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An approach to point-free geometry based on the notion of a quasi-metric is proposed in

which the primitives are the regions and a non-symmetric distance between regions. The

intended models are the bounded regular closed subsets of a metric space together with the

Hausdorff excess measure.

1. Introduction

The interest in Computer Science in point-free geometry has increased recently in

connection with the question of a suitable formalisation of naive spatial knowledge. The

motivation for this new field of research lies in a dissatisfaction, from a computational

point of view, with the complexity of Euclidean geometry based on the notion of a point.

The possibility of considering a geometry in which the notion of a point is not assumed as

a primitive was first examined by A. N. Whitehead in An Inquiry Concerning the Principles

of Natural Knowledge, The Concept of Nature and Process and Reality. In particular, in

this last book the primitives are the regions and the connection relation, that is, the relation

between two regions that either overlap or have at least a common boundary point. Such a

point-free approach to geometry was formalised and investigated by several authors (see,

for example, Clarke (1981) and Gerla (1994)). Namely, one considers structures (Re, C)

where the elements in Re are called regions and C is a binary relation in Re called a

connection relation. The inclusion relation 6 is defined by setting x 6 y if and only if

C(x) ⊆ C(y) where, as usual, for any region z, we set C(z) = {z′ ∈ Re : zCz′}. Later,

Gerla (1990) proposed the notion of a pointless pseudo-metric space (Re,6, m, D) in which

the inclusion, the distance m : Re × Re → R+ and the diameter D: Re → R+ are all

assumed as primitives. A ‘canonical’ model is obtained by setting: Re equal to the class

of bounded regular open subsets of a metric space (M, δ); 6 equal to the set theoretical

inclusion; and by defining m and D by setting

m(x, y) = inf{δ(P ,Q) : P ∈ x, Q ∈ y}

D(x) = sup{δ(P , P ′) : P , P ′ ∈ x}

for any pair x, y of subsets of M. Such a class of structures was previously defined in

Weihrauch and Schreiber (1981) in the framework of computability theory.

In this note we sketch a new approach to point-free geometry where the unique primitive

is the notion of a quasi-metric, that is, a distance-like measure lacking a symmetry property

(see, for example, Di Concilio (1971), Reilly (1992), Seda (1997) and Smyth (1987)).

Namely, we examine a particular class of quasi-metrics, the quasi-metric spaces of regions.
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The intended model is the excess measure eδ defined by setting, for any pair x and y of

non-empty closed bounded subsets of a metric space (M,δ),

eδ(x, y) = sup{δ(P , y) : P ∈ x},

where, in turn,

δ(P , y) = inf{δ(P ,Q) : Q ∈ y}.

Such a measure is well-known in the literature since the Hausdorff distance dH is defined

by setting dH (x, y) = max {eδ(x, y), eδ(y, x)}. An advantage of such an approach with

respect to the work cited above is that we are not forced to assume the inclusion relation

and the diameter as primitives. Indeed, these notions can be defined in a very simple way

from the quasi-metric. Obviously, the main step in our theory is the definition of a point

and of a distance between points in order to associate any quasi-metric space of regions

(Re, d) with a point-based metric space.

Note that this paper in its present form does not address the computational dimension

of point-free geometry, which, on the basis of the recent literature, lies in generalised

metric spaces. However, it appears to be possible to reformulate the notions and the

results we present here in constructive terms.

Finally, we wish to thank the referees for their fruitful suggestions and comments.

2. Preliminaries

In the following, R denotes the set of real numbers and R+ = {x ∈ R : x > 0}.

Definition 2.1. A quasi-metric space is a structure (Re, d) such that Re is a non-empty set

and d : Re× Re→ R+ is a mapping such that, for any x, y, z ∈ Re:

d1: d(x, x) = 0;

d2: d(x, y) = 0 and d(y, x) = 0⇒ x = y;

d3: d(x, y) 6 d(x, z) + d(z, y).

Then, the metric spaces are the quasi-metric spaces satisfying the symmetric property

d0: d(x, y) = d(y, x).

The proof of the following proposition is trivial.

Proposition 2.2. Let (Re, d) be a quasi-metric space and define the mapping dH : Re×Re→
R+ by setting

dH (x, y) = d(x, y) ∨ d(y, x).

Then (Re, dH ) is a metric space.

We call (Re, dH ) the symmetrisation of (Re, d). The quasi-metric spaces are related to the

partial orders as follows.

Proposition 2.3. Let (Re, d) be a quasi-metric space. Then the relation 6 defined by setting

x 6 y ⇔ d(x, y) = 0
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for every x, y ∈ Re is a partial order. Conversely, let 6 be any partial order in a set Re

and define the mapping d : Re× Re→ R+ by setting

d(x, y) =

{

0 if x 6 y

1 otherwise.

Then (Re, d) is a quasi-metric space whose associated partial order is 6.

Since our goal is to give a basis for point-free geometry, we call the elements of Re

regions and the relation 6 defined in Proposition 2.3 an inclusion relation. Also, we define

the diameter of a region as follows.

Definition 2.4. Given a quasi-metric space (Re, d), we define the diameter of a region

x ∈ Re to be the number

d(x) = sup{d(x1, x2) : x1 6 x, x2 6 x}. (2.1)

We say that x is bounded if d(x) 6= ∞.

Observe that the notion of diameter is assumed as a primitive by several authors (see for

example Pultr (1984; 1988) and Banaschewski and Pultr (1998)). Obviously, d(x) = 0 if

and only if x is an atom. When (Re, d) is a metric space, the associated partial order 6

coincides with the identity relation, and thus all diameters are equal to zero and all regions

are atoms. When the quasi-metric space is defined by a partial order as in Proposition

2.3, we have that d(x) = 0 if x is an atom and d(x) = 1 otherwise.

Proposition 2.5. Any quasi-metric d : Re × Re → R+ is order-preserving with respect

to the first variable and order-reversing with respect to the second variable. Also, the

diameter d : Re→ R+ is order-preserving and, for any region x,

d(x) = sup{d(x, x′) : x′ 6 x}. (2.2)

Proof. Assume that x′ 6 x. Then d(x′, y) 6 d(x′, x) + d(x, y) = d(x, y). Assume that

y′ 6 y. Then d(x, y) 6 d(x, y′) + d(y′, y) = d(x, y′). The proof of the remaining part of the

proposition is trivial.

Definition 2.6. Given two quasi-metric spaces (Re, d) and (Re′, d′) and a mapping h : Re→
Re′, we say that h is non-expansive if d′(h(x), h(y)) 6 d(x, y). We say that h is an isometry

if d(x, y) = d′(h(x), h(y)).

We conclude this section by noticing that the class of quasi-metric spaces defines a

category in a natural way.

Proposition 2.7. The class of quasi-metric spaces defines a category QMS provided we

assume as morphisms the non-expansive mappings. Let ORD be the category whose

objects are the ordered sets and the morphisms are the order preserving maps. Then

Proposition 2.3 defines a functor from QMS to ORD and a functor from ORD to QMS.

Proof. Let (Re, d) and (Re′, d′) be two quasi-metric spaces and (Re,6), (Re′,6′) be the

associated partial orders. Then, if h : Re → Re′ is non-expansive, we have that x 6 y
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entails h(x) 6′ h(y), so h is a morphism from (Re,6) to (Re′,6′). Consequently, the map

associating any quasi-metric space with the related partial order and any non-expansive

map h with the same map h is a functor from QMS to ORD. Likewise, the map associating

any partial order with the quasi-metric defined in Proposition 2.3 and any order-preserving

map h with h is a functor from ORD to QMS.

3. The notion of point

In this section we will propose a suitable definition of a point and the distance between

points in order to associate any quasi-metric space with a metric space in a natural way.

To this end, recall that a pseudo-metric space is a structure (M, d) satisfying d0, d1 and

d3, and that any pseudo-metric space (M, d) is associated with a metric space (M ′, d′),

which we call the quotient of (M, d). Namely, we define an equivalence relation ≡ in M

by setting x ≡ y if and only if d(x, y) = 0, and we set M ′ equal to the quotient of M

modulo ≡. Moreover, we define the distance between two classes [x] and [y] by setting

d′([x], [y]) = d(x, y).

Definition 3.1. A sequence 〈pn〉n∈N of regions of a quasi-metric space (Re, d) is called a

point-representing if:

a. limn→∞ d(pn) = 0

b. ∀ε > 0 ∃m : h > m, k > m⇒ d(ph, pk) < ε.

We use Pr to denote the class of point-representing sequences. When (Re, d) is a metric

space, the notion of a point-representing sequence coincides with the usual notion of a

Cauchy sequence. There are quasi-metric spaces in which no point-representing sequence

exists. So, we add the following axiom:

d4: A point-representing sequence exists.

Proposition 3.2. For any 〈pn〉n∈N and 〈qn〉n∈N in Pr, the sequence

〈d(pn, qn)〉n∈N

is convergent.

Proof. We have to prove that

∀ε > 0 ∃m(h > m and k > m⇒ |d(ph, qh)− d(pk , qk)| < ε).

Indeed, since

d(ph, qh) 6 d(ph, pk) + d(pk , qk) + d(qk , qh),

we have

d(ph, qh)− d(pk , qk) 6 d(ph, pk) + d(qk , qh).

Similarly,

d(pk , qk)− d(ph, qh) 6 d(pk , ph) + d(qh, qk).

Consequently,

|d(ph, qh)− d(pk , qk)| 6 dH (pk , ph) + dH (qk , qh).
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Given ε > 0, let m be such that for any h > m and k > m, dH (pk , ph) < ε/2, d(qk , qh) < ε/2.

Then we have that |d(ph, qh)− d(pk , qk)| < ε for any h > m, k > m, and this completes the

proof.

In accordance with this proposition, we define in Pr the map dc : Pr × Pr → R+ by

setting

dc(〈pn〉n∈N , 〈qn〉n∈N) = lim
n→∞

d(pn, qn) (3.1)

for any 〈pn〉n∈N and 〈qn〉n∈N in Pr.

Proposition 3.3. The structure (Pr,dc) satifies d1 and d3.

Proof. Axiom d1 is immediate. To prove d3, observe that if 〈pn〉n∈N , 〈qn〉n∈N and 〈rn〉n∈N
are elements in Pr, then

dc(〈pn〉n∈N , 〈qn〉n∈N) = lim
n→∞

d(pn, qn) 6 lim
n→∞

(d(pn, rn) + d(rn, qn))

= lim
n→∞

d(pn, rn) + lim
n→∞

d(rn, qn)

= dc(〈pn〉n∈N , 〈rn〉n∈N) + dc(〈rn〉n∈N , 〈qn〉n∈N).

It is easy to prove that dc is not symmetric in general (see Proposition 5.6). To obtain

this property we have to add a further axiom to quasi-metric spaces. As an example, we

propose the following one:

d5: |d(x, y)− d(y, x)| 6 d(x) + d(y).

This axiom is in accordance with the idea that ‘small’ regions are approximations of ideal

points. In fact, it says that in the class of ‘small’ regions the mapping d is approximately

symmetric and therefore that the class of ‘small’ regions can be regarded (approximately)

as a metric space. Observe that all the results in this paper remain valid if in d5 we

substitute the maximum Max{d(x), d(y)} for the sum d(x) + d(y).

Definition 3.4. We call any structure (Re,d) satisfying d1–d5 a quasi-metric space of regions.

Trivially, the set of atoms of a quasi-metric space of regions is a metric space, and the

metric spaces coincide with the quasi-metric spaces of regions in which all the regions

have diameter zero. Observe also that while any subset Re′ of a quasi-metric space (Re, d)

defines a quasi-metric space, when (Re, d) satisfies d5 it is possible that (Re′, d) does not

satisfy d5. This is because the notion of the diameter in (Re, d) is different from the notion

of the diameter in (Re′, d).

Proposition 3.5. The structure (Pr, dc) associated with a quasi-metric space of regions is a

pseudo-metric space.

Proof. To prove the symmetric property, observe that, since |d(pn, qn) − d(qn, pn)| 6

d(pn) + d(qn), it is limn→∞ d(pn, qn) = limn→∞ d(qn, pn).

This proposition enables us to propose the following definition.
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Definition 3.6. We call the quotient (M̄, δ̄) of the pseudo-metric space

(Pr, dc) the metric space associated with (Re, d). We call any element in M̄ a point.

Thus, the metric space (M̄, δ̄) associated with a metric space of regions (Re, d) is defined

by:

— considering the class Pr of point-representing sequences

— setting M̄ equal to the quotient of Pr modulo the equivalence ≡ defined by

〈pn〉n∈N ≡ 〈qn〉n∈N ⇔ lim
n→∞

d(pn, qn) = 0

— defining δ̄ : M̄ × M̄ → R+ by the equation

δ̄(P ,Q) = lim
n→∞

d(pn, qn)

where P = [〈pn〉n∈N] and Q = [〈qn〉n∈N] are points in M̄.

Observe that if (Re, d) is a metric space, the associated metric space (M̄, δ̄) is the

completion of (Re, d). Indeed, since all diameters are equal to zero, the proposed notion

of a point-representing sequence coincides with the usual notion of a Cauchy sequence.

Proposition 3.7. Let (Re, d) be a quasi-metric space of regions and (Re, dH ) be its

symmetrisation. Then the associated metric space (M̄, δ̄) is a subspace of the metric

completion of (Re, dH ).

Proof. By definition, Pr is the class of Cauchy sequences of (Re, dH ) whose d-diameters

are vanishing. Also, for any 〈pn〉n∈N , 〈qn〉n∈N in Pr,

dH (〈pn〉n∈N , 〈qn〉n∈N) = dc(〈pn〉n∈N , 〈qn〉n∈N) ∨ dc(〈qn〉n∈N , 〈pn〉n∈N).

Since dc is symmetric,

dH (〈pn〉n∈N , 〈qn〉n∈N) = dc(〈pn〉n∈N , 〈qn〉n∈N).

The quasi-metric space associated with an ordered set with an atom is a quasi-metric

space of regions. The associated metric space is isometric with the metric space of the

atoms equipped with the discrete distance.

4. Distance between points and regions, and completeness

The following proposition is useful for defining the notion of the distance between a point

and a region.

Proposition 4.1. Let 〈pn〉n∈N be an element in Pr and x be a region. Then, both the

sequences 〈d(x, pn)〉n∈N and 〈d(pn, x)〉n∈N are convergent. Moreover,

〈pn〉n∈N ≡ 〈p
′
n〉n∈N ⇒ lim

n→∞
d(x, pn) = lim

n→∞
d(x, p′n)
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and

〈pn〉n∈N ≡ 〈p
′
n〉n∈N ⇒ lim

n→∞
d(pn, x) = lim

n→∞
d(p′n, x).

Proof. By hypothesis, for any ε > 0 there is a natural number m such that d(pk , ph) 6 ε

for any k > m and h > m. Also, since d(x, ph) 6 d(x, pk) + d(pk , ph), we have that

d(x, ph)−d(x, pk) 6 d(pk , ph) 6 ε. Since d(x, pk) 6 d(x, ph)+d(ph, pk), it is d(x, pk)−d(x, ph) 6

d(ph, pk) 6 ε. Then |d(x, ph)− d(x, pk)| 6 ε for any k > m and h > m, and this proves that

〈d(x, pn)〉n∈N is a Cauchy sequence in the space of real numbers and therefore convergent.

Likewise, since d(ph, x) 6 d(ph, pk) + d(pk , x), we have that d(ph, x)− d(pk , x) 6 d(ph, pk) 6 ε

and, since d(pk , x) 6 d(pk , ph) + d(ph, x), we have that d(pk , x) − d(ph, x) 6 d(pk , ph) 6 ε.

Then |d(ph, x) − d(pk , x)| 6 ε for any k > m and h > m, and this proves that 〈d(pn, x)〉n∈N
is a Cauchy sequence, and thus convergent.

Assume that 〈pn〉n∈N and 〈p′n〉n∈N are two equivalent point-representing sequences. Then,

from d(x, pn) 6 d(x, p′n) + d(p′n, pn) it follows that

d(x, pn)− d(x, p′n) 6 d(p′n, pn) 6 d(p′n, pn) + d(pn) + d(p′n).

Since d(x, p′n) 6 d(x, pn) + d(pn, p
′
n), we have

d(x, p′n)− d(x, pn) 6 d(pn, p
′
n) 6 d(p′n, pn) + d(pn) + d(p′n).

So

|d(x, p′n)− d(x, pn)| 6 d(p′n, pn) + d(pn) + d(p′n),

and this proves that limn→∞d(x, pn) = limn→∞ d(x, p′n).

The second implication is proved by similar reasoning.

Proposition 4.1 enables us to give the following definitions.

Definition 4.2. Let x be a region and P = [〈pn〉n∈N] be a point. Then we set

d(P , x) = lim
n→∞

d(pn, x) and d(x, P ) = lim
n→∞

d(x, pn).

Trivially, d(P , x) is order-reversing with respect to the second variable and d(x, P ) is

order-preserving with respect to the first variable. Also, in general, d(P , x) 6= d(x, P ).

Proposition 4.3. Let x, x′ be two regions and P , P ′ two points. Then the following

inequalities hold true,

δ̄(P , P ′) 6 d(P , x) + d(x, P ′) (1)

d(x, x′) 6 d(x, P ) + d(P , x′) (2)

d(P , x) 6 δ̄(P , P ′) + d(P ′, x) (3)

d(P , x) 6 d(P , x′) + d(x′, x) (4)

d(x, P ) 6 d(x, P ′) + δ̄(P ′, P ) (5)

d(x, P ) 6 d(x, x′) + d(x′, P ) (6)

d(P , x) 6 d(x, P ) + d(x) (7)

d(x, P ) 6 d(P , x) + d(x) (8)

|d(P , x)− d(x, P )| 6 d(x). (9)
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Proof. To prove 1, observe that

δ̄(P , P ′) = lim
n→∞

d(pn, p
′
n) 6 lim

n→∞
d(pn, x) + lim

n→∞
d(x, p′n) = d(P , x) + d(x, P ′).

To prove 2, observe that d(x, x′) 6 d(x, pn) + d(pn, x
′) and therefore that

d(x, x′) 6 lim
n→∞

d(x, pn) + lim
n→∞

d(pn, x) 6 d(x, P ) + d(P , x′).

We can prove 3–6 using similar reasoning. To prove 7, observe that since d(pn, x) 6

d(x, pn) + d(x) + d(pn) and limn→∞ d(pn) = 0, we have

d(P , x) = lim
n→∞

d(pn, x) 6 lim
n→∞

d(x, pn) + d(x) = d(x, P ) + d(x).

In a similar way we can prove 8. Finally, 9 is an immediate consequence of 7 and 8.

Theorem 4.4. Let (Re, d) be a quasi-metric space of regions. Then the associated metric

space (M̄, δ̄) is complete.

Proof. To prove that (M̄, δ̄) is complete, observe that if P = [〈pn〉n∈N] is an element of

M̄, then for any ε >0 there is a region s such that d(s) 6 ε, d(P , s) < ε and d(s, P ) 6 ε.

In fact, let m ∈ N be such that d(ph) 6 ε and d(ph, pk) 6 ε for any h > m and k > m.

Then, in particular, d(pm) 6 ε, d(pm, pn) 6 ε and d(pn, pm) 6 ε for any n > m and, therefore,

by setting s = pm, we get that d(s) 6 ε and that d(s, P ) = limn→∞ d(pm, pn) 6 ε and

d(P , s) = limn→∞ d(pn, pm) 6 ε. Let 〈Pn〉n∈N be a Cauchy sequence of elements of the metric

space (M̄, δ̄), and, for any n ∈ N, let sn be a region such that d(sn) 6 1/n, d(sn, Pn) 6 1/n

and d(Pn, sn) 6 1/n. Then,

d(sh, sk) 6 d(sh, Ph) + δ̄(Ph, Pk) + d(Pk , sk) 6 1/h + δ̄(Ph, Pk) + 1/k,

and thus 〈sn〉n∈N is a sequence representing a point P ∈ M̄. Also, since

δ̄(P , Pn) 6 d(P , sn) + d(sn, Pn) 6 d(P , sn) + 1/n

and limn→∞ d(P , sn) = 0, we have that P = limn→∞ Pn.

5. Canonical examples: the Hausdorff excess spaces

An interesting class of quasi-metric spaces is related to the Hausdorff distance. Indeed,

assume that (M, δ) is a metric space. Then, given P ∈M and x a non-empty subset of M,

we define δ(P , x) by setting

δ(P , x) = inf{δ(P ,Q) : Q ∈ x}. (5.1)

If x, y are non-empty subsets of M, we set

m(x, y) = inf{δ(P ,Q) : P ∈ x, Q ∈ y} (5.2)

or, equivalently,

m(x, y) = inf{δ(P , y) : P ∈ x}. (5.3)

Also, we define the excess function eδ by setting, for any x and y in P (M)− {6},

eδ(x, y) = sup{δ(P , y) : P ∈ x}. (5.4)
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Obviously, it is possible that eδ(x, y) = ∞. However, if we confine ourselves to the class

B(M) of all closed, bounded, non-empty subsets of M, then eδ(x, y) is always finite. Both

the maps m and eδ extend the distance δ; indeed, for any P ,Q ∈M,

eδ({P }, {Q}) = m({P }, {Q}) = δ(P ,Q).

We define the diameter D(x) of an element x in B(M) by setting

D(x) = sup{δ(P , P ′) : P ∈ x, P ′ ∈ x}. (5.5)

Observe that, given any x ∈ P (M) − {6} and using cl(x) to denote the closure of x, we

have

cl(x) = {P ∈M : δ(P , x) = 0}. (5.6)

Then, it is immediate to prove that, for any x, y ∈ P (M)− {6},

eδ(x, y) = eδ(cl(x), cl(y)), (5.7)

m(x, y) = m(cl(x), cl(y)) (5.8)

and

D(x) = D(cl(x)). (5.9)

Proposition 5.1. Let P and Q be elements in M and x, y be elements in B(M). Then

δ(P , x) 6 δ(P ,Q) + δ(Q, x). (5.10)

m(x, y) 6 eδ(x, y) 6 m(x, y) + D(x). (5.11)

|eδ(x, y)− eδ(y, x)| 6 max{D(x), D(y)}. (5.12)

Proof. To prove (5.10), observe that,

δ(P , x) = inf{δ(P , P ′) : P ′ ∈ x} 6 inf{δ(P ,Q) + δ(Q, P ′) : P ′ ∈ x}

= δ(P ,Q) + inf{δ(Q, P ′) : P ′ ∈ x} = δ(P ,Q) + δ(Q, x).

To prove (5.11) observe that the inequality m(x, y) 6 eδ(x, y) is trivial. Also, for any

P , P ′ ∈ x,

δ(P , y) 6 δ(P , P ′) + δ(P ′, y) 6 D(x) + δ(P ′, y)

and therefore

δ(P , y) 6 D(x) + inf{δ(P ′, y) : P ′ ∈ x} = D(x) + m(x, y).

Finally, to prove (5.12), observe that m(x, y) = m(y, x) 6 eδ(y, x), and therefore, by (5.11),

that eδ(x, y) 6 m(x, y) + D(x) 6 eδ(y, x) + D(x). This proves that

eδ(x, y)− eδ(y, x) 6 D(x) 6 max{D(x), D(y)}.

Since in the same manner we can prove that eδ(y, x) − eδ(x, y) 6 max{D(x), D(y)}, (5.12)

follows.

Theorem 5.2. Let (M, δ) be a metric space and eδ : B(M) × B(M) → R+ be the related

excess function. Then (B(M), eδ) is a quasi-metric space of regions whose associated
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partial order is the set theoretical inclusion and whose diameter is the diameter function

D defined by (5.5).

Proof. To prove the triangle inequality, observe that,

δ(P , y) 6 δ(P ,Q) + δ(Q, y) 6 δ(P ,Q) + supQ′∈zδ(Q′, y) = δ(P ,Q) + eδ(z, y)

whenever Q belongs to z. Therefore,

δ(P , y) 6 inf
Q∈z

δ(P ,Q) + eδ(z, y) = δ(P , z) + eδ(z, y).

Consequently,

eδ(x, y) = sup {δ(P , y) : P ∈ x} 6 sup {δ(P , z) + eδ(z, y) : P ∈ x}

= sup {δ(P , z) : P ∈ x}+ eδ(z, y) = eδ(x, z) + eδ(z, y).

Let x, y be elements in B(M). Then, since y is a closed set,

eδ(x, y) = 0⇔ δ(P , y) = 0 for any P ∈ x⇔⊆ y.

This proves both d1 and d2 and that the partial order associated with (B(M), eδ) is the

inclusion. To prove that eδ(x) = D(x), observe that, since eδ(x, x
′) 6 eδ(x, {P }) for any

P ∈ x′,

eδ(x) = sup {eδ(x, x
′) : x′ ⊆ x, x′ ∈ B(M)}

6 sup {eδ(x, {P
′}) : P ′ ∈ x′} = sup

P∈x
sup
P ′∈x

eδ({P }, {P
′}) = D(x).

Also,

eδ(x) = sup {eδ(x1, x2) : x1 ⊆ x, x2 ⊆ x, x1 ∈ B(M), x2 ∈ B(M)}

> sup {eδ({P1}, {P2}) : P1 ∈ x, P2 ∈ x}

= sup {δ(P1, P2) : P1 ∈ x, P2 ∈ x} = D(x).

By (5.12) we can conclude that (B(M), eδ) is a quasi-metric space of regions.

Observe that the symmetrisation of (B(M), eδ) is the well-known Hausdorff distance.

Definition 5.3. Let (M, δ) be a metric space. Then we call the space (B(M), eδ) a full

Hausdorff excess space and any subspace of (B(M), eδ) a Hausdorff excess space.

Vitolo (1995) proved that any quasi-metric space is isometric to a Hausdorff excess space

(see also Gerla (2004)). As an immediate consequence, we obtain the following extension

theorem.

Theorem 5.4. Any quasi-metric space can be extended into a quasi-metric space of regions.

Theorem 5.5. Let (M, δ) be a metric space, and (M̄, δ̄) be the metric space associated

with (B(M), eδ). Also, define the map h : M → M̄ by setting h(P ) = [〈pn〉n∈N], for any

P ∈M, where pn = {P } for any n ∈ N. Then h is an isometry such that h(M) is dense in

M̄. Consequently, (M̄, δ̄) is the metric completion of (M, δ) and, when (M, δ) is complete,

(M̄, δ̄) coincides with (M, δ).
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Proof. It is evident that h is an isometry. To prove that h(M) is dense in M̄, let

P = [〈pn〉n∈N] be any element in M̄. Moreover, for any n ∈ N, let Pn be an element in pn.

We claim that limn→∞ h(Pn) = P , that is, that

lim
n→∞

δ̄(h(Pn), P ) = lim
n→∞

( lim
m→∞

eδ({Pn}, pm)) = 0.

Indeed,

eδ({Pn}, pm) 6 eδ({Pn}, pn) + eδ(pn, pm) = eδ(pn, pm).

Since 〈pn〉n∈N is a point-representing sequence, given any ε > 0, there exists an integer h

such that eδ(pn, pm) 6 ε for any n > h and m > h. Consequently,

δ̄(h(Pn), P ) = lim
m→∞

eδ({Pn}, pm) 6 lim
m→∞

eδ(pn, pm) 6 ε

for any n > h. Thus, limn→∞ δ̄(h(Pn), P ) = 0 and this proves that h(M) is dense in M̄.

Since by Theorem 4.5 the space (M̄, δ̄) is complete, we can conclude that (M̄, δ̄ ) is the

metric completion of (M, δ).

In accordance with this theorem, in the following we identify any point P in M with

the point h(P ) in M̄. Then we consider δ̄ as an extension of δ, and the excess eδ̄ in (M̄, δ̄)

as an extension of the excess eδ in (M, δ). Finally, observe that if x ∈ B(M), it is possible

that h(x) is not closed in the space (M̄, δ̄) and thus it is possible that h(x) is not an element

of B(M̄).

A suitable modification of the excess function shows the independence of d5.

Proposition 5.6. Let (M, δ) be a metric space and set, for any x ∈ B(M) and y ∈ B(M),

dδ(x, y) = eδ(x, y) + |eδ(x)− eδ(y)|. (5.13)

Then (B(M), dδ) is a quasi-metric space such that the map dc : Pr × Pr → R+ defined by

(3.1) is not symmetric. Therefore (B(M), dδ) does not satisfy d5.

Proof. Trivially, dδ(x, x) = 0. To prove the triangle inequality, observe that

dδ(x, y) = eδ(x, y) + |eδ(x)− eδ(y)|

6 eδ(x, z) + eδ(z, y) + |eδ(x)− eδ(z)|+ |eδ(z)− eδ(y)| = dδ(x, z) + dδ(z, y).

Also, if 6 is the partial order defined by dδ ,

x 6 y ⇔ x ⊆ y and eδ(x) = eδ(y). (5.14)

This shows that both d1 and d2 hold, and thus that (B(M), dδ) is a quasi-metric space.

Let P ,Q and R be points such that δ(P ,Q) < δ(P , R), let 〈pn〉n∈N be the sequence

constantly equal to P and 〈qn〉n∈N be the sequence constantly equal to {P ,Q}. Then, since

both {P } and {P ,Q} are atoms, these sequences belong to Pr. On the other hand,

dc(〈pn〉n∈N , 〈qn〉n∈N) = d(P , {Q,R}) = δ(P ,Q) + δ(Q,R)

while

dc(〈qn〉n∈N , 〈pn〉n∈N) = d({Q,R}, P ) = δ(P , R) + δ(Q,R)
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and, therefore,

dc(〈pn〉n∈N , 〈qn〉n∈N) 6= dc(〈qn〉n∈N , 〈pn〉n∈N).

6. The set of points of a region

We relate points and regions by the following definition.

Definition 6.1. Let P be a point and r be a region. Then we say that P is a point of r

provided that d(P , r) = 0. We use Pt(r) to denote the set of points of r.

Proposition 6.2. For any region r, Pt(r) is a closed subset of (M̄, δ̄).

Proof. Let (Pn)n∈N be a sequence of elements in Pt(r) and assume that such a sequence

is convergent to a point P . Then, since by 3 of Proposition 4.3 it is d(P , r) 6 δ̄(P , Pn) +

d(Pn, r) = δ̄(P , Pn), we have d(P , r) 6 limn→∞ δ̄(P , Pn) = 0, and thus P ∈ Pt(r).

Proposition 6.3. Let P = [〈pn〉n∈N] be a point. Then

lim
n→∞

d(P , pn) = lim
n→∞

d(pn, P ) = 0. (6.1)

Let (Pn)n∈N be a sequence of points such that Pn ∈ Pt(pn). Then

lim
n→∞

Pn = P . (6.2)

Proof. Given ε >0, there is a natural number m such that d(ph, pk) 6 ε for any h > m

and k > m. This entails that d(P , pk) = limh→∞ d(ph, pk) 6 ε for any k > m and therefore

that limk→∞ d(P , pk) = 0. In a similar way one proves that limh→∞ d(ph, P ) = 0. Moreover,

since δ̄(Pn, P ) 6 d(Pn, pn) + d(pn, P ) = d(pn, P ),

lim
n→∞

δ̄(Pn, P ) 6 lim
n→∞

d(pn, P ) = 0.

Note that while d(P , y) is defined as the limit limn→∞ d(pn, y), we have that δ̄(P , P t(y)) is

the value inf {δ̄(P , P ′) : P ′ ∈ Pt(y)}. As we will show in the following sections, there are

examples of quasi-metrics in which d(P , y) 6= δ̄(P , P t(y)). The following proposition says

that in any case d(P , y) 6 δ̄(P , P t(y)).

Proposition 6.4. Let P be a point and y be a region. Then

d(P , y) 6 δ̄(P , P t(y)). (6.3)

Proof. If Pt(y) = 6, then δ̄(P , P t(y)) = ∞ and (6.3) is trivial. Otherwise, since d(P , y) 6

δ̄(P , P ′) + d(P ′, y), we have that d(P , y) 6 δ̄(P , P ′) for any P ′ ∈ Pt(y) and therefore that

d(P , y) 6 inf {δ̄(P , P ′) : P ′ ∈ Pt(y)} = δ̄(P , P t(y)).

Such a proposition suggests we consider quasi-metric spaces such that:

d6:d(P , y) = δ̄(P , P t(y)).

This axiom claims the existence of sufficiently many points, in some sense. In particular,

d6 entails that any region y contains a point. Otherwise, δ̄(P , P t(y)) = ∞ while d(P , y) is

always finite.
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Theorem 6.5. Let (M, δ) be a metric space. Then (B(M), eδ) satisfies d6. Moreover, if

(M̄, δ̄) is the metric space associated with (B(M), eδ), then, for every y ∈ B(M), P t(y) is

the closure of y in (M̄, δ̄). In particular, if (M, δ) is complete, since (M̄, δ̄) coincides with

(M, δ), we have Pt(y) = y.

Proof. Let P = [〈pn〉n∈N] ∈ M̄ be a point and y ∈ B(M) be a region. Then, by

Proposition 6.4, it is sufficient to prove that

lim
n→∞

eδ(pn, y) > inf {δ̄(P , P ′) : P ′ ∈ M̄ and P ′ ∈ Pt(y)}.

Let (Pn)n∈N be a sequence of elements in M such that Pn ∈ pn. Then, by Proposition

6.3, limn→∞ Pn = P and, therefore, since the function f : M̄ → R defined by setting

f(P ) = δ̄(P , y) is continuous, and eδ(pn, y) > δ(Pn, y),

lim
n→∞

eδ(pn, y) > lim
n→∞

δ(Pn, y) = δ̄( lim
n→∞

Pn, y) = δ̄(P , y)

= inf {δ̄(P ,Q) : Q ∈ M̄ and Q ∈ y} > inf {δ̄(P , P ′) : P ′ ∈ Pt(y)}.

To prove the second part of the theorem, we use cl(y) to denote the closure of y in

the space (M̄, δ̄). Then, since Pt(y) is a closed set containing y, we have Pt(y) ⊇ cl(y).

Moreover, let P = [〈pn〉n∈N] be a point and, for any n ∈ N, let Pn be an element of pn.

Then

P ∈ Pt(y) ⇔ lim
n→∞

eδ(pn, y) = 0⇒ lim
n→∞

δ(Pn, y) = 0⇔ δ̄( lim
n→∞

Pn, y) = 0

⇔ δ̄(P , y) = 0⇔ P ∈ cl(y).

This proves that Pt(y) ⊆ cl(y) and therefore that Pt(y) = cl(y).

In order to prove the independence of d6, we propose an example inspired by the

notion of fuzzy subset of a metric space. Namely, we confine ourselves to the three-valued

fuzzy subsets, which we represent as a pair (x, y) of subsets such that x ⊆ y. The set

x is interpreted as the set of elements whose membership degree is 1, and y as the set

of elements whose membership degree is greater than or equal to 0.5. Accordingly, any

classical subset x is identified with a pair (x, x). This enables us to prove the following

proposition where, given two real numbers x and y, x⊕ y denotes the average (x + y)/2.

Proposition 6.6. Let (M, δ) be a metric space, set Re = {(x1,x2) ∈ B(M)×B(M) : x1 ⊆ x2}
and define eδ by setting

eδ((x1, x2), (y1, y2)) = eδ(x1, y1)⊕ e(x2, y2),

for every (x1, x2) and (y1, y2) in Re. Then (Re, eδ) is a quasi-metric space of regions. Such

a space is a proper extension of (B(M), eδ) whose associated metric space coincides with

the one of (B(M), eδ) and in which d6 fails.

Proof. Since

(x1, x2) 6 (y1, y2) ⇔ eδ((x1, x2), (y1, y2)) = eδ(x1, y1)⊕ eδ(x2, y2) = 0

⇔ eδ(x1, y1) = 0 and eδ(x2, y2) = 0⇔ x1 ⊆ y1 and x2 ⊆ y2,
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we have that eδ satisfies d1 and d2. To prove d3, observe that, given (x1, x2), (y1, y2) and

(z1, z2) in Re,

eδ((x1, x2), (y1, y2)) = eδ(x1, y1)⊕ eδ(x2, y2) (∗)

6 (eδ(x1, z1) + eδ(z1, y1))⊕ (eδ(x2, z2) + eδ(z2, y2))

= (eδ(x1, z1)⊕ eδ(x2, z2)) + (eδ(z1, y1)⊕ eδ(z2, y2))

= eδ((x1, x2), (z1, z2)) + eδ((z1, z2), (y1, y2)).

Axiom d4 is immediate. To prove d5, first observe that if we use D((x, y)) to denote the

diameter of (x, y) in the space (Re, eδ), we have

D((x, y)) = sup {eδ((x, y), (x
′, y′)) : x′ ⊆ x and y′ ⊆ y}

= sup {eδ((x, x
′)⊕ eδ(y, y

′)) : x′ ⊆ x and y′ ⊆ y}

= sup{eδ(x, x
′) : x′ ⊆ x} ⊕ sup {eδ(y, y

′) : y′ ⊆ y} = D(x)⊕ D(y).

Consequently, by (∗),

|eδ((x1, x2), (y1, y2))− eδ((y1, y2), (x1, x2))|

= |eδ(x1, y1)⊕ eδ(x2, y2)− eδ(y1, x1)⊕ eδ(y2, x2))|

= |(eδ(x1, y1)− eδ(y1, x1))⊕ (eδ(x2, y2)− eδ(y2, x2))|

6 |eδ(x1, y1)− eδ(y1, x1)|+ |eδ(x2, y2)− eδ(y2, x2)|

6 D(x1)⊕ D(y1) + D(x2)⊕ D(y2)

= D((x1, y1)) + D((x2, y2)).

Trivially, the map i : B(M) → Re defined by setting i(x) = (x, x) is an isometry from

(B(M), eδ) into (Re, eδ). It is obvious that such an isometry is not surjective. Let M̄ be

the set of points in (B(M), eδ) and M be the set of points in (Re, eδ). Then we can define

the map i : M̄ → M by setting i(P ) = [〈i(pn)〉n∈N] in M for any point P = [〈pn〉n∈N]

in M̄. Trivially, this map is an isometry. To prove that i is surjective, given any point

[〈(pn, qn)〉n∈N] in M, we observe that 〈pn〉n∈N is a point-representing sequence. Indeed,

lim
n→∞

D(pn) 6 lim
n→∞

2 · D((pn, qn)) = 0.

Moreover, given any ε > 0, let m be such that for any h > m and k > m,

eδ((ph, qh), (pk , qk)) 6 ε/2.

Then, since eδ(ph, pk) 6 2 ·eδ((ph, qh), (pk , qk)), we have also that eδ(ph, pk) 6 ε for any h > m

and k > m. Moreover, since limn→∞ eδ((pn, pn), (pn, qn)) = 0, we have that i([〈(pn)〉n∈N]) =

[〈(pn, pn)〉n∈N] = [〈(pn, qn)〉n∈N], and this proves that i is surjective.

To prove that d6 is not satisfied, it is enough to consider two distinct points P and

Q, the point P defined by the sequence constantly equal to ({P }, {P }) and the region

({P }, {P ,Q}).
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7. Abstract excess spaces

We are interested in the spaces of regions (Re, d) for which the mapping Pt : Re→ B(M̄)

is an isometry, that is, one for which

d(x, y) = eδ̄(Pt(x), P t(y)).

The following proposition shows what happens in the general case.

Proposition 7.1. Let P be a point and x and y be regions. Then

d(x, y) > sup {d(P , y) : P ∈ Pt(x)}. (7.1)

Consequently, if d6 is satisfied,

d(x, y) > eδ̄(Pt(x), P t(y)) (7.2)

and

d(x) > eδ̄(Pt(x)). (7.3)

Proof. To prove (7.1), observe that d(P , y) 6 d(P , x)+d(x, y) = d(x, y) for any P ∈ Pt(x).

(7.2) is trivial. Also, for every P ,Q ∈ Pt(x),

δ̄(P ,Q) = lim
n→∞

d(pn, qn) 6 lim
n→∞

d(pn, x) + d(x, qn)

6 lim
n→∞

(d(pn, x) + d(qn, x) + d(qn) + d(x))

= lim
n→∞

d(pn, x) + lim
n→∞g

(qn, x) + lim
n→∞

d(qn) + d(x) = d(x)

and therefore eδ̄(Pt(x)) = sup{δ̄(P ,Q) : P ∈ Pt(x), Q ∈ Pt(x)} 6 d(x).

This proposition suggests the following definition.

Definition 7.2. An abstract excess space is a quasi-metric space of bounded regions (Re, d)

satisfying d6 and such that, for any point P and x, y ∈ Re:

d7: d(x, y) = sup{d(P , y) : P ∈ Pt(x)}

Proposition 7.3. Every full Hausdorff excess space is an abstract excess space.

Proof. Let (M, δ) be a metric space and x, y be regions in B(M). Then, using cl to

denote the closure operator in (M̄, δ̄),

eδ(x, y) = eδ̄(cl(x), cl(y))

= eδ̄(Pt(x), P t(y))

= supP∈Pt(x)δ̄(P , P t(y))

= supP∈Pt(x)d(P , y).

It is simple to prove the following representation theorem for abstract excess spaces.

Theorem 7.4. Let (Re, d) be an abstract excess space and (M̄, δ̄) be the associated metric

space. Then:

(i) d(x, y) = eδ̄(Pt(x), P t(y)),

(ii) d(x) = eδ̄(Pt(x))



A. Di Concilio and G. Gerla 16

and thus Pt : Re→ B(M̄) is an isometry from (Re, d) into (B(M̄), eδ̄) preserving diameters.

Consequently, every abstract excess space is isometric to a Hausdorff excess space.

Proof. Since d(x, y) = supP∈Pt(x)d(P , y) and d(P , y) = δ̄(P , P t(y)) = inf{δ̄(P ,Q) : Q ∈
Pt(y)}, we have that

d(x, y) = supP∈Pt(x)infQ∈Pt(y)δ̄(P ,Q) = eδ̄(Pt(x), P t(y)).

To prove (ii), observe that

d(x) = sup{d(x, x′) : x′ 6 x} = sup{eδ̄(Pt(x), P t(x′)) : x′ 6 x} 6 eδ̄(Pt(x)).

So, by (7.3), d(x) = eδ̄(Pt(x)).

The following proposition shows that d7 is independent of the remaining axioms. We

use x÷ y to denote the value x− y if x > y and 0 otherwise.

Proposition 7.5. Let (M, δ) be a metric space and set, for any x, y ∈ B(M),

d(x, y) = eδ(x, y) + eδ(x)÷ eδ(y). (7.4)

Then (B(M), d) is a quasi-metric space of regions such that the partial order is the inclusion

relation, d(x) = 2 · eδ(x), and the associated metric space coincides with the metric space

(M̄, δ̄) of (M, δ). Moreover, though d6 is satisfied, d7 does not hold.

Proof. Trivially,

d(x, y) = 0⇔ eδ(x, y) = 0 and eδ(x) 6 eδ(y) ⇔ x ⊆ y.

This proves both d1 and d2. To prove d3, observe that

d(x, y) = eδ(x, y) + eδ(x)÷ eδ(y)

6 eδ(x, z) + eδ(z, y) + eδ(x)÷ eδ(z) + eδ(z)÷ eδ(y) = d(x, z) + d(z, y).

Also,

d(x) = sup{d(x, x′) : x′ ⊆ x}

= sup{eδ(x, x
′) + eδ(x)÷ eδ(x

′) : x′ ⊆ x}

= sup{eδ(x, x
′) + eδ(x)− eδ(x

′) : x′ ⊆ x}

= eδ(x) + sup{eδ(x, x
′)− eδ(x

′) : x′ ⊆ x}

= eδ(x) + sup{eδ(x, {p})− eδ({p}) : p ∈ x}

= eδ(x) + sup{eδ(x, {p}) : p ∈ x} = 2 · eδ(x).

Axiom d4 is trivial. To prove d5, observe that eδ satisfies d5, and thus

|d(x, y)− d(y, x)| = |eδ(x, y)− eδ(y, x) + eδ(x)÷ eδ(y)− eδ(y)÷ eδ(x)|

6 |eδ(x, y)− eδ(y, x)|+ |eδ(x)− eδ(y)|

6 |eδ(x, y)− eδ(y, x)|+ max {eδ(x), eδ(y)}

6 eδ(x) + eδ(y) + eδ(x) + eδ(y) = d(x) + d(y).
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Let 〈pn〉n∈N be a point-representing sequence in the space (B(M), eδ). Then limn→∞ d(pn) =

limn→∞ 2·eδ(pn) = 0. Moreover, given ε > 0, let m be such that eδ(ph, pk) < ε/3, eδ(ph) < ε/3

and eδ(pk) < ε/3 for any h > m and k > m. Then

d(ph, pk) = eδ(ph, pk) + eδ(ph)÷ eδ(pk) 6 eδ(ph, pk) + eδ(ph) + eδ(pk) 6 ε

for any h > m and k > m. This proves that 〈pn〉n∈N is a point-representing sequence in the

space (B(M), d). Conversely, since eδ 6 d, any point-representing sequence in the space

(B(M), d) is a point-representing sequence in the space (B(M), d).

Let 〈pn〉n∈N and 〈qn〉n∈N be two point-representing sequences. Then, since limn→∞(eδ(pn)÷
eδ(qn)) = 0,

lim
n→∞

d(pn, qn) = lim
n→∞

(eδ(pn, qn) + eδ(pn)÷ eδ(qn))

= lim
n→∞

eδ(pn, qn) + lim
n→∞

(eδ(pn)÷ eδ(qn)) = lim
n→∞

eδ(pn, qn).

This means that the metric space associated with (B(M), d) coincides with the metric space

associated with (B(M), eδ), and thus with (M̄, δ̄), the metric completion of (M, δ).

To prove d6, let P = [〈pn〉n∈N] be an element in M̄ and y ∈ B(M). Then, using eδ̄ to

denote the Hausdorff excess induced by δ̄,

δ̄(P , P t(y)) = eδ̄({P }, P t(y)) = lim
n→∞

eδ(pn, y) = lim
n→∞

d(pn, y) = d(P , y).

Finally, to prove that d7 does not hold, let x and y be two regions such that eδ(x) > eδ(y).

Then

d(x, y) = eδ(x, y) + eδ(x)÷ eδ(y) > eδ(x, y) = eδ̄(Pt(x), P t(y))

= sup{δ̄(P , P t(y)) : P ∈ Pt(x)}

> sup{d(P , y) : P ∈ Pt(x)}.

8. Atom-free spaces

So far no axiom excludes the existence of regions that are atoms. This enables us to

obtain a theory extending the theory of metric spaces. Alternatively, in accordance with

Whitehead’s program, we can decide to confine ourselves to atom-free spaces.

Definition 8.1. We define an atom-free quasi-metric space of regions to be any quasi-metric

space of regions satisfying:

d8: No atom exists in Re.

It is obvious that the space (B(M), eδ) is not atom-free, so in order to define a notion of

canonical models for the atom-free space theory, we have to look for a more reasonable

definition of regions in a metric space. As an example, we will just consider the regular

subsets in B(M).

Definition 8.2. Let (M, δ) be a metric space and use cl : P (M) → P (M) and int :

P (M) → P (M) to denote the closure and interior operators, respectively. Also, define

reg : P (M) → P (M) by setting reg(x) = cl(int(x)). Then we say any fixed point of reg is

a regularly closed set, or regular set for short.
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It is easy to prove that in the class of the closed subsets of (M, δ), the operator reg

satisfies the following properties:

(i) reg(6) = 6

(ii) x ⊆ y ⇒ reg(x) ⊆ reg(y)

(iii) reg(x) ⊆ x

(iv) reg(reg(x)) = reg(x).

Also, the class of regular sets is a Boolean algebra. We use Re(M) to denote the class of

regular elements in B(M). Equation (iv) entails that Re(M) = {reg(x) : x ∈ B(M)}− {6}.
An interesting class of elements in Re(M) is defined by setting, for any P ∈M and n ∈ N,

Bn(P ) = cl({P ′ ∈M : δ(P ′, P ) < 1/n}). (8.1)

Theorem 8.3. Let (M, δ) be a metric space. Then (Re(M), eδ) is a quasi-metric space of

regions whose diameter coincides with the diameter D defined in (5.5) and whose order is

the set-theoretical inclusion.

Proof. We use eδ(x) to denote the diameter of an element x ∈ Re(M) in the space

(Re(M), eδ). Then, by Theorem 5.2,

eδ(x) = sup{eδ(x, x”) : x” ⊆ x, x” ∈ Re(M)}

6 sup{eδ(x, x”) : x” ⊆ x, x” ∈ B(M)} = D(x).

Also, observe that for any x ∈ Re(M) and x′ ∈ B(M), we have x′ ⊆ x if and only if

reg(x′) ⊆ x. Then,

D(x) = sup{eδ(x, x
′) : x′ ⊆ x, x′ ∈ B(M)}

6 sup{eδ(x, reg(x
′)) : x′ ⊆ x, x′ ∈ B(M)}

= sup{eδ(x, reg(x
′)) : reg(x′) ⊆ x, x′ ∈ B(M)}

= sup{eδ(x, x”) : x” ⊆ x, x” ∈ Re(M)}

= eδ(x).

Since the diameter in (Re(M), eδ) coincides with the diameter in (B(M), eδ), we also have

that d4 is satisfied.

In the following we call the space (Re(M), eδ) a small Hausdorff excess space .

Theorem 8.4. Let (M, δ) be a metric space and use (M̄, δ̄) to denote the metric space

associated with (Re(M), eδ). Also, use k : M → M̄ to denote the map defined by setting

for any P ∈M,

k(P ) = [〈Bn(P )〉n∈N]. (8.2)

Then k is an isometry such that k(M) is dense in M̄. Consequently, (M̄, δ̄) is the completion

of (M, δ) and therefore (M̄, δ̄) is isometric with the metric space associated with (B(M), eδ).

Proof. Observe that, given P ∈ M, 〈Bn(P )〉n∈N is a point-representing sequence of

elements in Re(M). To prove that k is an isometry, let P and Q be two elements in M,

and observe that, for any P ′ ∈ Bn(P ) and Q′ ∈ Bn(Q),

δ(P ,Q) 6 δ(P , P ′) + δ(P ′, Q′) + δ(Q′, Q) 6 2/n + δ(P ′, Q′),
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and thus

δ(P ,Q) 6 2/n + δ(P ′, Bn(Q)) 6 2/n + eδ(Bn(P ), Bn(Q)).

As a consequence,

δ(P ,Q) 6 lim
n→∞

eδ(Bn(P ), Bn(Q)) = δ(k(P ), k(Q)).

Similarly, since

δ(P ′, Q′) 6 δ(P ′, P ) + δ(P ,Q) + δ(Q,Q′) 6 2/n + δ(P ,Q),

we have eδ(Bn(P ), Bn(Q)) 6 2/n + δ(P ,Q) and thus

δ(k(P ), k(Q)) = lim
n→∞

eδ(Bn(P ), Bn(Q)) 6 δ(P ,Q).

Then, δ(P ,Q) = δ(k(P ), k(Q)), which proves that h : M → M̄ is an isometry. To prove that

k(M) is dense in (M̄, δ̄), let P = [〈pn〉n∈N] be any element in M̄. Moreover, for any n ∈ N,

let Qn ∈M be an element of the set pn. We claim that limn→∞ k(Qn) = P , that is, that

lim
n→∞

δ(k(Qn), P ) = lim
n→∞

( lim
m→∞

eδ(Bm(Qn), pm)) = 0.

Indeed, if we use m to denote the minimum distance defined by (5.2),

eδ(Bm(Qn), pm) 6 eδ(Bm(Qn), pn) + eδ(pn, pm)

6 m(Bm(Qn), pn) + D(Bm(Qn)) + eδ(pn, pm)

= D(Bm(Qn)) + eδ(pn, pm) 6 2/m + eδ(pn, pm).

On the other hand, since 〈pn〉n∈N is a point-representing sequence, given any ε > 0, an

integer h exists such that eδ(pn, pm) 6 ε for any n > h and m > h. Consequently,

δ(k(Qn), P ) = lim
m→∞

eδ(Bm(Qn), pm) 6 lim
m→∞

eδ(pn, pm) 6 ε

for any n > h. Thus, limn→∞ δ(k(Qn), P ) = 0, which proves that k(M) is dense in (M̄, δ̄).

Since, by Theorem 4.5, the space (M̄, δ̄) is complete, we can conclude that (M̄, δ̄) is the

completion of (M, δ).

Theorem 8.5. Let (M, δ) be a metric space. Then (Re(M), eδ) is an abstract excess space.

If (M, δ) has no isolated point, then (Re(M), eδ) is atom-free.

Proof. Since the points in (Re(M), eδ) coincide with the points in (B(M), eδ), it is evident

that (Re(M), eδ) satisfies d6 and d7. To prove the second part of the theorem, we prove

that an element x in Re(M) is an atom iff there is an isolated point P ∈ M such that

x = {P }. Indeed, if P is an isolated point, it is evident that {P } is a bounded regular

subset and therefore an atom in Re(M). Conversely, let x be an atom in Re(M) and let P

be an element of int(x). We claim that P is an isolated point such that x = {P }. Indeed,

if we assume that x 6= {P }, then a point Q ∈ x exists such that Q 6= P . Accordingly, there

exists n ∈ N such that Bn(P ) ⊆ x and Q /∈ Bn(P ). Then Bn(P ) is a proper sub-region of x,

which contradicts the hypothesis that x is an atom. Since x = {P }, and x is regular, we

have also that P is an isolated point.
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For the case in which there are isolated points in (M, δ), we can again define an atom-free

space by the notion of a formal ball. Indeed, for any quasi-metric space (Re, δ), we define

a closed formal ball with center p and radious r, to be every pair (p, r), where p ∈ Re and r

is a positive real number. We define in the class Ball (Re) of closed formal balls in Re the

function

d((p, λ), (q, µ)) = max {δ(p, q) + λ− µ, 0}.

It is routine to prove that (Ball (Re), d) is a quasi-metric space. Also, if 6 is the order

associated with d, then

(p, λ) 6 (q, µ) ⇔ d((p, λ), (q, µ)) = 0⇔ δ(p, q) + λ 6 µ.

Moreover, d((p, λ)) = 2 · λ. Also, while d4 is satisfied, since it is

|d((p, λ), (q, µ))− d((q, λ), (p, µ))| 6 |δ(p, q)− δ(q, p)|+ 2 · λ + 2 · µ

= |δ(p, q)− δ(q, p)|+ d((p, λ)) + d((q, µ)),

when (Re, δ) is a metric space, d5 is satisfied. It is also evident that such a space has no

atom. In our opinion it would be interesting to compare these ideas with the completion

of a generalised metric space via formal open balls, which was proposed in Vickers (2005).

9. Defining the points by nested sequences of regions

In the literature on point-free geometry the notion of a point is usually defined by

referring to the class of nested sequences of regions (see, for example, Gerla (1990) and

Whitehead (1929)). We can proceed in the same way in our theory of quasi-metric spaces

of regions.

Definition 9.1. Given a quasi-metric space (Re, d), we define nested-representing sequences

as any order-reversing sequence 〈pn〉n∈N of regions with vanishing diameters, that is, such

that

lim
n→∞

d(pn) = 0.

We use Nr to denote the class of nested-representing sequences. Obviously, any nested-

representing sequence is a point-representing sequence in accordance with Definition 3.1.

To prove that Nr is non-empty, we have to consider an axiom analogous to Axiom d4:

d4′: Any region x contains a region x′ such that d(x′) 6 d(x)/2.

Trivially, d4′ entails that any region contains a nested-representing sequence.

Definition 9.2. Let (Re, d) be a quasi-metric space of regions satisfying d4′. Then the nested

metric space associated with (Re, d) is the metric space (M ′, δ′) where

M ′ = {[〈pn〉n∈N] ∈ M̄ : 〈pn〉n∈N ∈ Nr}

and δ′ is the restriction of δ̄ to M ′.

In general, the space (M ′, δ′) is different from (M̄, δ̄). For example, if (Re, d) is a metric

space, then, while (M̄, δ̄) is the completion of (Re, d), (M ′, δ′) coincides with (Re, d). Indeed,



Quasi-metric spaces and point-free geometry 21

in such a case the only point-representing sequences are the sequences constantly equal

to an element of Re. This observation is in accordance with the following theorem.

Theorem 9.3. Let (Re, d) be a quasi-metric space of regions satisfying d4′, and (M̄, δ̄) and

(M ′, δ′) be the associated metric space and nested metric space, respectively. Then (M̄, δ̄)

is the metric completion of (M ′, δ′).

Proof. To prove that (M ′, δ′) is dense in (M̄, δ̄), let P = [〈pn〉n∈N] be any element in M̄.

Then we can consider for any n ∈ N a point Pn in M ′ such that Pn ∈ Pt(pn). Then, since

by (6.1) limn→∞ d(pn, P ) = 0 and

δ̄(Pn, P ) 6 d(Pn, pn) + d(pn, P ) = d(pn, P ),

we have that limn→∞δ̄(Pn, P ) = 0. Thus every element of M̄ is a limit of a sequence of

elements of M ′, and, therefore, by the completeness of (M̄, δ̄), the space (M̄, δ̄ ) is the

metric completion of (M ′, δ′).

In accordance with Theorem 4.4, the metric space associated with a quasi-metric space of

regions is complete. The question arises as to whether the associated nested metric space

satisfies some completeness property.

Definition 9.4. Let (M, δ) be a metric space. Then we say that (M, δ) is weakly complete

if any nested sequence of non-empty regularly closed subsets with vanishing diameters

has a non-empty intersection. We say that a metric space (M ′, δ′) is a weak completion

of (M, δ) if (M ′, δ′) is weakly complete and (M, δ) is dense in (M ′, δ′).

Theorem 9.5. Let (M, δ) be a metric space. Then the nested metric space (M ′, δ′) associated

with (Re(M), eδ) is a weak completion of (M, δ).

Proof. By mimicking Theorem 8.4 we have that (M, δ) is isometric to a dense subspace

of (M ′, δ′). Also, observe that any regularly closed subset x′ of M ′ is the closure in (M ′, δ′)

of some x ∈ Re(M). Let 〈x′n〉n∈N be any nested sequence of elements in Re(M
′) with

vanishing diameters and let xn ∈ Re(M) be such that its closure in (M ′, δ′) is x′n. Then

〈xn〉n∈N is a nested representing sequence and therefore it determines a point P in M ′ that

belongs to the closure x′n of xn in (M ′, δ′).

The definition of a point by the nested-representing sequences refers only to the inclusion

relation between regions and to the diameter of a region. So, the question arises as to

whether a possible approach to point-free geometry can be based on these two notions as

primitives. A reasonable proposal should be as follows. We start from a structure (R,6, D)

where 6 is a partial order and D : R → R+ a map. In this structure we define the notion

of a nested-representing sequence as in Definition 9.1. In the set Pr of nested-representing

sequences we can set

d(〈xn〉n∈N , 〈yn〉n∈N}) = inf{D(x) : xOxn and xOyn for any n ∈ N}

where O is the overlapping relation defined by setting xOy provided that a region z

exists contained in both x and y. By imposing suitable properties on the diameter D, it

should be possible to prove that (Nr, d) is a pseudo-metric space and therefore to define
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a metric space as in Section 4. With regard to this idea, observe that the partial order

and the diameter induced by a quasi-metric do not exhaust the information carried by

the quasi-metric. Namely the following proposition holds true.

Proposition 9.6. Let R be the set of real numbers. Then there are two canonical quasi-

metric spaces in R2 that are not isometric but define the same diameter and the same

inclusion relation.

Proof. Let (R2, d) be the Euclidean metric space and let δ be the taxi-metric, that is, set

δ((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

Then the balls in such a space are the squares whose sides have the direction of the

diagonals. It can be shown easily that (R2, δ) is topologically equivalent to (R2, d).

Nevertheless, these spaces are not isometric. Indeed, in (R2, δ) the four points (-1,0),

(1,0), (0,-1), (0,1) define a square whose diagonals are equal to the sides and in (R2, d)

such a point configuration cannot exist. Consider the Hausdorff excesses defined in these

spaces by the class of taxi-balls. It is evident that they are not isometric. Also, given a

closed taxi-ball of radius ε, both its Euclidean-diameter and taxi-diameter are equal to

2·ε. Moreover, in both cases the partial order associated with the Hausdorff excess is the

usual inclusion relation.

10. Open questions and future work

L.M. Blumenthal proved in Blumenthal (1970) that, given an integer n ∈ N, it is possible

to add to the theory of metric spaces MS a suitable set of axioms ES to obtain a

theory T = MS ∪ ES for the Euclidean n-dimensional metric space, that is, a theory

whose models coincide with the metric space of the Euclidean space whose dimension

is n. Obviously, the axioms in T refer to the points and the distance between points as

primitives. Now, assume as primitives the regions and a distance between regions. Then

it is an open question as to whether a system of axioms ES can be added to the axioms

d1–d8 to obtain a theory T whose models are the atom-free quasi-metric spaces of regions

whose associated metric space (M, δ) is a Euclidean metric space. Such a theory should

be a point-free approach to Euclidean geometry in accordance with Whitehead’s ideas.

Furthermore, it should be interesting to study the category whose objects are the

quasi-metric spaces of regions and whose morphisms are the non-expansive maps.

Finally, in accordance with the recent literature, it is important to explore the comput-

ability dimension of the proposed notions.
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