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Napoli, Federico II, Via Cintia, Monte S. Angelo, I-80126 Napoli, Italy

Abstract

Non stationary discrete time waveform relaxation methods for Abel systems of
Volterra integral equations using fractional linear multistep formulae are introduced.
Fully parallel discrete waveform relaxation methods having an optimal convergence
rate are constructed. A significant expression of the error is proved, which permits to
estimate the number of iterates needed to satisfy a prescribed tolerance and allows
to identify the problems where the optimal methods offer the best performances.
The numerical experiments confirm the theoretical expectations.

Key words: Abel equations, parallel methods, waveform relaxation methods
MSC: 65R20, 45E10, 45D05

Email addresses: giovanni.capobianco@unimol.it (Giovanni
Capobianco), dajconte@unisa.it (Dajana Conte),
ida.delprete@unina.it (Ida Del Prete).

Preprint submitted to Elsevier



1 Introduction

The aim of this work is to develop high performance numerical
methods for large systems of Volterra integral equations (VIEs)
with weakly singular kernel (Abel type) of the form

y(t) = f(t) +
∫ t

0

k(t, s, y(s))

(t − s)α
ds, t ∈ [0, T ], 0 < α < 1, (1.1)

y, f, k ∈ Rd, d >> 1.

Such equations arise from many applications such as reaction–diffusion
problems in small cells [15] or from the semidiscretization in space
of Volterra–Fredholm integral equations with weakly singular ker-
nel and of partial Abel integral or integro–differential equations.
The last kind of equations occur as mathematical model in linear
quasi–static viscoelasticity problems (see [25], [26] and their lists of
references) and in the description of anomalous diffusion processes
and wave propagation in viscoelastic materials [14] [16] [19] [20] [22]
[23] [24]. In many of the cited examples the spatial semidiscretiza-
tion leads to VIEs of the form (1.1) with linear convolution kernel
[14], [25], [26]. Volterra–Fredholm integral equations with singular
kernels occur for example in the modelling of the coding mechanism
in the transmission of nervous signals among neurons [17].

Numerical methods for (1.1) require a very high computational
cost, because both of the hereditary nature of the problem and
of the presence of the singularity. Of course, the computational
cost grows with the dimension of the problem and it can become
prohibitive for large systems of Abel VIEs.

A parallel approach can be a possible solution in order to solve
(1.1) into a reasonable time frame. The iterative waveform relax-
ation methods (WR methods) [3] [5] [7] [10] [11] [12] [13] are espe-
cially suitable for large systems of VIEs since they allow a paral-
lelism “across the system”. The idea of WR methods is to construct
a sequence of functions {y(ν)(t)}ν∈N , said ”waveforms”, which con-
verges to the solution of (1.1). The resulting system, at each it-
eration, can be decoupled into independent subsystems that can
be solved in parallel. Since the parallel WR methods are, gener-
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ally, slowly convergent it is convenient to use nonstationary WR
methods (NSWR methods) (see [8], [9]).

In this paper we construct fast convergent discrete time NSWR
methods for (1.1) using fractional linear multistep formulae. Section
2 contains the detailed construction of the methods. In Section 3 we
perform the convergence analysis (with respect to the iterations) for
nonlinear and linear systems, providing conditions on the stepsize
that ensure the convergence of the methods. In Section 4 we con-
struct the family of Richardson fully parallel discrete time NSWR
methods. We give the expression of the parameters of the optimal
methods with respect to the convergence rate. These methods will
be called “fast methods”. Moreover, a significant error expression
is proved, that allows to estimate a priori the number of iterations
to be performed in order to achieve the required precision and to
characterize the class of problems on which the proposed methods
have the best performances. In Section 5 we report numerical ex-
periments that confirm the theoretical results and show that the
convergence improvement with respect to the optimal stationary
methods varies from the 33% to the 75%. We briefly discuss a
strategy to develop a dynamical integration window and the op-
timal reordering of the parameters for the construction of an effi-
cient parallel algorithm based on the fast discrete time Richardson
NSWR methods.

2 Discrete time NSWR methods

It is known that the most suitable numerical methods for solving
VIEs of Abel type are the fractional linear multistep methods [21]
and the collocation methods [1] [2] [4].

Here we treat the fractional linear multistep methods; analo-
gous results hold for a family of methods generalizing the one point
collocation methods [2].
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Let us discretize the integration range through the mesh points:

tn = nh, n = 0, 1, . . . ,N, h =
T

N
.

In [21] the class of fractional linear multistep methods for VIEs
of Abel type was constructed starting from a linear multistep method
ω = (ρ, σ), ρ and σ being the first and second characteristic poly-
nomial of the method respectively. For the equation (1.1) a method
of such class is given by

yn = f(tn) + h1−α
s∑

j=0

wn,j(α)k(tn, tj, yj)+ (2.1)

+ h1−α
n∑

j=0

ωn−j (α)k(tn, tj, yj), n = 0, 1, . . . ,N ,

yn ∈ Rd,

where s is the number of starting points, {wn,j} and {ωn−j} rep-
resent respectively the starting and the convolution weights, which
both depend on α. The starting values y1, . . . , ys are determined by
some special starting procedure and then the approximations yn,
for n = s + 1, . . . ,N, are recursively determined.

Let us consider a NSWR method of the form

y(ν)(t) = f(t) +
∫ t

0

Gν(t, s, y
(ν−1)(s), y(ν)(s))

(t− s)α
ds, (2.2)

t ∈ [0, T ], ν = 1, 2 . . . ,

y(0)(t) := f(t),

where {Gν(t, s, u, v)}ν∈N are such that

Gν(t, s, u, u) = k(t, s, u) ∀ν. (2.3)

By applying (2.1) to the system (2.2) we obtain the following
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discrete time NSWR method

y(ν)
n = f(tn) + h1−α

s∑

j=0

wn,j(α)Gν(tn, tj, y
(ν−1)
j , y

(ν)
j )+ (2.4)

+ h1−α
n∑

j=0

ωn−j (α)Gν(tn, tj, y
(ν−1)
j , y

(ν)
j ) ,

n = s + 1, . . . ,N , ν = 1, 2, . . . ,

where y(ν)
n represents an approximation y(ν)(tn). In (2.4) y0 = f(t0)

and we do not iterate on the starting values y1, . . . , ys which are de-
termined by the starting procedure of the fractional linear multistep
method (2.1) applied to equation (2.2).

Parallel methods are obtained by choosing the functions Gν such
that, at each iteration, the system (2.4) is decoupled into indepen-
dent subsystems.

The formulation (2.4) of the method is the most immediate, but
not the most convenient.As a matter of fact, the convergence clearly
slows down when n grows. In order to overcome this problem, we
divide the integration range into subintervals, said “windows”, and
then we apply the method “window after window”. Suppose that
the interval [ts, T ] is subdivided in γ windows of length bh, with b
a positive integer, namely

[0, T ] = [0, ts] ∪
γ−1⋃

r=0

(ts+rb, ts+(r+1)b].

The application of the fractional linear discrete time NSWR method
(2.4) to the window (ts+rb, ts+(r+1)b] leads to:

y(ν)
n = Qn + h1−α

n∑

j=s+rb+1

ωn−j(α)Gν(tn, tj, y
(ν−1)
j , y

(ν)
j )

Qn = f(tn) + h1−α
s∑

j=0

wn,j(α)k(tn, tj, yj)+ (2.5)

+ h1−α
s+rb∑

j=s+1

ωn−j(α)k(tn, tj, y
(mj)
j ), ν = 1, 2, . . . ,

n = s + rb + 1, . . . , s + (r + 1)b, r = 0, ..., γ − 1.
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As in (2.4) y0 = f(t0) and the starting values y1, . . . , ys are deter-
mined by the starting procedure of the fractional linear multistep
method (2.1) applied to equation (2.2).

In the points tn belonging to the r-th window the iteration pro-

cess is continued until a required accuracy on
{
y(ν)

n

}s+(r+1)b

n=s+rb+1
is ob-

tained. The number of iterations mn performed in the mesh point
tn depends on n, and is constant in the same window, i.e.:

mn = m̄r, n = s + rb + 1, . . . , s + (r + 1)b.

The final solution y(mn)
n ≈ yn, of course, inherits all the prop-

erties (order, convergence, stability) of the solution given by the
method (2.1).

When the length of the window coincides with the stepsize h,
the corresponding method is said time–point (or time–step) NSWR
method and assumes the form

y(ν)
n = Qn + h1−αω0(α)Gν(tn, tn, y

(ν−1)
n , y(ν)

n ) , (2.6)

n = s + 1, . . . ,N ,

ν = 1, . . . ,mn ,

y(0)
n := Qn ,

Qn = f(tn) + h1−α
s∑

j=0

wn,j(α)k(tn, tj, yj)+

+ h1−α
n−1∑

j=0

ωn−j (α)k(tn, tj, y
(mj)
j ) .

Remark 2.1 It is easy to verify that the method (2.6) can be equiv-
alently obtained applying the fractional linear multistep method to
the system (1.1) and then applying the waveform relaxation scheme
to the resulting nonlinear system.
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3 Convergence analysis

Let us assume that the functions Gν satisfy the following Lips-
chitz type condition:

‖Gν(t, s, u, v)− Gν(t, s, u
′, v′)‖ ≤ `

(ν)
1 ‖u − u′‖ + `

(ν)
2 ‖v − v′‖, (3.1)

∀ν, ∀u, u′, v, v′ ∈ Rd, t, s ∈ [0, T ], `
(ν)
1 , `

(ν)
2 ≥ 0.

The following theorem establishes the convergence of the NSWR
method (2.5) to the fractional linear method (2.1).

Theorem 3.1 If the functions Gν satisfy (3.1) with `
(ν)
1 and `

(ν)
2

uniformly bounded with respect to ν, then there exists h0 > 0 such
that, for h < h0,

lim
ν→∞

y(ν)
n = yn,

where y(ν)
n and yn are computed respectively through the methods

(2.5) and (2.1). The convergence is ensured in the norm for which
(3.1) holds.

Proof:
Let us put e(ν)

n =: yn − y(ν)
n and suppose that the point tn belongs

to the r-th window. Then, by setting m = s + rb, there exists an
index 1 ≤ i ≤ b such that the point tn is of the form tn = tm+i.
Subtracting (2.5) from (2.1) and exploiting (2.3) and (3.1) we obtain

‖e(ν)
m+i‖ ≤ h1−α

i∑

j=1

|ωi−j(α)|
(
`
(ν)
1 ‖e(ν−1)

m+j ‖ + `
(ν)
2 ‖e(ν)

m+j‖
)
.

By setting E(ν)
m =

(
‖e(ν)

m+1‖, ..., ‖e
(ν)
m+b‖

)T
, C =

b∑

j=1

|ωi−j(α)|, it fol-

lows that

‖E(ν)
m ‖∞ ≤ h1−αC

(
`
(ν)
1 ‖E(ν−1)

m ‖∞ + `
(ν)
2 ‖E(ν)

m ‖∞
)
.
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Therefore,

(
1 − h1−αC`

(ν)
2

)
‖E(ν)

m ‖∞ ≤ h1−αC`
(ν)
1 ‖E(ν−1)

m ‖∞.

By choosing h such that

h <
1

(
C`

(ν)
2

) 1
1−α

,

we are able to write

‖E(ν)
m ‖∞ ≤ h1−αC`

(ν)
1

1 − h1−αC`
(ν)
2

‖E(ν−1)
m ‖∞.

The convergence is ensured if

h1−αC`
(ν)
1

1 − h1−αC`
(ν)
2

< 1 ∀ν. (3.2)

By setting h0 = 1

(C(L1+L2))
1

1−α
and Li = supν `

(ν)
i , i = 1, 2, the con-

dition (3.2) is satisfied when h < h0.

The convergence theorem of the fractional linear multistep meth-
ods given in [21] ensures the following result.

Corollary 3.2 If the linear multistep method ω(ρ, σ) is implicit,
stable and consistent, and all zeros of σ (ζ) are inside the unit disk,
under the hypotheses of the Theorem 3.1, the method (2.5) con-
verges to the exact solution of (1.1).

Proof:
Let us denote as εn

ν := y(tn)− y(ν)
n the error of the NSWR method

after ν iterations and δn := y(tn)−yn the error of the method (2.1).
The proof immediately follows by observing that εn

ν = en
ν + δn.
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3.1 Linear VIEs

For the particular case of time–point NSWR methods (2.6) ap-
plied to linear systems with kernel of the form

k(t, s, y(s)) = k(t, s)y(s) (3.3)

we are able to provide further sufficient conditions for the conver-
gence of the method.

Let us choose the functions Gν preserving the linearity, that is:

Gν(t, s, u, v) = Mν(t, s)v + Nν(t, s)u. (3.4)

Then, the condition (2.3) becomes

Mν(t, s) + Nν(t, s) = k(t, s) (3.5)

and the time-point NSWR (2.6) is

y(ν)
n = Qn + h1−αω0(α)

[
Mν(tn, tn)y

(ν)
n + Nν(tn, tn)y

(ν−1)
n

]
,

(3.6)

n = s + 1, . . . ,N ,

ν = 1, . . . ,mn ,

y(0)
n := Qn ,

Qn = f(tn) + h1−α
s∑

j=0

wn,j(α)k(tn, tj)yj+

+ h1−α
n−1∑

j=0

ωn−j(α)k(tn, tj)y
(mj)
j .

As regards the convergence of this method let us assume that
‖Nν(tn, tn)‖ and ‖ [I − h1−αω0(α)Mν (tn, tn)]

−1 ‖ are uniformly bounded
with respect to ν, the following theorem can be proved:

Theorem 3.3 The method (3.6), when ν → ∞, converges to the
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fractional linear multistep method (2.1) if

h <
1

[ω0(α)]
1

1−α

.

Proof: The thesis immediately follows by observing that for the
method (3.6) the error e(ν)

n := yn − y(ν)
n satisfies:

e(ν)
n =

[
h1−αω0(α)

]ν




ν∏

j=1

[
[I − h1−αω0(α)Mj(tn, tn)]

−1Nj(tn, tn)
]


 e(0)

n .

4 Fully parallel methods for linear VIEs

In this section we construct fast convergent and fully parallel
time–point NSWR methods for linear VIEs.

A fully parallel method can be obtained by choosing, in (3.5),
Mν(t, s) as a diagonal matrix, in this way the system (3.6), that
has order d, is decoupled into d independent equations, that can be
solved in parallel.

In particular, let us choose:

Mν(tn, tn) = µ(n)
ν Id. (4.1)

where Id is the d-by-d identity matrix, then the corresponding
method is said the Richardson method. If µ(n)

ν = 0, we obtain the
functional iteration method.

Let us define, for every n, the following polynomial of degree ν

P (n)
ν (t) :=

ν∏

k=1

(
t − µ

(n)
k

)
(4.2)
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Theorem 4.1 The error of the non stationary Richardson time–
point relaxation method is given by

e(ν)
n =

P (n)
ν (k(tn, tn))

P
(n)
ν

(
1

h1−αω0(α)

)e(0)
n . (4.3)

Proof:
Using (4.1) in (3.6), for the error e(ν)

n it holds:

e(ν)
n = h1−αω0(α)

[
Id − h1−αω0(α)µ(n)

ν Id

]−1 [
k(tn, tn) − µ(n)

ν Id

]
e(ν−1)

n

=
h1−αω0(α)

1 − h1−αω0(α)µ
(n)
ν

[
k(tn, tn) − µ(n)

ν Id

]
e(ν−1)

n

=

[
k(tn, tn) − µ(n)

ν Id

]

1
h1−αω0(α)

− µ
(n)
ν

e(ν−1)
n

By replying on e(ν−1)
n we have

e(ν)
n =

[
k(tn, tn) − µ(n)

ν Id

]

1
h1−αω0(α)

− µ
(n)
ν

[
k(tn, tn) − µ

(n)
ν−1I

]

1
h1−αω0(α)

− µ
(n)
ν−1

e(ν−2)
n

and so the thesis follows by recursion.

The Theorem 4.1 will be used to construct methods with the
optimal convergence rate.

If k(tn, tn) has real eigenvalues

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
d

then the following theorem holds.

Theorem 4.2 The non stationary Richardson time–point relax-
ation NSWR method with µ

(n)
i = λ

(n)
i , i = 1, . . . , d gives the exact

solution in d iterates.

Proof:
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In this case P
(n)
d (t) is the characteristic polynomial of k(tn, tn).

Therefore P
(n)
d (k(tn, tn)) = 0 and e(d)

n = 0

This theorem looses its interest when the dimension of the sys-
tem is very large. In this case it is more convenient (sometimes
necessary) to accept an approximate solution (up to a prescribed
precision) by performing a number of iterations smaller than d. The
parameters of the method are then chosen in order to minimize the
error (4.3). More precisely, fixed the number mn of iterations to
perform at the point tn, the optimal parameters µ(n)

ν are then de-

termined in order to minimize
∥∥∥P (n)

mn
(k(tn, tn)

∥∥∥. The corresponding
method will be said “fast”.

The optimal parameters are determined according to the follow-
ing theorem

Theorem 4.3 The fast non stationary Richardson time–point method
is obtained by choosing:

µ
(n)
i =

λ
(n)
d − λ

(n)
1

2
cos

[
(2i − 1)π

2mn

]
+

λ
(n)
d + λ

(n)
1

2
, i = 1, . . . ,mn ,

(4.4)
and the error satisfies

∥∥∥e(mn)
n

∥∥∥ ≤ 1∣∣∣∣∣Tmn

(
λ

(n)
d

+λ
(n)
1 − 2

h1−αω0(α)

λ
(n)
d

−λ
(n)
1

)∣∣∣∣∣

‖e(0)
n ‖ . (4.5)

where Tmn(x) is the Chebyshev polynomial of degree mn.

Proof:
The proof follows by the known minimax properties of the Cheby-
shev polynomials, observing that the parameters µ

(n)
i are the zeros

of the Chebyshev polynomial shifted in the range
[
λ

(n)
1 , λ

(n)
d

]

Remark 4.1 The error estimate derived in the Theorem 4.3 can
be used also to compute a priori how many iterations should be
performed in order to achieve a given tolerance.
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Remark 4.2 Recalling that the Chebyshev polynomial grows quic-

kly outside the range [−1, 1], the values Tmn

(
λ

(n)
d

+λ
(n)
1 − 2

h1−αω0(α)

λ
(n)
d −λ

(n)
1

)

grow when λ
(n)
1 increases and λ

(n)
d −λ

(n)
1 decreases. Thus, from (4.5)

we can observe that these methods are especially suitable for systems
with large eigenvalues and small spectrum size.

Corollary 4.1 If the kernel (3.3) is of convolution type, i.e. k(t, s) =

k(t− s) then the parameters µ
(n)
i are independent of n and they are

the zeros of the Chebyshev polynomial shifted in the range [λ1, λd]
where λ1 and λd are respectively the minimum and maximum eigen-
value of k(0).

5 Numerical experiments

In the previous sections we introduced the non stationary dis-
crete time WR methods in order to have both fully parallel and fast
convergent methods. In this section we analyze the performances of
the fully parallel Richardson NSWR method compared to the cor-
responding stationary method, in order to verify the real improve-
ment in the convergence rate. We recall that the optimal stationary
WR (OSWR) method is obtained by setting in (4.1)

µ(n)
ν = µ =

λ1 + λd

2

according to the results contained in [9].

5.1 The methods

In our experiments we have considered the Richardson time–
point NSWR method using fractional linear multistep methods
based on backward differentiation formulae of order p = 2 and
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p = 3 for α = 1
2
, denoted by (BDF2)−

1
2 and (BDF3)−

1
2 . The ap-

plication of these methods to the equation (1.1) with kernel (3.3)
leads to

y0
n = Fn

yν+1
n =

√
hµν ω̃0y

ν+1
n + F ν

n , n = 1, . . . ,N , ν = 0, 1 . . . ,

F ν
n =

√
hω̃0 (µνI − k(tn, tn)) yν

n + Fn ,

Fn =
√

h
n−1∑

j=s+1

ω̃n−jk(tn, tj)y
mj

j +
√

h
s∑

j=0

w̃n,jk(tn, tj)yj + f(tn)

with

ω̃n := ω̃n

(
1

2

)
= Γ

(
1

2

)
ωn, n = 0, . . . , N − s − 1 ,

w̃n,j := w̃n,j

(
1

2

)
= Γ

(
1

2

)
wn,j , n = 1, . . . , N , j = 0, . . . , s ,

where ωn and wn,j are the convolution and the starting quadrature
weights of the backward differentiation formulae respectively (see
[18] for more details).

5.2 The test examples

The numerical experiments have been carried out on the linear
constant coefficient convolution problem

y(t) = f(t) +
∫ t

0

A · y(s)

(t− s)
1
2

ds , t ∈ [0, 1], (5.1)

A ∈ R20×20.

Here f(t) = t except for Table 5 where f(t) =
√

t, the stepsize is
h = 10−3 and in the point tn the iterates stop when

∥∥∥y(ν)
n − y(ν−1)

n

∥∥∥
∞∥∥∥y(ν)

n

∥∥∥
∞

< 10−5. (5.2)

We can deduce from Remark 4.2 that the convergence properties
of the NSWR methods depend on the eigenvalues of the matrix A
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rather than its entries. For this reason we constructed the matrices
A such that they differ one from another for the interval [a, b], on
the real axis, containing the spectrum of A and for the position of
the eigenvalues in [a, b]. We considered three possible distributions
of the eigenvalues inside [a, b]:

• linearly spaced between a and b,

• close to the middle a+b
2

,
• close to the edges a and b.

To construct A we have considered, in the linearly spaced case,
the diagonally matrix whose eigenvalues are, for i = 0, . . . , 19, λi =
b + i · l, l = − b−a

19
; in the close to the edges case, the eigenvalues

are, for i = 0, . . . , 9, λi = b + i2 · l and λi+10 = a − i2 · l with
l = −0.4 b−a

112 ; in the close to the middle case, the eigenvalues are
λ0 = b, λ19 = a and, for i = 0, . . . , 8, λi+1 = b − .49(b − a) − i2 · l
and λi+10 = a + .49(b − a) + i2 · l, l = −.2(b− a)/72.

5.3 The numerical results

The Tables from 1 to 3 show the results obtained with the
method (BDF2)−

1
2 . Here, we report, in the first column, the inter-

val [a, b] and in the second column the position of the eigenvalues
in [a, b]. In the last two columns, we report the number of the it-
erations, nfNS, needed by the fast NSWR Richardson method to
satisfy (5.2) and the number of iterations, noST , required by the
OSWR Richardson one.

The Tables 4 and 5 show the results obtained with the method
(BDF3)−

1
2 .

Tab. 1
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Eigenv. Eigenv. nfNS noST

interval position

[−2,−1] 3 5

3 5

3 5

In this test, where the spectrum of the eigenvalues of A is con-
tained in a small and close to the origin interval [a, b], the fast
NSWR method is always better than the OSWR one. We can note
that the position of the eigenvalues in [a, b] does not influence the
rate of convergence.

Tab. 2

Eigenv. Eigenv. nfNS noST

interval position

[−100,−1] 20 43

18 72

18 33

In this test, where the spectrum is large, the fast NSWR method
is much better than the OSWR one: it goes from a good improve-
ment when the eigenvalues are close to the middle of [a, b], or lin-
early spaced (the rate of convergence is almost twice), to an excel-
lent one when they are close to the edges (in this case the improve-
ment is almost three times as much). The relative position of the
eigenvalues in [a, b] influences only the convergence of the OSWR.
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Tab. 3

Eigenv. Eigenv. nfNS noST

interval position

[−100,−90] 3 5

3 5

4 6

Both methods have good performances when the spectrum is
quite small but not close to the origin. However, the fast NSWR
method has an average improvement of the 35–40%. The relative
position of the eigenvalues has just a small influence on both meth-
ods.

Tab. 4

Eigenv. interval nfNS noST

[−10,−1] 5 6

[−100,−90] 3 3

[−100,−10] 10 17

[−1000,−100] 13 25

[−10000,−100] 13 25

Tab. 5

Eigenv. interval nfNS noST

[−10,−1] 7 9

[−100,−90] 3 5

[−100,−10] 13 25

[−1000,−100] 17 34

[−10000,−100] 18 39
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The tests reported in Tables 4–5 differ only from the forcing
function f(t). From these tables we can observe that the fast NSWR
method is always better than the OSWR one and we can observe
that, if the number of iterations of the fast NSWR method grows,
then the number of iterations of the OSWR method grows in an
equal or greater amount (in [−10,−1] we pass from 5 iterations of
the non stationary versus 6 of the stationary one to 7 versus 9; in
[−10000,−100] from 13 versus 25 to 18 versus 39).

Moreover, we can observe that the NSWR method shows the
best performances, in the absolute sense, when the spectrum is
quite small but not close to the origin (when the eigenvalues of
A are in [−100,−90] only 3 iterates are needed for the required
accuracy). On the contrary, the relative (i.e. non stationary versus
stationary) best performances occur if the spectrum is quite large
(when the eigenvalues are in [−10000,−100] and [−1000,−100] the
gain is of about the 50%).

Remark 5.1 The efficient implementation of the fast NSWR Richard-
son method into a parallel algorithm requires some expedients as for
example:

• the construction of a dynamical integration window in order to
allow a balance between the convergence rate and the communi-
cation exchange among the processors,

• the optimal ordering of the parameters of the Richardson method
in order to effectively reduce the error in the first iterates.

The detailed description of the development of a parallel code based
on the fast NSWR Richardson method is contained in [6].

5.4 Conclusions

We have done numerical experiments in order to evaluate the
performances of the fast time–point NSWR methods versus the
OSWR ones. The results of these tests and the theoretical results
of Theorem 4.3 permit us to affirm that the fast NSWR methods
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have always the best performances. These are, in absolute sense, if
the spectrum size of the matrix A is quite small and, with an equal
size of the spectrum, if the spectrum is not close to the origin.
On the contrary, even if the number of iterations is quite high, we
have the best improvements of the convergence rate respect to the
optimal stationary method, when A has a large spectrum and the
eigenvalues are close to its edges.
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