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Abstract

We introduce multistep collocation methods for the numerical integration of Volterra
Integral Equations, which depend on the numerical solution in a fixed number of
previous time steps. We describe the constructive technique, analyze the order of
the resulting methods and their linear stability properties. Numerical experiments
confirm the theoretical expectations.
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1 Introduction

Volterra Integral Equations (VIEs) are models of evolutionary problems with
memory arising in many applications (see [2,3] and related bibliography), and
have the form

y(t) = g(t) +
∫ t

0
k(t, τ, y(τ ))dτ t ∈ I := [0, T ], (1.1)

where k ∈ C(D × R), with D := {(t, τ ) : 0 ≤ τ ≤ t ≤ T}, and g ∈ C(I).

In the literature many authors (see [2,3] and references therein contained)
have analyzed one–step collocation methods for VIEs. As it is well known, a
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collocation method is based on the idea of approximating the exact solution of
a given integral equation with a suitable function belonging to a chosen finite
dimensional space, usually a piecewise algebraic polynomial which satisfies the
integral equation exactly on a certain subset of the integration interval (called
the set of collocation points).

In this paper we propose a new extension to the multistep case, for which a
first analysis appeared in [7]. More precisely here we derive a general class of
multistep collocation methods, which depend on a fixed number r of previous
time steps, with the aim of increasing the order of classical one–step collo-
cation methods without increasing the computational cost. In analogy to the
case of Ordinary Differential Equations (ODEs) [8,10–12], we construct multi-
step collocation methods by adding interpolation conditions in the previous r
step points. We prove that while classical one–step collocation methods have
uniform order m for any choice of the collocation parameters and local super-
convergence order in the mesh points of 2m−2 (Gauss and Lobatto points) or
2m− 1 (Radau II points) [3], the r–steps m–points collocation methods have
uniform order m+ r, and order of local superconvergence 2m+ r − 1.

After recalling in Section 2 the one–step collocation methods for VIEs, in Sec-
tion 3 we describe the construction of the new multistep collocation methods.
In Section 4 we determine the order of convergence and superconvergence of
the new methods and in Section 5 we analyze the linear stability, by pro-
viding the recurrence relation and the stability matrix. In Section 6 we show
numerical experiments which confirm the theoretical expectations.

2 Collocation methods for VIEs

For sake of completeness we recall the basic material on collocation methods
for VIEs [2,3]. Let us discretize the interval I by introducing a uniform mesh

Ih = {tn := nh, n = 0, ..., N, h ≥ 0, Nh = T} .

The equation (1.1) can be rewritten, by relating it to this mesh, as

y(t) = Fn(t) + Φn(t) t ∈ [tn, tn+1],

where Fn(t) := g(t) +
∫ tn

0
k(t, τ, y(τ ))dτ and Φn(t) :=

∫ t

tn
k(t, τ, y(τ ))dτ rep-

resent respectively the lag term and the increment function. Let us fix m
collocation parameters 0 ≤ c1 < ... < cm ≤ 1 and denote by tn,j = tn + cjh
the collocation points. The collocation polynomial, restricted to the interval
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[tn, tn+1], is of the form:

un(tn + sh) =
m∑

j=1

Lj(s)Un,j s ∈ [0, 1] n = 0, ..., N − 1 (2.1)

where Lj(s) is the j − th Lagrange fundamental polynomial with respect to
the collocation parameters and Un,j := un(tn,j). Exact collocation methods are
obtained by imposing that the collocation polynomial (2.1) exactly satisfies
the VIE (1.1) in the collocation points tn,i and by computing yn+1 = un(tn+1):





Un,i = Fn,i + Φn,i

yn+1 =
m∑

j=1
Lj(1)Un,j

, (2.2)

where

Fn,i = g(tn,i) + h
n−1∑

ν=0

∫ 1

0
k(tn,i, tν + sh, uν(tν + sh))ds i = 1, ...,m (2.3)

Φn,i = h
∫ ci

0
k(tn,i, tn + sh, un(tn + sh))ds i = 1, ...,m. (2.4)

Note that the first equation in (2.2) represents a system of m nonlinear equa-
tions in them unknowns Un,i. We obtain an approximation u(t) of the solution
y(t) of the integral equation (1.1) in [0, T ], by considering

u(t)|(tn,tn+1]
= un(t) (2.5)

where un(t) given by (2.1). We recall that generally u(t) is not continuous in
the mesh points, as

u(t) ∈ S
(−1)
m−1(Ih), (2.6)

where

S(d)
µ (Ih) =

{
v ∈ Cd(I) : v|(tn,tn+1 ] ∈ Πµ (0 ≤ n ≤ N − 1)

}
.

Here, Πµ denotes the space of (real) polynomials of degree not exceeding µ.

The classical collocation methods have uniform order m for any choice of the
collocation parameters, and can achieve local superconvergence in the mesh
points by opportunely choosing the collocation parameters, as stated by the
following theorem [3].

Theorem 2.1 Suppose that the given functions describing the VIE (1.1) sat-
isfy k ∈ C(m)(D), g ∈ C(m)(I). Then, for any choice of the collocation param-
eters 0 ≤ c1 < ... < cm ≤ 1, the error ε(t) = u(t)− y(t) satisfies

‖ε‖∞ = O(hm).
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Suppose moreover that k ∈ C(2m−v)(D), g ∈ C(2m−v)(I), for some v ∈ {0, 1, 2},
then

• If the collocation parameters are the Radau II points for (0, 1] we have, for
v = 1,

max
n=0,...,N

|ε(tn)| = O(h2m−1)

• If the collocation parameters are m Lobatto points for [0, 1] or m−1 Gauss-
Legendre points for [0, 1] with cm = 1, we have, for v = 2,

max
n=0,...,N

|ε(tn)| = O(h2m−2)

Discretized collocation methods are determined by using suitable quadrature
formulas F̄n,i ' Fn,i and Φ̄n,i ' Φn,i for approximating the lag term (2.3)
and the increment function (2.4). Such methods preserve, under suitable hy-
pothesis on the quadrature formulas, the same order of the exact collocation
methods [3].

3 Construction of the multistep collocation method

The multistep collocation methods are obtained by introducing in the collo-
cation polynomial the dependence from r previous time steps; namely we seek
for a collocation polynomial, whose restriction to the interval [tn, tn+1] takes
the form

un(tn + sh) =
r−1∑

k=0

ϕk(s)yn−k +
m∑

j=1

ψj(s)Un,j s ∈ [0, 1] n = r, ..., N−1 (3.1)

where again
Un,j := un(tn,j) (3.2)

and ϕk(s), ψj(s) are polynomials of degree m + r − 1 to be determined by
imposing the interpolation conditions at the points tn−k, that is un(tn−k) =
yn−k, and by satisfying (3.2). The method is then constructed by imposing the
collocation conditions, which will be described in the following. The starting
values y1, y2, . . . , yr, needed in (3.1), may be obtained by using a suitable
starting procedure, based on a classical one step method.

The interpolation conditions at tn−k, k = 0, ..., r− 1, together with the condi-
tion (3.2), lead to the following linear system:

ϕl(−k) = δlk, ϕl(cj) = 0, l, k = 0, ..., r− 1

ψi(−k) = 0, ψi(cj) = δij, i, j = 1, ...,m.
(3.3)
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The (3.3) represents a linear system of (r+m)2 equations where the (r+m)2

unknowns are the coefficients of the polynomials ϕk(s) and ψj(s), considering
the cj, j = 1, ...,m as fixed parameters.

Remark 3.1 Assuming that ci 6= cj and c1 6= 0, then the unique solution of
the system (3.3) assumes the form:

ϕk(s) =
m∏

i=1

s−ci

−k−ci
·

r−1∏
i=0
i 6=k

s+i
−k+i

,

ψj(s) =
r−1∏
i=0

s+i
cj+i

·
m∏

i=1
i 6=j

s−ci

cj−ci
.

(3.4)

The expression (3.4) follows immediately by observing that {ϕk(s), ψj(s)} de-
fined by mean of (3.3) represent the fundamental Lagrange polynomials with
respect to the nodes {−k, cj|k = 0, ..., r− 1, j = 1, ...,m}.

The exact multistep collocation method is then obtained by imposing the col-
location conditions, i.e. that the collocation polynomial (3.1) exactly satisfies
the VIE (1.1) at the collocation points tn,i, and by computing yn+1 = un(tn+1):





Un,i = Fn,i + Φn,i

yn+1 =
r−1∑
k=0

ϕk(1)yn−k +
m∑

j=1
ψj(1)Un,j

, (3.5)

where the lag–term Fn,i and increment–term Φn,i are given by (2.3) and (2.4)
respectively. The discretized multistep collocation method is then obtained by
using suitable quadrature formulas for the lag–term and the increment–term
approximation. The discretized multistep collocation polynomial, denoted by
Pn(t), is then of the form

Pn(tn +sh) =
r−1∑

k=0

ϕk(s)yn−k +
m∑

j=1

ψj(s)Yn,j s ∈ [0, 1] n = 0, ..., N−1 (3.6)

where the functions ϕk(s) and ψj(s) are given by (3.4), and Yn,j := Pn(tn,j)
are determined by the solution of the following nonlinear system





Yn,i = F̄n,i + Φ̄n,i

yn+1 =
r−1∑
k=0

ϕk(1)yn−k +
m∑

j=1
ψj(1)Yn,j

. (3.7)

The lag–term and increment–term approximations

F̄n,i = g(tn,i) + h
n−1∑

ν=0

µ1∑

l=0

blk(tn,i, tν + ξlh, Pν(tν + ξlh)) i = 1, ...,m (3.8)
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Φ̄n,i = h
µ0∑

l=0

wilk(tn,i, tn + dilh, Pn(tn + dilh)) i = 1, ...,m (3.9)

are obtained by using quadrature formulas of the form

(ξl, bl)
µ1
l=1, (dil, wil)

µ0
l=1, i = 1, ...,m, (3.10)

where the quadrature nodes ξl and dil satisfy 0 ≤ ξ1 < ... < ξµ1 ≤ 1 and
0 ≤ di1 < ... < diµ0 ≤ 1, µ0 and µ1 are positive integers and wil, bl are suitable
weights.

Remark 3.2 The discretized multistep collocation method (3.6)-(3.7) pro-
vides a continuous approximation P (t) of the solution y(t) of the integral
equation (1.1) in [0, T ], by considering

P (t)|(tn,tn+1]
= Pn(t) (3.11)

where Pn(t) is given by (3.6). We note that usually the polynomial constructed
in the collocation methods for VIEs doesn’t interpolate the numerical solution
in the previous step points, resulting a discontinuous approximation of the
solution (2.6). In this new extension, the collocation polynomial is instead a

continuous approximation to the solution, i.e. u(t) ∈ S
(0)
m−1(Ih), as a result of

the application of our technique.

Remark 3.3 The discretized multistep collocation method (3.6)-(3.7) can be
regarded as a multistep Runge–Kutta method for VIEs:





Yn,i = F̄n(tn,i) + h
µ0∑
l=1

wilk

(
tn + eilh, tn + dilh,

r−1∑
k=0

γilkyn−k +
m∑

j=1
βiljYn,j

)

yn+1 =
r−1∑
k=0

θkyn−k +
m∑

j=1
λjYn,j

,

(3.12)
where

F̄n(t) = g(t) + h
n−1∑

ν=0

µ1∑

l=1

blk


t, tν + ξlh,

r−1∑

k=0

δlkyν−k +
m∑

j=1

ηljYν,j


 (3.13)

and

eil = ci, γilk = ϕk(dil), βilj = ψj(dil),

θk = ϕk(1), λj = ψj(1),

δlk = ϕk(ξl), ηlj = ψj(ξl).

Many multistep Runge–Kutta methods for ODEs have already appeared in
the literature also in the context of General Linear Methods for ODEs (see
[9] and the related bibliography). At the best of our knowledge (3.12)-(3.13)
represent the first version of multistep Runge-Kutta methods for VIEs.
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The reason of interest of the constructed methods lies in the fact that they
increase the order of convergence of collocation methods without increasing
the computational cost, except for the cost due to the starting procedure. As a
matter of fact, in advancing from tn to tn+1, we make use of the approximations
yn−k, k = 0, ..., r−1, which have already been evaluated at the previous steps.
This permits to increase the order, as we will show in the next section, by
maintaining in (3.5) or (3.7) the same dimension m of the nonlinear system
(2.2).

4 Determination of the order

In this section we will analyze the order of convergence and superconvergence
of the exact multistep collocation method (3.1)-(3.5) and of the discretized
multistep collocation method (3.6)-(3.7).

Lemma 4.1 Let us consider the linear VIE

y(t) = g(t) +
∫ t

0
k(t, τ )y(τ )dτ t ∈ I, (4.1)

with y ∈ R, k ∈ C(m+r)(D), g ∈ C(m+r)(I). Then, for any choice of distinct
collocation abscissas 0 < c1 < ... < cm ≤ 1, the exact solution y(t) of the VIE
(4.1) satisfies

y(tn + sh) =
r−1∑

k=0

ϕk(s)y(tn−k) +
m∑

j=1

ψj(s)y(tn,j) + hm+rRm,r,n(s), s ∈ [0, 1],

(4.2)
where the functions ϕk(s) and ψj(s) are given by (3.4), and

Rm,r,n(s) =

1∫

−r+1

Km,r(s, ν)y
(m+r)(tn + νh)dν

Km,r(s, ν) =
1

(m+ r + 1)!



(s− ν)m+r−1

+ −
r−1∑

k=0

ϕk(s)(−k − ν)m+r−1
+ −

m∑

j=1

ψj(s)(cj − ν)m+r−1
+



 .

Proof. The hypothesis k ∈ C(m+r)(D), g ∈ C(m+r)(I) assure that y ∈ C(m+r)(I).
By Peano theorems for interpolation [2], it follows that the thesis is true for
s ∈ [−r + 1, 1].

In the following theorem we prove that the r-step m-point exact collocation
method (3.1)-(3.5) has uniform convergence order of at least p = m + r, for
any choice of distinct collocation abscissas 0 < c1 < ... < cm ≤ 1..
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Theorem 4.2 Let ε(t) = y(t) − u(t) be the error of the exact collocation
method (3.1)-(3.5) and p = m+ r. Suppose that

i. the given functions describing the VIE (1.1) satisfy k ∈ C(p)(D × R), g ∈
C(p)(I).

ii. the starting error is ‖ε‖∞,[0,tr]
= O(hp).

iii. ρ(A) < 1, where

A =




0r−1,1 Ir−1

ϕr−1(1) ϕr−2(1), ..., ϕ0(1)


 (4.3)

and ρ denotes the spectral radius.

Then
‖ε‖∞ = O(hm+r).

Proof. We will carry out the proof in the case of a linear VIE (4.1). The
proof can be straightforwardly extended to the case of a nonlinear VIE (1.1)
by using the mean value theorem (see [2,3,6] for more details).

By Lemma 4.1 we have

y(tn +sh) =
r−1∑

k=0

ϕk(s)y(tn−k)+
m∑

j=1

ψj(s)y(tn,j)+h
pRm,r,n(s) s ∈ [0, 1]. (4.4)

It follows, by subtracting (4.4) and (3.1), that the exact collocation error ε(t)
has the local representation

ε(tn + sh) =
r−1∑

k=0

ϕk(s)εn−k +
m∑

j=1

ψj(s)εn,j + hpRm,r,n(s) n ≥ r (4.5)

with εn−k = ε(tn−k), εn,j = ε(tn,j). The first equation in (3.5), together with
(2.3)-(2.4) with linear kernel k(t, τ, y) = k(t, τ )y, and (3.1)-(3.2), lead to

un(tn,i) = g(tn,i)+h
n−1∑

l=0

∫ 1

0
k(tn,i, tl+sh)ul(tl+sh)ds+h

∫ ci

0
k(tn,i, tn+sh)un(tn+sh)ds.

(4.6)
By evaluating (4.1) for t = tn,i, by splitting the integral over [0, tn,i] in the
sum of the integrals in the subintervals [tl, tl+1], l = 0, . . . , n − 1, [tn, tn,i] and
by considering the change of variable τ = tl + sh, l = 0, . . . , n in each of them,
we obtain

y(tn,i) = g(tn,i)+h
n−1∑

l=0

∫ 1

0
k(tn,i, tl+sh)y(tl+sh)ds+h

∫ ci

0
k(tn,i, tn+sh)y(tn+sh)ds.

(4.7)
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By subtracting (4.6) from (4.7), we get

εn,i = h
n−1∑

l=0

∫ t

0
k(tn,i, tl + sh)ε(tl + sh)ds+ h

∫ ci

0
k(tn,i, tn + sh)ε(tn + sh)ds.

(4.8)
By the hypothesis on the starting error it follows that

ε(tl + sh) = hpql(s) l = 0, ..., r− 1 s ∈ [0, 1] (4.9)

with ‖ql‖∞ ≤ C1 independent of h. By substituting the expressions (4.5) and
(4.9) in the equation (4.8) we obtain

ε(2)
n − hB̃nε

(2)
n = h

n−1∑

l=r

B̃(l)
n ε

(2)
l + h

n∑

l=r

B̄(l)
n ε

(1)
l + hp+1

n∑

l=0

ρ̄(l)
n n ≥ r (4.10)

where ε
(1)
l ∈ Rr, ε

(2)
l , ρ̄(l)

n ∈ Rm, B̄(l)
n ∈ Rm×r, B̃n, B̃

(l)
n ∈ Rm×m are defined as

ε
(1)
l = [εl−r+1, ..., εl]

T ε
(2)
l = [εl,1, ..., εl,m]T

(
B̄(l)

n

)
ik

=





∫ 1
0 k(tn,i, tl + sh)ϕk(s)ds, l = r, r + 1, ..., n− 1,
∫ ci
0 k(tn,i, tn + sh)ϕk(s)ds, l = n,

(
B̃n

)
ij

=
∫ ci

0
k(tn,i, tn + sh)ψj(s)ds,

(
B̃(l)

n

)
ij

=
∫ 1

0
k(tn,i, tl + sh)ψj(s)ds

(
ρ̄(l)

n

)
i
=





∫ 1
0 k(tn,i, tl + sh)ql(s)ds, l = 0, ..., r− 1,
∫ 1
0 k(tn,i, tl + sh)Rm,r,l(s)ds, l = r, ..., n− 1,
∫ ci
0 k(tn,i, tn + sh)Rm,r,n(s)ds, l = n.

Expression (4.5) with l − 1 in place of n and s = 1 leads to

ε
(1)
l = Aε

(1)
l−1 + Sε

(2)
l−1 + hpρ̃m,r,l−1, l ≥ r (4.11)

where A is given by (4.3),

S =



0r−1,m

ψT (1)


 , ρ̃m,r,j =




0r−1,1

Rm,r,j(1)


 ,

ψ(1) = [ψ0(1), ..., ψm(1)]T .

The solution of the difference equation (4.11) is

ε
(1)
l = Al−r+1ε

(1)
r−1 +

l−1∑

j=r−1

Al−j−1
(
Sε

(2)
j + hpρ̃m,r,j

)
, (4.12)
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which, inserted in (4.10), leads to

(I − hB̃n)ε
(2)
n = h

n−1∑

l=r

B̃(l)
n ε

(2)
l + h

n−1∑

j=r




n∑

l=j+1

B̄(l)
n Al−j−1S


 ε(2)

j +

+ h

(
n∑

l=r

B̄(l)
n Al−r+1

)
ε
(1)
r−1 + h

(
n∑

l=r

B̄(l)
n Al−rS

)
ε
(2)
r−1 (4.13)

+ hp+1
n−1∑

j=r−1




n∑

l=j+1

B̄(l)
n Al−j−1


 ρ̃m,r,j + hp+1

n∑

l=0

ρ̄(l)
n n ≥ r

We have from (4.9) that

∥∥∥ε(1)
r−1

∥∥∥
1
≤ rC1h

p,
∥∥∥ε(2)

r−1

∥∥∥
1
≤ mC1h

p.

By setting

∥∥∥B̄(l)
n

∥∥∥
1
≤ D1,

∥∥∥B̃(l)
n

∥∥∥
1
≤ D2,∥∥∥∥

(
I − hB̃n

)−1
∥∥∥∥
1
≤ D0, ‖S‖1 ≤ D3,

Mm,r =
∥∥∥y(m+r)

∥∥∥
∞

Km,r := max
s∈[0,1]

∫ 1
−r+1 |Km,r(s, ν)| dν

K̄ = max
t∈I

∫ t
0 |k(t, τ )|dτ αm,r = mK̄Km,rMm,r

βm,r = Km,rMm,r, γ = mK̄C1,

where Di, i = 0, 1, 2, 3 are constants, we obtain

∥∥∥ρ̄(l)
n

∥∥∥
1
≤





γ l = 0, ..., r− 1

αm,r l = r, ..., n
, ‖ρ̃m,r,j‖1 ≤ βm,r.

Moreover, since ρ(A) < 1, there exists a constant D4 such that

k∑

l=0

∥∥∥Al
∥∥∥
1
≤ D4,

independently of k ∈ N.

Then, from (4.13),
∥∥∥ε(2)

n

∥∥∥
1
≤ hγ1

n−1∑

l=r

∥∥∥ε(2)
l

∥∥∥
1
+ γ2h

p,

with γ1 = D0D2 +D0D1D3D4, γ2 = D0D1D4C1(r+mD3)h+ rγh+ T (αm,r +
D0D1D4βm,r).The above generalised discrete Gronwall inequality leads to the
estimate ∥∥∥ε(2)

n

∥∥∥
1
≤ B2h

p,
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with B2 = γ2e
Tγ1, and then, from (4.12),

∥∥∥ε(1)
n

∥∥∥
1
≤ B1h

p,

with B1 = rC1D4 +D4D3B2 +D4βm,r.

Using the local error representation (4.5) the two above inequalities yield

|ε(tn + sh)| ≤ Λm,r(
∥∥∥ε(1)

n

∥∥∥
1
+
∥∥∥ε(2)

n

∥∥∥
1
) + hpKm,rMm,r ≤ C2h

p,

with C2 = Λm,r(B2 + B1) + Km,rMm,r, uniformly for s ∈ [0, 1] and n ≥ r,
where

Λm,r := max
{
‖ϕk‖∞ , ‖ψj‖∞ , k = 0, ..., r− 1, j = 1, ...,m

}
.

This, together to the expression (4.9) for the starting error, is equivalent to
the estimate

‖ε‖∞ ≤ Chp, (4.14)

with C = max{C1, C2}.

Remark 4.3 We will show in Section 5 (see Remark 5.3) that the hypothesis
iii. of Theorem 4.2 is equivalent to the zero-stability of the multistep collocation
method.

The following theorem provides a condition on the collocation parameters in
order to obtain local superconvergence in the mesh points.

Theorem 4.4 Let us suppose that

• the hypothesis of the Theorem 4.2 hold with p = 2m+ r − 1.
• the collocation parameters c1, ..., cm are the solution of the system





cm = 1

1
i+1

−
r−1∑
k=0

βk(−k)i −
m∑

j=1
γj(cj)

i = 0 i = m+ r, ..., 2m+ r − 2
(4.15)

with

βk =
∫ 1

0
ϕk(s)ds, γj =

∫ 1

0
ψj(s)ds (4.16)

then

max
n=0,...,N

|ε(tn)| = O(h2m+r−1).

Proof. We will carry out the proof in the case of a linear VIE (4.1). The proof
can be immediately generalised to the case of nonlinear VIEs by employing
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the Taylor’s theorem with quadratic remainder term (see [2] pag. 115). Since
u(t) satisfies the integral equation at the collocation points, we have

u(t) = g(t) +
∫ t

0
k(t, τ )u(τ )dτ − δ(t) t ∈ I,

with δ(tn,i) = 0. By subtracting (4.1) we obtain

ε(t) = δ(t) +
∫ t

0
k(t, τ )ε(τ )dτ t ∈ I,

whose solution is

ε(t) = δ(t) +
∫ t

0
R(t, τ )δ(τ )dτ t ∈ I,

where R(t, τ ) denotes the resolvent kernel for k(t, τ ). It follows that the error
in a mesh point tn assumes the form

ε(tn) = δ(tn) + h
n−1∑

ν=0

∫ 1

0
R(tn, tν + sh)δ(tν + sh)ds. (4.17)

Let us consider the quadrature formula

∫ 1

0
f(s)ds ≈

r−1∑

k=0

βkf(−k) +
m∑

j=1

γjf(cj) (4.18)

for the computation of the integrals in (4.17), where βk and γj are given by
(4.16). By denoting with En,ν the corresponding error terms we obtain:

ε(tn) = δ(tn)+h
n−1∑

ν=0




r−1∑

k=0

βkR(tn, tν−k)δ(tν−k) +
m∑

j=1

γjR(tn, tν,j)δ(tν,j)


+h

n−1∑

ν=0

En,ν .

The hypothesis cm = 1 assures that tν−k are collocation points for each ν. Since
the defect function vanishes in the collocation points, we have δ(tν−k) = 0,
δ(tν,j) = 0, hence

max
n=0,...,N

|ε(tn)| = max
n=0,...,N

∣∣∣∣∣h
n−1∑

ν=0

En,ν

∣∣∣∣∣ ≤ T max
0≤ν≤n−1≤N−1

|En,ν | .

Thus the order of ε(tn) coincides with that of the error term En,ν associated
with the quadrature formula (4.18). Such quadrature formula has degree of
precision of at least m + r − 1 by construction of the polynomials ϕk and
ψj. The condition (4.15) on the collocation parameters c1, ..., cm assures that
the quadrature formula (4.18) has infact degree of precision of at least p =
2m + r − 2, i.e. |En,ν | = O(h2m+r−1) (by Peano Theorem 8.8.4 in [2]). Then
the thesis immediately follows.
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The following theorem shows that, as in the exact case, the r-step m-point
discretized collocation method (3.6)-(3.7) has convergence order of at least
p = m+r, for any choice of distinct collocation abscissas 0 < c1 < ... < cm ≤ 1.

Theorem 4.5 Let e(t) := y(t)−P (t) be the error of the discretized collocation
method (3.6)-(3.7) and let p = m+ r. Suppose that

i. the given functions describing the VIE (1.1) satisfy k ∈ C(p)(D), g ∈
C(p)(I);

ii. the lag–term and increment–term quadrature formulas (3.10) are of order
respectively at least p+ 1 and p;

iii. the starting error is ‖e‖∞,[0,tr ] = O(hp).
iv. ρ(A) < 1, where A is given by (4.3).

Then
‖e‖∞ = O(hm+r).

Proof. The thesis follows from Theorem 4.2 by observing that ‖e‖∞ ≤ ‖ε‖∞+
‖u− P‖∞ and by the hypothesis on the order of the lag-term and increment-
term quadrature formulas.

We obtain an analogous result concerning the local superconvergence:

Theorem 4.6 Let us suppose that

• the hypothesis of the Theorem 4.5 hold with p = 2m+ r − 1.
• the collocation parameters c1, ..., cm are the solution of the system (4.15).

Then
max

n=0,...,N
|e(tn)| = O(h2m+r−1).

Proof. The thesis follows from Theorem 4.4 by observing that |e(tn)| ≤
|ε(tn)| + |u(tn) − P (tn)| and by the hypothesis on the order of the lag-term
and increment-term quadrature formulas.

Remark 4.7 In order to obtain superconvergence, in (3.8)-(3.9)-(3.10) we

can choose µ1 = m +
⌈

r−1
2

⌉
, µ0 = m− 1 +

⌈
r
2

⌉
, the abscissas ξl as µ1 Gauss-

Legendre nodes in [0, 1] and the abscissas dil as µ0 Gauss-Legendre nodes in
the interval [0, ci].

Table 1 gives a comparison, in terms of computational cost, between classical
superconvergent one–step gaussian collocation methods and our new supercon-
vergent multistep collocation methods based on Gauss-Legendre quadrature
formulas for lag–term and increment–function approximation. The values re-
ported in the table hold when r is odd, and analogous results hold when it
is even. The table shows (see columns 2 and 4) that, if we consider the same
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number m of collocation points, and hence the same dimension of the nonlin-
ear system, then the r–step m–point collocation methods have higher order,
i.e. order 2m + r − 1 instead of 2m − 2, which is the order of the classical
one–step gaussian method. Analogously (compare columns 3 and 4 in Table
1), to obtain classical collocation methods having the same order 2m + r − 1
of r–step m–point collocation methods, we have to use more collocation pa-
rameters and hence increase to m + r−1

2
+ 1 the dimension of the nonlinear

system.

Table 1
Comparison with classical gaussian methods

Classic one–step Multistep

Number of

collocation points
m m + r−1

2 + 1 m

dimension of

nonlinear system
m m + r−1

2 + 1 m

number of lag-term

quadrature nodes
m-1 m + r−1

2 m + r−1
2

order 2m− 2 2m + r − 1 2m + r − 1

Example 4.8 Let us consider the case m = 1, r = 3 and denote by c the
collocation abscissa. The polynomials ϕk, k = 0, 1, 2 and ψ1, obtained by (3.4),
have the following expression:

ϕ0(s) = (c−s)(2+3s+s2)
2c

, ϕ1(s) = − s(c−s)(2+s)
1+c

,

ϕ2(s) = s(c−s)(1+s)
2(2+c)

, ψ1(s) = s(2+3s+s2)
c(2+3c+c2)

.
(4.19)

By choosing in (3.10) the 2−points Gauss-Legendre quadrature formulas in
[0, 1] and in [0, ci], we obtain a one-stage method of order 4 for any choice of
c. In this case the order of superconvergence is 4 and coincides with the order
of uniform convergence. In the following section we will show how to choose
the collocation abscissa c in order to heighten the linear stability properties of
the method.

Example 4.9 Let us consider the case m = 2, r = 3. The polynomials ϕk,
k = 0, 1, 2 and ψj, j = 1, 2 obtained by (3.4), have the following expression:

ϕ0(s) = (c1−s)(c2−s)(2+3s+s2)
2c1c2

, ϕ1(s) = − s(c1−s)(c2−s)(2+s)
(1+c1)(1+c2)

,

ϕ2(s) = s(c1−s)(c2−s)(1+s)
2(2+c1)(2+c2)

,

ψ1(s) = s(c2−s)(2+3s+s2)
c1(2+3c1+c21)(c2−c1)

, ψ2(s) = s(c1−s)(2+3s+s2)
c2(2+3c2+c22)(c1−c2)

.

(4.20)
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and we obtain a two-stage method of order 5 for any choice of {c1, c2}. The
system of equations (4.15) reduces to:





c2 = 1

76 − 97c2 − 97c1 + 135c1c2 = 0
,

with solution {c1, c2} =
{

21
38
, 1
}
. The resulting method is of mesh order p =

2m+ r− 1 = 6, if we consider in (3.10) the 3−points Gauss-Legendre quadra-
ture formulas in [0, 1] and in [0, ci].

5 Linear stability analysis

In this section we will study the stability properties of the multistep collocation
method with respect to the basic test equation

y(t) = 1 + λ
∫ t

0
y(τ )dτ t ∈ [0, T ], Re(λ) ≤ 0, (5.1)

usually employed in literature for the stability analysis of numerical methods
for VIEs (see for example [3,1] and their references). Since the exact solution
y(t) of (5.1) tends to zero when t goes to +∞, it is natural to require that the
numerical solution has the same behaviour. We recall (see [1]) that a numerical
method is said to be stable for given z := hλ ∈ C if the numerical solution
yn, obtained by applying the method to the test equation (5.1) with fixed
stepsize h, tends to zero when n → +∞. The region of absolute stability of
the method is the set of all values z ∈ C for which the above condition is
satisfied. Furthermore the method is said A-stable if its region of absolute
stability includes the negative complex half plane.

Let us define

Ωik =
∫ ci

0
ϕk(s)ds, ρij =

∫ ci

0
ψj(s)ds

βk =
∫ 1

0
ϕk(s)ds, γj =

∫ 1

0
ψj(s)ds,

and introduce the vectors

Un = [Un,1, ..., Un,m]T , y(r)
n = [yn, ..., yn−r+1]

T ,

β = [β0, ..., βr−1]
T γ = [γ1, ..., γm]T , u = [1, ..., 1]T ∈ Rm,

ψ(1) = [ψ1(1), ..., ψm(1)]T , ϕ(1) = [ϕ0(1), ..., ϕr−1(1)]
T ,
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and the matrices

Ω = (Ωik) ∈ Rm×r, ρ = (ρij) ∈ Rm×m, E =




−ψ(1)T

0r,m


 ,

F =




01,r 0

Ir 0r,1


 , G =




1 −ϕ(1)T

0r,1 Ir


 .

Theorem 5.1 The exact multistep collocation method (3.1)-(3.5), applied to
the test equation (5.1), leads to the following recurrence relation




yn+1

y(r)
n

Un




= R(z)




yn

y
(r)
n−1

Un−1




(5.2)

where the stability matrix is given by

R(z) = [Q(z)]−1 M(z) (5.3)

with

Q(z) =




0m,1 −zΩ Im − z ρ

G E




M(z) =




0m,1 z(uβT − Ω) z(uγT − ρ)

F 0r+1,m


 .

Proof. By applying the method (3.1)-(3.5) to the test equation (5.1) we obtain

yn+1 = ϕ(1)Ty(r)
n + ψ(1)TUn (5.4)

where
Un = F̄n + z

(
Ωy(r)

n + ρUn

)
, (5.5)

F̄n = u + z
n−1∑

ν=0

(bTy(r)
ν + γTUν)u. (5.6)

From the expression (5.6) we derive

F̄n − F̄n−1 = z(bTy
(r)
n−1 + γTUn−1)u. (5.7)
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The computation of the difference Un − Un−1 by substituting the expression
(5.5) for both terms Un and Un−1, and by using (5.7), leads to

(Im − zρ) Un − zΩy(r)
n = z(uβT −Ω)y(r)

n−1 + z(uγT − ρ)Un−1.

From (5.4) it follows that

G



yn+1

y(r)
n


+ EUn = F



yn

y
(r)
n−1


 .

Thus we obtain

Q(z)




yn+1

y(r)
n

Un




= M(z)




yn

y
(r)
n−1

Un−1




and the thesis follows.

Let us define

Ω̃ik =
µ0∑

l=1

ωilϕk(dil), ρ̃ij =
µ0∑

l=1

ωilψj(dil),

β̃k =
µ1∑

l=1

blϕk(ξl), γ̃j =
µ1∑

l=1

blψj(ξl),

and introduce the vectors

Yn = [Yn,1, ..., Yn,m]T

β̃ = [β̃0, ..., β̃r−1]
T γ̃ = [γ̃1, ..., γ̃m]T ,

and the matrices

Ω̃ = (Ω̃ik) ∈ Rm×r, ρ̃ = (ρ̃ij) ∈ Rm×m.

Theorem 5.2 The discretized multistep collocation method (3.6)-(3.7), ap-
plied to the test equation (5.1), leads to the following recurrence relation




yn+1

y(r)
n

Yn




= R(z)




yn

y
(r)
n−1

Yn−1




(5.8)

where the stability matrix is given by

R(z) =
[
Q̃(z)

]−1
M̃(z) (5.9)
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with

Q̃(z) =




0m,1 −zΩ̃ Im − z ρ̃

G E




M̃(z) =




0m,1 z(uβ̃
T − Ω̃) z(uγ̃T − ρ̃)

F 0r+1,m


 .

Proof. The proof is analogous to that of Theorem 5.1.

Remark 5.3 By analyzing the stability behaviour of the exact or discretized
multistep collocation method when z = hλ = 0, from (5.3) or (5.9) we get

R(0) =




ϕT (1) 01,m+1

Ir 0r,m+1

0m,r 0m,m+1



,

with ϕ(1) = [ϕ0(1), ..., ϕr−1(1)]
T , for both exact and discretized collocation

methods. An easy computation shows that

ρ (R(0)) = ρ (A) ,

where the matrix A is defined by (4.3). Thus the zero-stability is equivalent to
the condition iii. of Theorem 4.2.

If the eigenvalues of the stability matrix R(z) are within the unit circle, then
the multistep collocation method is stable. The region of absolute stability of
the method is thus the set S := {z ∈ C : |eig(R(z))| < 1}. . The method is
A–stable if S ⊇ {z ∈ C :Re(z) < 0} .

In Figure 1 we report the stability region of the method with m = 1 and r = 3
described in Example 4.8, with collocation parameter c = 1. By drawing the
stability regions for different values of the abscissa c, we observed that the
stability region is larger when we increase c, thus the choice c = 1 guarantees
the largest stability region. In Figures 2-3 we report the stability regions of
the method with m = 2 and r = 3 described in Example 4.9, with collocation
parameters {c1 = 21

38
, c2 = 1} and {c1 = 0.7, c2 = 1} respectively. In particular

we note that the stability region of the superconvergent method in Figure 2 is
bounded, while the stability region in Figure 3 is unbounded. The parameters
used in Figure 3 have been found through an extensive symbolic-numerical
search.
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Fig. 1. Stability region with m = 1, r = 3, c = 1.
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Fig. 2. Stability region with m = 2, r = 3, c1 = 21
38 , c2 = 1 (superconvergence).
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Fig. 3. Stability region with m = 2, r = 3, c1 = 0.7, c2 = 1.

6 Numerical Experiments

In this section numerical experiments will be carried out in order to validate
the order proved in Section 4 and to compare the performances of the new
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methods with respect to the classical collocation methods. The methods have
been implemented in MATLAB and we report the numerical results on the
following three test problems:

• the linear VIE

y(t) = et +
∫ t

0
2 cos(t− τ )y(τ )dτ t ∈ [0, 10], (6.1)

with exact solution y(t) = et(1 + t2);
• the nonlinear VIE

y(t) = 1 + sin2(t) −
∫ t

0
3 sin(t− τ )y2(τ )dτ, t ∈ [0, 10], (6.2)

with exact solution y(t) = cos(t);
• the nonlinear VIE

y(t) = 2 − cos(t) −
∫ t

0
sin(ty(τ )− τ )dτ, t ∈ [0, 5], (6.3)

with exact solution y(t) ≡ 1.

We consider the multistep collocation methods withm = 2, r = 3, given by Ex-
ample 4.9 with the following choices of the collocation abscissas: {c1 = 0.7, c2 = 1}
and

{
c1 = 21

38
, c2 = 1

}
. The methods have respectively order p = 5 and p = 6

(superconvergence). The starting values have been obtained from the known
exact solutions.

The accuracy is defined by the number of correct significant digits cd at the
end point (the maximal absolute end point error is written as 10−cd). The

order of the method is estimated with the formula p(h) = cd(h)−cd(2h)
log102

for a
fixed h.

The results listed in Tables 2-3 clearly show that our methods produce the
expected order (N = T

h
represents the number of mesh points in the integration

interval).

Table 2
Estimated order - Problem (6.1)

N 32 64 128 256 512 1024

c1 = 0.7

c2 = 1

cd

p(10/N)
3, 73

5, 20

4, 90

6, 69

4, 95

8, 19

4, 97

9, 69

4, 99

11, 19

4, 99

c1 = 21
38

c2 = 1

cd

p(10/N)
4, 62

6, 36

5, 80

8, 14

5, 90

9, 93

5, 95

11, 73

5, 97

13, 56

6, 09
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Table 3
Estimated order - c1 = 21

38, c2 = 1

N 16 32 64 128 256

Problem (6.2)
cd

p(10/N)

3,53 5,48

6,49

7,36

6,22

9,18

6,07

11,00

6,02

Problem (6.3)
cd

p(5/N)

7,54 9,34

5,99

11,15

6,00

12,96

6,02

14,78

6,04

Now we compare, in terms of computational cost, the performances of the new
multistep collocation methods with respect to the classical one–step gaussian
collocation methods. Namely we consider the methods:

• NewSuperconv2: superconvergent multistep collocation method of Example
4.9 with m = 2, r = 3 and

{
c1 = 21

38
, c2 = 1

}
, having order p = 6;

• ClassicSuperconv4: superconvergent classical gaussian one-step collocation
method with the same order p = 6, needing m = 4 collocation parameters;

• ClassicSuperconv2: superconvergent classical gaussian one-step collocation
method with the same number m = 2 of collocation parameters, having
order p = 2.

We report in Figures 4-6 the number of kernel evaluations with respect to the
correct significant digits for the three test problems. As we expected from Table
1, the figures show that the improvement in efficiency of multistep collocation
method is higher when problem is strongly nonlinear, since in this case the
reduction of the dimension of the nonlinear system considerably reduces the
computational cost.
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Fig. 4. Number of kernel evaluations for (6.1)
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Fig. 5. Number of kernel evaluations for (6.2)
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Fig. 6. Number of kernel evaluations for (6.3)

7 Conclusions

In this paper we extend in a multistep manner the collocation technique for
the numerical solution of VIEs, up to now considered only in the context of
one–step methods. The introduction of previous step points allows to heighten
the order of the resulting methods. We didn’t find A–stable methods within
this class, but wide stability regions exist. We think that the knowledge of the
collocation polynomial, which provides a continuous approximation of uniform
order of the solution, will allow a cheap variable stepsize implementation. In-
deed, when the stepsize changes, the new approximation values can be com-
puted by simply evaluating the collocation polynomial, without running into
problems of order reduction, as a consequence of the uniform order.
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In [6] we introduce a modification in the technique, thus obtaining two-step
almost collocation methods, also for systems of VIEs, by relaxing some of the
collocation conditions and by introducing some previous stage values, in order
to further increase the order and to have free parameters in the method, to
be used to get A-stability.

The good behaviour in terms of accuracy and efficiency makes these methods
interesting for a further development, starting from the analysis of multistep
Runge-Kutta methods of the form (3.12)-(3-13), apart from the original idea
of collocation, in order to further decrease the computational cost of the non-
linear system in the unknowns Yn,j at each time step.

When we need to solve an integral equation on a long time interval, the lag–
term computation can be very expensive, and despite of the reduction of the
nonlinear system’s dimension, our multistep collocation methods may still be
not sufficiently efficient. In this case, for special kernels (i.e. Hammerstein
convolution kernels) we can think about employing our multistep collocation
methods together with techniques for fast lag–term computation, already used
in the case of one-step collocation and Runge–Kutta methods for VIEs [5,4,13].
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aux conditions initiales par des méthodes de collocation, R-3, 17–44,
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