause for the phenomenon of LDE. Namely, if one
selects a set of interaction couplings in the Hamiltonian equation (1) that are such to forbid
the end spins to entangle with any other constituents, then, by monogamy, strong quantum
correlations will develop between them.

3.1. Perfect LDE

In analogy with the case of the dimerized antiferromagnetic Heisenberg, that was the system in
which the phenomenon of LDE was first discovered [5], we begin by reviewing the properties
of the X X spin chain with bonds of alternating strengths, i.e. a model in which each weak bond
(Jk−1 = λJ with λ � 1) between neighboring spins at sites is followed by a much stronger one
(Jk = J ) between the successive pair of neighboring spins. This model has been introduced
and investigated in [7]. If the chain is formed of an even number of sites and the two end
points are coupled to their nearest neighbors with a weak bond, this model fulfills exactly the
requirements needed in order to establish perfect LDE between the end spins of the chain.
Namely, any spin in the chain but the end ones is subject to a weak (left) interaction and to a
strong (right) interaction. Hence, every spin in the bulk tends to be maximally entangled with
its strongly interacting neighbor. Each of the two end spins is subject only to a weak bond
interaction, and is therefore excluded from the arrangement in pairs of nearest-neighbor singlets
due to the monogamy property of bipartite entanglement [27]. Furthermore, because the GS of
the model tends to be a collection of singlets, the two end spins are effectively coupled and
develop a nonvanishing LDE mediated by the remainder of the chain, notwithstanding the fact
that they do not interact directly in any way.

The above qualitative reasoning can be made precise and quantitative. The Hamiltonian for
the X X spin model with alternating weak and strong interactions is

H =
J

2

N−1∑
i=1

[(1 + λ) + (−1)i(1 − λ)]
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
. (13)
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Figure 1. End-to-end concurrence C1,N for the 1-D X X spin model with
alternating couplings described by the Hamiltonian equation (13), plotted as a
function of the number of lattice sites N (length of the chain), for different
values of the weak coupling λ. From bottom to top: magenta empty squares:
λ = 0.7; brown empty circles: λ = 0.6; orange inverted triangles: λ = 0.5; blue
triangles: λ = 0.4; green diamonds: λ = 0.3; red full squares: λ = 0.2; and black
full circles: λ = 0.1.

Following the approach described in the previous section, one can determine the end-to-end
concurrence for different values of λ and different lengths of the chain [7], as shown in figure 1.
We can see that as the weak coupling λ decreases below a threshold value λc = 0.765 [7], a
nonvanishing concurrence begins to develop. For a fixed length of the chain, decreasing λ still
further (and thus increasing the difference between the alternating couplings) allows the creation
of dimers between pairs of strongly interacting neighboring spins. The dimers, in turn, are very
weakly coupled to each other. Hence, because the two end spins of the chain interact very
weakly with their nearest neighbors, dimerization and monogamy of entanglement force the
creation of a strong quantum correlation between the end points, in analogy with what happens
in the Heisenberg case [5]. On the other hand, at fixed λ, the end-to-end concurrence C1,N as
a function of size N of the chain converges very rapidly to its thermodynamic-limit saturation
value:

C1,∞ = 2 max

{
0,

1

2
− λ2 +

λ4

4

}
. (14)

Next, it is important to verify that the phenomenon of strong end-to-end entanglement
survives in the presence of disorder. Indeed, in figure 2 we represent the behavior of the end-to-
end entanglement for different sample realizations of the following Hamiltonian with disordered
couplings:

H =
J

2

N−1∑
i=1

[(1 + λ) + (−1)i(1 − λ)](1 + χi)
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
, (15)

where χi is a random variable uniformly distributed in the interval {−χ̄ , χ̄}. As we may note,
the presence of noise bi-directionally affects the entanglement properties of the system, and the
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Figure 2. End-to-end entanglement as a function of the length of the chain for
the model with noisy couplings described by equation (15), where χi is a random
variable uniformly distributed in the interval {−χ̄ , χ̄}, and χ̄ = 0.2. The violet
area corresponding to λ = 0.2 and the blue one corresponding to λ = 0.4 are
the domains in which the different random samples may fall. They have been
obtained with 104 independent samples for each value N of the length of the
chain.

end-to-end concurrence is nonvanishing even in the presence of a noise with a relative weight
of 20%. For nearly half of the samples, noise increases the end-to-end concurrence. Moreover,
figure 2 shows that the stronger the end-to-end entanglement without noise, the weaker the
relative effect of the noise.

It would then seem that in order to obtain a physical system with strong LDE it should
be sufficient to engineer some concrete device that in appropriate limits simulates/realizes
an X X spin chain with alternating weak and strong couplings. Unfortunately, this is not the
case in realistic situations. As shown in figure 3, the phenomenon of perfect LDE is strictly
associated with an energy gap between the ground and the first excited states that vanishes
exponentially fast as a function of the length of the chain. Therefore, as soon as the system is at
temperatures comparable with the gap 1E , the equilibrium Gibbs state results in an incoherent
superposition of singlet and triplet states in which the LDE vanishes [6, 7]. Consequently, in
order to realize a nonvanishing entanglement between the two end points, even in short chains,
it would be necessary to reach temperatures fantastically close to absolute zero, something
that is well beyond reach in any foreseeable future, and in any case of no use for practical
applications.

One might still consider realizing the request of perfect LDE by looking at modifications or
alternatives to the pattern of perfectly alternating weak and strong couplings. Such a pattern has
been introduced with the aim of suppressing the formation of sizeable entanglement between
the end points and the remaining spins of the lattice. However, it is quite clear that this goal
can be achieved considering different spatial interaction patterns that have the effect of isolating
the bulk of the chain from the end points. This observation motivates the introduction of the
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Figure 3. Energy gap 1E(J ) between the ground and the first excited states,
in units of the coupling energy J , for the 1-D X X spin model with alternating
couplings described by the Hamiltonian equation (13), plotted as a function of
the length N of the chain for different values of the weak coupling λ. From top to
bottom: magenta empty squares: λ = 0.7; brown empty circles: λ = 0.6; orange
inverted triangles: λ = 0.5; blue triangles: λ = 0.4; green diamonds: λ = 0.3; red
full squares: λ = 0.2; and black full circles: λ = 0.1.
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Figure 4. Schematic drawing of X X spin chains endowed with perfect LDE in
the GS. Upper drawing: model equation (13), with alternating weak (λ < 1) and
strong couplings along the entire chain. Lower drawing: model equation (16),
with left and right end regions of alternating weak and strong couplings and a
central (bulk) region of uniform strong couplings.

following class of Hamiltonians:

H =
J

2

Ñ−1∑
i=1

[(1 + λ) + (−1)i(1 − λ)]
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
+

N−Ñ−1∑
i=Ñ

2
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)

+
N−1∑

i=N−Ñ

[(1 + λ) + (−1)i(1 − λ)]
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) . (16)

Model equations (13) and (16) with their spatial patterns of site-dependent couplings are
sketched pictorially in figure 4. The choice of the spatial pattern of the couplings that

New Journal of Physics 12 (2010) 025019 (http://www.njp.org/)

http://www.njp.org/


11

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

N

C
1,

N

Figure 5. End-to-end concurrence C1,N for an X X spin chain with alternating
couplings and a central region with uniform interactions, described by the
Hamiltonian equation (16), plotted as a function of the length N of the chain,
for different values of the weak coupling λ and a fixed value of the ratio
Ñ/N = 1/4. From bottom to top: magenta empty squares: λ = 0.7; brown empty
circles: λ = 0.6; orange inverted triangles: λ = 0.5; blue triangles: λ = 0.4; green
diamonds: λ = 0.3; red full squares: λ = 0.2; and black full circles: λ = 0.1.

characterizes model equation (13) allows one to preserve perfect LDE between the end points of
the X X spin chain, at the same time drastically increasing the energy gap between the GS and
the first excited states. In practice, it amounts to replacing in the bulk of the chain, i.e. between a
reference Ñ th spin and the (N − Ñ )th one, the alternating pattern of weak and strong couplings
with a uniform nearest-neighbor interaction. The results for the end-to-end entanglement as
a function of the length of the chain, for different values of λ and at a fixed value of the ratio
Ñ/N , are reported in figure 5. In the thermodynamic limit, the model described by equation (16)
exhibits an LDE behavior analogous to that of the model with fully alternating weak and strong
couplings described by equation (13), when the size of the chain is increased at a fixed, constant
value of the ratio Ñ/N . The only difference, as can be seen by comparing figure 1 with figure 5,
is that in the second case the end-to-end concurrence reaches the saturation value more slowly,
with a speed that decreases when decreasing the ratio Ñ/N . While the essential features of
LDE behavior are also shared by the modified model with uniform central interactions, the
behavior of the energy gap between the ground and the first excited states is instead strongly
affected, as shown in figure 6. As we can see from figure 6, the energy gap again decreases
as the length of the chain is increased, as in the previous case, and it attains values that forbid
possible experimental implementations of LDE at finite temperature (although higher than the
corresponding ones for the model with perfectly alternating couplings). Comparing figure 6 with
figure 3 and taking into account that in the present case Ñ = N/4, the behavior of the energy
gap does not depend on the total length N of the chain, but rather only on the length 2Ñ = N/2
of that part of the chain characterized by alternating pairings. This dependence of the energy
gap on the length of that part of the chain endowed with alternate couplings is confirmed by
the analysis of systems defined at different values of Ñ . This fact suggests investigating further
possibilities. Indeed, one may think of bringing the modification implemented in equation (16)
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Figure 6. Energy gap, in units of the coupling energy J , between the ground
and the first excited states for an X X spin chain with alternating couplings
and a central region with uniform interactions, described by the Hamiltonian
equation (16). The gap 1E(J ) is plotted as a function of the length N of
the chain, for different values of the weak coupling λ and at a fixed value of
the ratio Ñ/N = 1/4 . From top to bottom: magenta empty squares: λ = 0.7;
brown empty circles: λ = 0.6; orange inverted triangles: λ = 0.5; blue triangles:
λ = 0.4; green diamonds: λ = 0.3; red full squares: λ = 0.2; and black full
circles: λ = 0.1.

to the extreme, in order to realize nonnegligible values of LDE at small, but experimentally
feasible temperatures.

3.2. Quasi-long-distance entanglement

As we have seen at the end of the previous subsection, reducing the portion of an X X chain
with alternating patterns of interaction does not reduce the entanglement shared by the end
points and increases by several orders of magnitude the energy gap between the ground and the
first excited states, yet, unfortunately, it does not allow LDE to survive except at unrealistically
low temperatures. Therefore, in order to realize a nonvanishing LDE at low, but realistically
attainable temperatures, we consider taking the limit of equation (16) to a model with uniform
nearest-neighbor interactions for all pairs of spins but for the two end points which are connected
to the rest of the chain with a weak bond. Indeed, spin systems allowing for strong end-to-end
correlations should be characterized by interactions between the end points and their nearest
neighbors that are always smaller than the interactions in the bulk of the chain. Otherwise, if the
system does not meet this criterion, the end points would become strongly entangled with their
neighbors, excluding, due to the monogamy constraints [27], the possibility of LDE. Hence, we
consider an open X X spin chain formed by N − 2 spins with uniform coupling strengths, plus
two weakly interacting probes placed at the two end points. Such a model is described by the
Hamiltonian

H = J
N−2∑
i=2

[
Sx

i Sx
i+1 + Sy

i Sy
i+1

]
+ Jλ

(
Sx

1 Sx
2 + Sy

1 Sy
2 + Sx

N−1Sx
N + Sy

N−1Sy
N

)
, (17)
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Figure 7. End-to-end concurrence C1,N for an X X spin chain with uniform bulk
couplings and two weak end probes described by the Hamiltonian equation (17),
plotted as a function of the length N of the chain for different values of the
weak coupling λ. From bottom to top: orange inverted triangles: λ = 0.2; blue
triangles: λ = 0.16; green diamonds: λ = 0.12; red full squares: λ = 0.08; and
black full circles: λ = 0.04.

where 0 < λ < 1. The evolution of the end-to-end concurrence shared by the end points as a
function of the length of the chain for different values of the weak coupling λ is reported in
figure 7. At variance with what occurred in the models with patterns of alternating couplings
studied in the previous subsection, in the case of models with uniform bulk interactions and
weak end probes the GS end-to-end entanglement is sensitive to the size of the chain. It
decreases slowly as the length of the chain grows and vanishes at a critical value of the length,
which depends on the value of the weak coupling λ. This behavior of the GS end-to-end
entanglement is due to the fact that the region responsible for preventing the formation of
quantum correlations between the end points and the bulk of the chain is fixed at two lattice
spacings, and does not grow as the length of the chain is increased. However, by choosing
sufficiently small values of the weak coupling λ, it is always possible to realize a GS with
nonvanishing LDE in chains of arbitrary finite length. Hence, it is natural to name this behavior
QLDE, a phenomenon that differs from perfect LDE, as the latter occurs only when the system
admits a nonvanishing GS end-to-end entanglement that attains its maximum (saturation) value
in the thermodynamic limit.

In addition to the QLDE nature of the end-to-end entanglement in the GS, models with
weak end bonds possess an energy gap between the GS and the first excited states that exhibits
a very different behavior compared to the case of models characterized by LDE. As one can
see from figure 8, the energy gap does not exhibit an exponential decay with the size of the
chain as in the cases of figures 3 and 6. This fact, together with the possibility of choosing
the value of λ appropriately to ensure a nonvanishing QLDE shared by the end points in
chains of arbitrary finite length, opens the possibility for the experimental realization of QLDE
at low but realistically achievable temperatures with concrete physical systems engineered in
configurations suitable for the realization/simulation of model equation (17).

Even if the models introduced in the previous subsection and the one described by
equation (17) show different behaviors of the end-to-end entanglement, they share the property
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Figure 8. Energy gap 1E(J ), in units of the coupling energy J , between the GS
and the first excited states for an X X spin chain with weak end probes, described
by the Hamiltonian equation (17), plotted as a function of the length N of the
chain for different values of the weak coupling λ. From top to bottom: orange
inverted triangles: λ = 0.2; blue triangles: λ = 0.16; green diamonds: λ = 0.12;
red full squares: λ = 0.08; and black full circles: λ = 0.04.
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Figure 9. End-to-end entanglement as a function of the length of the chain for
the model with disordered couplings described by equation (18), where χi is a
random variable uniformly distributed in the interval {−χ̄ , χ̄} with χ̄ = 0.2. The
violet area corresponding to λ = 0.2 and the blue one corresponding to λ = 0.4
are the domains in which the different random samples may fall. They have been
obtained with 104 independent samples for each value N of the length of the
chain.

that it is robust in the presence of noise. Indeed, figure 9 displays the end-to-end entanglement
for different realizations of the model with disordered couplings described by the following
Hamiltonian:

H = J
N−2∑
i=2

χi

[
Sx

i Sx
i+1 + Sy

i Sy
i+1

]
+ J (λ + χ1)

(
Sx

1 Sx
2 + Sy

1 Sy
2

)
+ J (λ + χN−1)

(
Sx

N−1Sx
N + Sy

N−1Sy
N

)
,

(18)
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Figure 10. Schematic drawing of X X spin chains endowed with QLDE in the
GS. Upper drawing: model equation (17), with weak end bonds λ < 1 and
uniform unit couplings in the bulk. Lower drawing: λ–µ model equation (19),
with weak end bonds λ < 1, strong near-end bonds µ > 1 and uniform unit
couplings in the bulk.

where χi is a random variable uniformly distributed in the interval {−χ̄ , χ̄}. As with models
endowed with perfect LDE, also in the case of QLDE the presence of noise affects the end-
to-end concurrence bi-directionally, and the entanglement remains nonvanishing even when the
relative weight of the noise is up to 20%. Also, in the case of models associated with QLDE,
about half of the random sample realizations happen to increase the value of the concurrence
between the end points. Moreover, the disruptive effect of noise is strongly reduced for large
values of the end-to-end entanglement.

The role played by the two weak interactions in the model equation (17) is to force
the second ((N − 1)th) spin of the chain to become strongly entangled with the third
((N − 2)th) spin, thus forcing the first and last spins of the chain, due to entanglement
monogamy and the fact that this configuration is energetically favorable, to develop a
nonvanishing quantum correlation in the GS. This effect can be enhanced further by increasing
the interaction between the second and the third spins, and correspondingly between the
(N − 1)th and the (N − 2)th spins, well above the reference value between neighboring spins
in the bulk of the chain. In this case the model Hamiltonian reads

H = J
N−3∑
i=3

[
Sx

i Sx
i+1 + Sy

i Sy
i+1

]
+ λ

(
Sx

1 Sx
2 + Sy

1 Sy
2 + Sx

N−1Sx
N + Sy

N−1Sy
N

)
+ µ

(
Sx

2 Sx
3 + Sy

2 Sy
3 + Sx

N−2Sx
N−1 + Sy

N−2Sy
N−1

)
. (19)

Model equations (17) and (19) with their spatial patterns of site-dependent couplings are
sketched pictorially in figure 10. In equation (19) we have λ < 1 and µ > 1, so that λJ
(weak end bond) < J (uniform bulk interaction) < µJ (strong near-end bond). The increased
efficiency granted by model equation (19) for the process of creating a nonvanishing QLDE
between the two end points of the chain can be appreciated in figure 11, where model (17) with
simple weak end bonds λ = 0.1, µ = 1, is compared with model (19) with the same value of
λ and different values of the strong near-end bonds µ > 1. In the following, Hamiltonians (17)
realizing simple QLDE in the GS will be referred to as λ models, whereas Hamiltonians (19)
that realize enhanced QLDE in the GS will be referred to as λ–µ models. It is not surprising
that the strong enhancement brought by the λ–µ model to the QLDE that can be accommodated
in the GS is obtained at the cost of a (relatively moderate) trade-off with the behavior of the
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Figure 11. End-to-end concurrence C1,N for the λ–µ spin chain described by
Hamiltonian equation (19), plotted as a function of the length N of the chain,
for a fixed value of the weak coupling λ = 0.1, and different values of the strong
coupling µ. From top down: orange inverted triangles: µ = 5; blue triangles:
µ = 4; green diamonds: µ = 3; and red full squares µ = 2. The lowest-lying
line (black full circles) is the one with µ = 1, corresponding to the λ model
equation (17), and is drawn for comparison.
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Figure 12. Energy gap 1E(J ) (in logarithmic scale), in units of the uniform bulk
coupling J , between the GS and the first excited states for the λ–µ spin chain
described by Hamiltonian equation (19), plotted as a function of the length N of
the chain, for a fixed value of the weak coupling λ = 0.1, and different values of
the strong coupling µ. From bottom up: orange inverted triangles: µ = 5; blue
triangles: µ = 4; green diamonds: µ = 3; and red full squares µ = 2. The line
with µ = 1 (black full circles) corresponds to the λ model equation (17), and is
drawn for comparison.

energy gap. In figure 12 we have compared the behavior of the energy gap, as a function
of the size of the system, for the λ model and various λ–µ models with the same value
of λ and different values of µ. At this point, the question naturally arises of optimizing the
parameters of the Hamiltonian in order to single out the maximum possible value of the QLDE
compatible with an energy gap sufficiently large to warrant a concrete physical realizability at

New Journal of Physics 12 (2010) 025019 (http://www.njp.org/)

http://www.njp.org/


17

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

λ

μ

0

1

Figure 13. Two-dimensional contour plot of end-to-end concurrence C1,N as a
function of weak and strong couplings λ and µ, for a 1-D λ–µ spin model (19)
on an open linear chain of N = 10 spins at a reduced temperature T/J = 0.05.
The color map relative to the values of the concurrence is reported on the left.
Values vary from 0 (violet) to 1 (red).

finite temperature. Obviously, the process of optimization of the Hamiltonian parameters does
not provide a unique general answer. Rather, the results will vary, depending on the length of
the chain that one wants/needs to consider as well as on the minimum working temperature
that is fixed by the external experimental conditions. In the following, we will always consider
the models of enhanced QLDE described by Hamiltonian (19), which for µ = 1 reduce to
models (17) of simple QLDE. A typical result of the optimization process for a λ–µ spin chain
of finite length is shown in figure 13 in the case N = 10. It is important to notice that too
high values of µ and/or too low values of λ, contrary to naive intuition, do not help because
they lead either to an effective separation of the end points from the rest of the chain or to a
much too small energy gap compared to the energy amplitude of thermal excitations. In both
cases, the associated QLDE vanishes. Moreover, the fact that very large values of the end-to-end
entanglement are always associated with small energy gaps implies, as the figure shows, that the
optimization process is never trivial (especially in determining the regions of matching values
for the couplings); therefore, it represents a key point in the discussion of realistic physical
systems able to simulate/realize models endowed with QLDE, a subject that we investigate in
the following sections.

As with the other cases considered previously, the λ − µ model is also robust against noise
affecting the coupling amplitudes. This resilience is shown in figure 14, displaying end-to-end
entanglement for different realizations of the model with disordered couplings described by the
Hamiltonian

H = J
N−3∑
i=3

χi

[
Sx

i Sx
i+1 + Sy

i Sy
i+1

]
+ λχ1

(
Sx

1 Sx
2 + Sy

1 Sy
2

)
+ λχN−1

(
Sx

N−1Sx
N + Sy

N−1Sy
N

)
+µχ2

(
Sx

2 Sx
3 + Sy

2 Sy
3

)
+ µχN−2

(
Sx

N−2Sx
N−1 + Sy

N−2Sy
N−1

)
. (20)
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Figure 14. End-to-end entanglement as a function of the length of the chain
for the model with disordered couplings described by equation (20), where
χi is a random variable uniformly distributed in the interval {−χ̄ , χ̄} with
χ̄ = 0.2. The violet area, corresponding to λ = 0.1 and µ = 2.0, and the blue
area, corresponding to λ = 0.1 and µ = 5.0, are domains in which the different
random samples may fall. They were obtained with 104 independent samples for
each value of the length N of the chain.

Here, as in the previous cases, χi is a random variable uniformly distributed in the interval
{−χ̄ , χ̄}.

4. End-to-end entanglement in optical lattices

Until now we have analyzed in some detail the question of identifying specific instances of open
X X spin chains with different patterns of site-dependent interactions that possess GSs endowed
with large values of the entanglement shared by the end points and an energy gap compatible
with physical realizations at finite temperature. Here and in the following, we investigate
concrete instances of atomic and quantum optical systems that may allow the experimental
demonstration of LDE and QLDE.

We first consider systems of ultracold neutral atoms loaded on a one-dimensional optical
lattice generated by interfering laser beams [9]. The dynamics of such systems is usually well
described, depending on the nature of the atoms present in the ensemble, by a Bose–Hubbard
model [28] or by a fermionic Hubbard model, or by mixtures of atoms of different species, such
as Bose–Bose [29], Fermi–Fermi [30] and Bose–Fermi mixtures [31]. Regardless of the specific
cases realized, the parameters in the various Hamiltonians can be easily controlled by tuning
both the intensity and the frequency of the laser beams. This fact, i.e. that all the Hamiltonian
parameters can be manipulated and modified with a high degree of control, makes optical lattices
of particular interest for the simulation/realization of models of interacting quantum systems.
The mapping of Hubbard-type models into X X spin models, in appropriate regimes of the
parameters, was originally discussed in the fundamental work of Fisher et al [32], where the
Bose–Hubbard model was introduced. In recent years, several works have been dedicated to
the simulation of spin models using Hubbard Hamiltonians realized in optical lattices. However,
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in most of these works the spin–spin interactions are usually taken to be either uniform [12, 13]
or completely random [14].

Let us consider a 1-D optical chain loaded with single-species ultracold bosonic atoms.
The system is described by the 1-D Bose–Hubbard Hamiltonian [28] that can be written as

H =
U

2

N∑
i=1

ni(ni − 1) − t
N−1∑
i=1

(b†
i bi+1 + h.c.), (21)

where b†
i (bi ) is the creation (annihilation) operator of a bosonic atom at the i th site of the

chain, ni = b†
i bi is the number operators at site i and N is the number of sites in the chain.

The parameter U denotes the strength of the local on-site repulsion, whereas t is the hopping
amplitude between adjacent sites. These Hamiltonian parameters depend on the quantities
characterizing the external periodic optical field, taking into account only the lowest vibrational
states for every minimum of the periodic potential [28].

The simplest approach to simulate X X spin models starting with the bosonic Hubbard
Hamiltonian equation (21) relies on the fact that the local Fock states with either one or no
particle per site differ from all other local Fock states in that they are the only two local levels
whose energy is not dependent on the repulsion. Therefore, in the strong interaction regime
(U � t), they are automatically separated from the others, and hence they can play the role local
spin-1/2 states. In the framework of this approximation, the hopping term is naturally mapped
in an interaction of the X X type with an amplitude equal to two times the hopping amplitude.
However, in an optical lattice, the hopping amplitude between adjacent sites depends on both the
frequency and the intensity of lasers that are quantities common to each site. Hence, interaction
couplings between adjacent spins in the ensuing X X model are site independent.

However, site-dependent spin–spin couplings can be easily engineered by introducing local
fields on properly selected sites of the lattice. Consider a local field on a given site, say the
kth one, whose amplitude is larger than the hopping amplitudes but weaker than the on-site
repulsion U . In this situation, occupation of the on-site single-particle Fock state is energetically
unfavorable. Therefore, if an atom in the (k + 1)th or in the (k − 1)th site hops onto the kth site,
it is immediately pushed away. This mechanism realizes either a self-interaction at site k or an
effective interaction between the (k + 1)th and the (k − 1)th site. This simple reasoning can be
put in a quantitative form resorting to degenerate perturbation theory in powers of the hopping
amplitude. Let k − 1, k and k + 1 be three adjacent sites; let εk 6= 0 be the local field at site k
such that t � εk � U . In second-order perturbation, discarding all excited states with energy
proportional to U and εk , each pair term in equation (21) maps into the following spin–spin
interaction:

Hk = −
2t2

εk
(Sx

k−1Sx
k+1 + Sy

k−1Sy
k+1) −

t2

εk

(
Sz

k−1 +
1

2

)2

−
t2

εk

(
Sz

k+1 +
1

2

)2

. (22)

It is important to note that in these spin–spin interaction terms the dependence on the kth site is
removed. Hence, the introduction of site-dependent spin–spin interaction strengths is associated
with a reduction of sites of the optical lattice. Equation (22) is the basic ingredient in the
realization of X X spin chains with site-dependent interactions and nonvanishing end-to-end
entanglement. The successive task is to determine suitably engineered optical lattices with the
appropriate local field dynamics. For instance, one possible way to realize the X X spin model
with alternating weak and strong couplings equation (13) is to introduce an optical super-lattice
potential obtained through the interference of two sets of laser beams of different amplitude
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Figure 15. Scheme of the optical super-lattice potential obtained by combining
two appropriate sets of stationary laser beams. It realizes an effective X X spin
chain with alternating weak and strong interactions that allows for LDE between
the two end points. The first set of laser beams generates an optical potential
(black line) that realizes an optical lattice. On the contrary, the weaker optical
potential of the second sets, represented by the red line, creates a local field at
each site of the optical lattice. The local field is strongly enhanced on every site
over three.

strengths. The set of stronger beams realizes the lattice structure whereas the set of weaker ones
realizes and modulates the presence of a local field at each lattice site. If, for instance, the set of
weak beams is tuned at a wavelength three times as large as that of the set of strong ones, one
realizes a system in which every site over three is characterized by a strong local field, while the
remaining two sites experience a practically vanishing local field, as schematically illustrated in
figure 15. Resorting to degenerate second-order perturbation theory in powers of t , and taking
into account equation (22), the optical lattices Hamiltonian is mapped in the spin Hamiltonian

H = −t
N ′

−1∑
i=1

[(
1 +

t

ε

)
+ (−1)i

(
1 −

t

ε

)] (
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
−

t2

ε

N ′∑
i=1

(
Sz

i +
1

2

)2

, (23)

where ε > t is the maximum amplitude of the local field and N ′
= 2N/3 is the number of spins

in the chain that, as already noticed, does not coincide with the number of sites in the physical
optical lattice chain. The last sum of terms represents an overall energy offset that can always
be reabsorbed in the definition of the zero of the energy and has no dynamical effect. Fixing
the total magnetization at 0 corresponds to fixing the number of atoms in the optical lattice
at n = N ′/2 = N/3. In this case we obtain that in the strong interaction regime the optical
super-lattice simulates the 1-D X X spin chain with alternating weak and strong couplings
equation (13), exactly with λ = t/ε. It is important to verify the soundness of the theoretical
mapping, obtained in second-order perturbation theory, by direct exact numerical comparison
between the end-to-end entanglement properties of the spin model equation (13) and of the
original bosonic system. In figure 16 we report the end-to-end entanglement in the GS of a
system of ultracold bosonic atoms loaded on the above-described optical super-lattice, with
N = 12 sites and n = N/3 = 4 atoms, corresponding, according to our previous analysis, to
a 1-D X X spin chain with N ′

= 2N/3 = 8 sites with alternating weak and strong couplings.
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Figure 16. End-to-end entanglement in the GS of a super-lattice system of
N = 12 sites and n = 4 atoms, with strong local field ε on the 2nd, 5th, 8th
and 11th sites, plotted as a function of the on-site repulsion U in units of
the hopping amplitude t . The dashed lines represent logarithmic negativity,
measuring the end-to-end entanglement in the original Bose–Hubbard atomic
system, whereas the solid lines stand for concurrence, which measures the end-
to-end entanglement in the effective X X spin model with alternating weak and
strong couplings. The different curves correspond to different values of the
strong local field ε. From bottom up: orange: ε = t ; green: ε = 3t ; blue: ε = 5t ;
red: ε = 7t ; and black: ε = 10t .

As measures of entanglement, we consider concurrence [22] and logarithmic negativity [33].
Concurrence quantifies the GS entanglement between the two end points seen as effective
spins, obtained by tracing out all Fock states but the empty state and the state with single-
atom occupation. Logarithmic negativity is used to measure the actual GS entanglement of the
full bosonic system between the two end sites of the optical super-lattice. Figure 16 shows that
for small values of the on-site repulsion U , there is no end-to-end entanglement regardless
of the value of the local field ε. Vice versa, in the strong interaction regime the system
develops a sizeable end-to-end entanglement that always approximates very closely the end-
to-end entanglement of the X X spin chain with alternating weak and strong couplings, proving
that appropriate optical lattice or super-lattice structures can simulate/realize efficiently X X
spin chains with LDE entanglement. An exception is constituted by the limiting case ε = t .
In this situation the strong local field condition ε > t is violated, λ = 1 in the corresponding
spin Hamiltonian, and thus the end-to-end spin–spin concurrence vanishes, while the end-to-
end logarithmic negativity in the GS of the original optical super-lattice system is definitely
nonvanishing.

We now turn to the question of simulating spin models with QLDE rather than pure LDE.
One problem in simulating the Hamiltonians described in section 3.2 with atomic systems in
optical potential structures is that QLDE models do not have a periodic pattern of site-dependent
interactions and thus are difficult to approximate with super-lattices, as done for LDE models.
Spin models with QLDE structures can be simulated by addressing the degrees of freedom of
the individual lattice sites with pre-selection techniques that have recently been discussed for
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Figure 17. End-to-end entanglement in the GS of the Bose–Hubbard
Hamiltonian equation (24), defined on an optical lattice of N = 10 sites with
strong local field on the 2nd and on the 9th sites, plotted as a function of
the on-site repulsion U in units of the hopping amplitude t . The dashed lines
correspond to the logarithmic negativity measuring the end-to-end entanglement
in the original Bose–Hubbard atomic system, whereas the solid lines stand for the
concurrence, which measures the end-to-end entanglement in the effective X X
spin model with weak end probes. The different curves correspond to different
values of the local field ε. From bottom up: green: ε = 3t ; blue: ε = 6t ; red:
ε = 9t ; and black: ε = 12t .

different purposes [34, 35]. If these methods, or similar ones, could be implemented successfully
in realistic experimental conditions, it would be possible to realize optical-lattice structures
such that only a few pre-selected sites are affected by a nonvanishing local field. Consider the
following Bose–Hubbard Hamiltonian:

H =
U

2

N∑
i=1

ni(ni − 1) − t
N−1∑
i=1

(b†
i bi+1 + h.c.) + ε(n2 + nN−1). (24)

The presence of a local field ε at the second and (N − 1)th sites allows one to simulate, when
t < ε < U , the X X spin model with weak end probes described by equation (17). In figure 17 we
report the GS end-to-end entanglement for the Hamiltonian equation (24) defined on an optical
lattice of N = 10 sites and loaded with n = 4 bosonic atoms, and compare it with the GS end-
to-end entanglement of an X X model with weak end probes equation (17) defined on a chain
with eight spins. We see that the former is an excellent approximation to the latter in the limit
of large on-site repulsion U . We have fixed the total number of bosonic atoms to (N − 2)/2 to
satisfy the half-filling condition. This corresponds again to impose a vanishing magnetization in
the effective spin chain. In the strong-coupling regime, the value of the end-to-end entanglement
grows as the local field ε is increased, as should be expected from the results of the discussion in
section 3.2, taking into account equation (22). However, as discussed in the previous section, the
significance of simulating/realizing spin models with QLDE using, for instance, optical lattice
Hamiltonian structures as the ones described by equation (24) is that the energy gap can be
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Figure 18. Energy gap between the GS and the first excited states of the
Bose–Hubbard Hamiltonian equation (24), defined on an optical lattice of N =

10 sites with strong local field on the 2nd and on the 9th sites, plotted as a
function of the on-site repulsion U in units of the hopping amplitude t . The
different curves correspond to different values of the local field ε. From bottom
up: green: ε = 3t ; blue: ε = 6t ; red: ε = 9t ; and black: ε = 12t .

sufficiently large to ensure that a nonvanishing end-to-end entanglement is still retained at very
low but realistically reachable working temperatures. The two requirements of large values of
QLDE and a large energy gap are partly conflicting. The behavior of the energy gap is reported
in figure 18. Comparing figures 17 and 18 we see that the optimal compromise, which allows
one to obtain both a sizeable QLDE and a sizeable energy gap, takes place in the initial side of
the strong-coupling regime, at moderately large values of the on-site repulsion U .

5. End-to-end entanglement in arrays of coupled optical cavities

Recently, hybrid atom-optical systems of coupled cavity arrays (CCAs) have been intensively
studied in relation to their ability to simulate collective phenomena typical of strongly correlated
systems [15–19]. In the present section, we will discuss in detail some recent findings [8] about
the possibility of exploiting appropriately engineered arrays of coupled optical cavities to realize
X X open spin chains sustaining LDE or QLDE. Besides the extremely high controllability and
the straightforward addressability of single constituents, arrays of coupled cavities also allow, in
principle, a great degree of flexibility in their design and geometry [10]. Therefore, they should
be tested as natural candidates for the realization of spatially extended communication networks
and scalable computation devices.

Consider a linear CCA with open ends, consisting of N cavities. The dynamics of a
single constituent of the array doped with a single two-level atom is well described by the
Jaynes–Cummings Hamiltonian [36]

Hk = ωa†
k ak + ω′

|ek〉〈ek| + ga†
k |gk〉〈ek| + g|ek〉〈ak|ak, (25)

where ak (a†
k ) is the annihilation (creation) operator of photons with energy ω in the kth cavity,

|gk〉 and |ek〉 are, respectively, the ground and excited atomic states, separated by the gap ω′, and
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Figure 19. Representation of the energy levels for a cavity with ω =
√

g2 + 12.
The GS is two-fold degenerate, and the energy gap ε2− prevents the occupancy
of the higher energy levels, thus realizing an effective two-level system.

g is the photon–atom coupling strength. The local Hamiltonian equation (25) is immediately
diagonalized in the basis of dressed photonic and atomic excitations (polaritons):

|∅k〉 = |gk〉|0k〉,

|n+k〉 = cos θn|gk〉|nk〉 + sin θn|ek〉|(n − 1)k〉, n > 1,

|n−k〉 = sin θn|gk〉|nk〉 − cos θn|ek〉|(n − 1)k〉, n > 1,

(26)

where θn is given by tan 2θn = −g
√

n/1 and 1 = ω′
− ω is atom-light detuning. Each polariton

is characterized by an energy equal to

ε0 = 0, εn± = nω ±

√
ng2 + 12. (27)

When ω =
√

g2 + 12 the GS of equation (25) becomes two-fold degenerate, resulting in a
superposition of |∅k〉 and |1−k〉; see figure 19. If both the atom–cavity interaction energy
and the working temperature are small compared to ε2− = 2

√
g2 + 12 −

√
2g2 + 12, one may

neglect all the local polaritonic states but |∅k〉 and |1−k〉. This situation defines a local two-level
system. Adjacent cavities can be easily coupled either by photon hopping or via wave guides
of different dielectric and conducting properties. The wave function overlap of two adjacent
cavities introduces the associated tunneling elements, so that the total Hamiltonian of the
CCA reads

Hcca =

N∑
k

Hk −

N−1∑
k

Jk(a
†
k ak+1 + a†

k+1ak). (28)

Each hopping amplitude Jk depends strongly on both the geometry of the cavities and the actual
overlap between adjacent cavities. If the maximum value among all the couplings {Jk} is much
smaller than the energy of the first excited state, max{Jk} � ε2−, then the total Hamiltonian
equation (28) can be mapped in a spin-1/2 model of X X type with site-dependent couplings
of the form of equation (19), where the state |∅k〉 (|1−k〉) plays the role of |↓k〉 (|↑k〉). The
mapping to an open-end λ–µ linear spin chain sustaining QLDE in the GS is then realized,
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Figure 20. Scheme of an array of coupled optical cavities realizing a λ–µ linear
spin chain described in equation (19). Dark green: area covered by the wave
functions associated with each site of the array. The two next-to-end sites (light
green circles) are symmetrically displaced with respect to a situation of perfectly
equispaced sites, and drawn closer to their neighbors in the bulk (black circles).
As a consequence, the overlap (black area) between the wave functions of these
two cavities and their neighbors in the bulk is larger than the would-be reference
(unit) overlap in an equispaced array. At the same time, the overlap between the
end sites of the array (red and blue circles) and the next-to-end sites is reduced
proportionally compared to an equispaced array.

e.g. by simply tuning the distance between the end- and next-to-end sites of the array, as
shown in figure 20. The λ–µ X X spin chain can thus be realized starting from an equispaced
CCA with site-independent nearest-neighbor bulk coupling amplitude Jb, and then engineering
appropriately the positions of the 2nd and the (N − 1)th cavities, which are placed closer to their
neighbors in the bulk and farther away from the end points of the array. This shift lowers below
unity the reduced coupling between the end points of the array and their next-to-end neighbors
(J1/Jb = JN−1/Jb = λ < 1), and increases above unity the reduced coupling between the next-
to-end sites and their neighbors in the bulk (J2/Jb = JN−2/Jb = µ > 1), effectively realizing the
λ–µ model of QLDE. Obviously, adjusting the hopping rate by spacing the cavities closer to the
end points is not the only way to realize the λ − µ model in an array of optical cavities. Indeed,
it can be technically rather challenging. An alternative way of tuning the inter-cavity hopping
amplitudes, probably much more feasible with currently available technologies, is to dope the
cavities with few-level atoms and use Raman transitions and the atomic lambda level structures
to tune the couplings between two cavities in situ, by using external laser drives as described
e.g. in [19].

In the next section we will discuss the properties of QLDE, realized using CCAs, in
connection with the implementation of tasks of quantum information science. In particular,
we will discuss how the λ–µ model and the associated GS QLDE can be exploited to realize
high-fidelity, long-distance quantum teleportation protocols.

6. Applications: QLDE and long-distance quantum teleportation in CCAs

We now proceed to illustrate that CCAs in the λ–µ configuration allow for long-distance
and high-fidelity quantum communication in realistic conditions and at moderately high
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Figure 21. Fidelity of teleportation Fmax in a λ–µ configuration, by exact
numerical diagonalization, for a CCA of N = 12 cavities as a function of the
couplings λ = J1/Jb and µ = J2/Jb at different temperatures T/Jb. Left panel:
T/Jb = 0.005. Right panel: T/Jb = 0.01. Fmax varies between 0.5 (violet) and 1
(red). Horizontal dashed line: classical threshold F c

max = 2/3.

temperatures. In figure 21 we report the fidelity of teleportation Fmax [24] as a function of
the reduced couplings λ and µ for different temperatures. Remarkably, figure 21 shows the
existence of a rather high critical temperature of teleportation for CCAs realizing a λ–µ spin
chain. The region of the physical parameters compatible with a nonclassical fidelity Fmax > 2/3
is progressively reduced with increasing temperature, until it disappears at Tc ≈ 0.13Jb. Similar
behaviors are observed for longer CCAs, with Tc slowly decreasing with the length of the array.
For instance, for an array of N = 36 cavities in the λ–µ configuration, the critical temperature
of transition to bona fide quantum teleportation is Tc ≈ 0.11Jb.

A formidable obstacle to the concrete realization of working quantum teleportation devices
is performing the projection over a Bell state, in order for the sender to teleport a quantum
state faithfully to the receiver. In fact, in the framework of condensed matter devices there
hardly exist quantities, easily available in current and foreseeable experiments, that admit as
eigenstates any two-qubit Bell states. To avoid this problem, different schemes for quantum
information transfer have been developed, for instance, for what concerns entanglement transfer,
in [37]. In the following, we will discuss a simple and concrete scheme for long-distance, high-
fidelity quantum teleportation in λ–µ CCAs that realizes Bell-state projections indirectly, by
matching together free evolutions and local measurements of easily controllable experimental
quantities [38–40]. We first illustrate it in the simplest case of two cavities at zero temperature,
with the first cavity accessible by the sender and the second one by the receiver. The sender
has access also to a third cavity, the ‘0’ cavity, that is decoupled from the rest of the chain, and
stores the state to be teleported |ϕ〉 = α|↑0〉 + β|↓0〉. The decoupling between the 0th cavity and
the rest of the chain can be achieved removing the degeneracy among |0〉0 and |1−〉0 and taking
|ε0 − ε1−| � J0. The total system is initially in the state

|9(0)〉 =
1

√
2
(α|↑0〉 + β|↓0〉)(|↑1〉|↓2〉 + |↓1〉|↑2〉). (29)
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Figure 22. Fidelity of teleportation f in a λ–µ CCA channel of N = 12
cavities, for a generic input |ϕ〉 = α|↑0〉 + β|↓0〉, as a function of |α| at different
temperatures. Black line: T = 0.001Jb; red line: T = 0.003Jb; green line: T =

0.004Jb; blue line: T = 0.005Jb; and magenta line: T = 0.007Jb. Here λ = 0.5,
µ = 4.0 and ν = 50. Horizontal dashed line: classical threshold fc = 2/3.

At t = 0 the state begins to evolve, and if J0 � J1 one has

|9(t)〉 =
1

√
2

[α|↑0〉|↑1〉|↓2〉 + β|↓0〉|↓1〉|↑2〉|↑0〉|↓1〉(α cos(J0t)|↑2〉 − iβ sin(J0t)|↓2〉)|↓0〉|↑1〉

× (−iα sin(J0t)|↑2〉 + β cos(J0t)|↓2〉)] . (30)

If the local magnetizations (Sz
0, Sz

1) in the first two cavities are measured at time t = π/(4J0),
one will find, with probability 1/2, that the teleported state is the image of |ϕ〉 under a local
rotation. The value 1/2 for the probability stems from the fact that any simultaneous eigenstate
of Sz

0 and Sz
1 can be obtained with equal probability but one may discard the case in which

the total magnetization is equal to ±1. Realizing a local rotation of ±π/2 around Sz
2, with the

sign depending on the result of the measurement that the sender communicates classically to
the receiver, the latter recovers the original state |ϕ〉 with unit fidelity. The simple protocol
described above can be immediately extended to λ–µ CCAs of any size, at finite temperature,
and removing the constraint J1 � J0. By resorting again to exact diagonalization, in figure 22
we report the behavior of the average fidelity of teleportation f , as a function of |α| of the
state |ϕ〉, in the case of an array of N = 12 cavities, with ν ≡ J0/Jb = 50 and for different
temperatures. Also in the nonideal case the teleportation protocol has probability 1/2 of success.
The fidelity depends on the input state, with a maximum for inputs with |α| = |β| = 1/

√
2 and

a minimum for inputs with |α| = 0.1. The fidelity remains above 0.95 for all values of |α| at
moderately low temperatures (T ' 10−3 Jb).

7. Conclusions and outlook

In conclusion, we have introduced some classes of quantum spin models defined on open
1-D lattices that are characterized by nonperturbative GSs with nonvanishing LDE or QLDE.
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In particular, end-to-end QLDE is found to be strongly resilient to thermal decoherence and can
be efficiently achieved with a minimal set of local actions on the end- and near-end couplings
in linear open CCAs. We have shown that QLDE-based CCAs allow for a simple quasi-
deterministic protocol of long-distance, high-fidelity quantum teleportation that yields a high
rate of success without direct Bell measurements and projections over Bell states. In detail, we
have studied models of X X quantum spin chains with nearest-neighbor interactions, discussing
two types of spatial patterns of the coupling strengths. In the case of chains with bonds of
alternating strengths, we have shown that the exact GS possesses a nonvanishing LDE between
the end spins of the chain, independently of the size of the system and asymptotically close
to unity (maximal entanglement) in the limit of exact dimerization. This system is therefore
perfectly suited for bona fide long-distance quantum teleportation with ideal fidelity at zero
temperature. However, the limiting maximal values of the fidelity are obtained at the cost of
introducing an energy gap above the GS that vanishes exponentially with the size of the system.
Therefore, this model is de facto useless for efficient quantum teleportation at finite temperature.
We have then discussed another class of X X open spin chains with uniform bulk interactions
and small end bonds. In this case, we have shown that for sufficiently small values of the end
couplings, the GS of the system possesses a sizeable QLDE between the end spins of the chain,
which at a fixed system size is asymptotically close to unity (maximal entanglement) in the
limit of vanishingly small end bonds. However, QLDE decreases, albeit slowly, as the size of
the system is increased. Models of QLDE can be improved further by introducing strong near-
end bonds that enhance the value of the end-to-end entanglement (λ–µ model). An interesting
feature of QLDE models is that the energy gap above the GS vanishes only algebraically, as
the first power of the inverse of the size of the system. Therefore, in principle, spin chains
endowed with the QLDE property can be exploited as quantum channels for teleportation with
nonclassical fidelity at finite temperature.

A relevant issue is the behavior of these systems in the presence of disorder. This question is
important, especially in view of possible experimental implementations in which the couplings
can be engineered only within a certain accuracy. Since naturally the effect of disorder is that
of localizing eigenstates, we expected LDE to be more robust than QLDE against disorder. In
fact, in the LDE scenario the states responsible for the end-to-end entanglement are already
localized at the borders whereas localization is only approximate in the QLDE case. This
conjecture has in fact been confirmed by thorough exact numerical samplings, which also show
that the relative weight of imperfections that can be tolerated by the systems, maintaining
large and useful values of LDE and QLDE, is rather high, up to 20% and more. Moreover,
for about always half the spatial patterns and values of the couplings, disorder can even
enhance the end-to-end entanglement. It is at the moment unclear how this picture extends
to finite temperature. Another interesting open problem worth further study is assessment
of the existence and possible location of a crossover between perfect LDE and prima facie
QLDE.

Experimentally demonstrating (Q)LDE and (Q)LDE-based efficient long-distance
teleportation and state transfer will be a first crucial preliminary test in order to proceed with
integrated devices of quantum information science, combining atom-optical systems, such as
optical lattices or systems of trapped ions, with solid-state-based systems, such as those of
circuit cavity quantum electrodynamics.
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