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ABSTRACT: The reverse nonequilibrium molecular dynamics (RNEMD) method is implemented to predict the
viscosity of a coarse-grained model of short-chain polystyrene. The coarse-grained model has been derived to
reproduce the structure of polystyrene. It is therefore not a generic model, but polymer-specific. Here, its
performance for dynamical quantities is tested. The zero-shear viscosity is compared with experimental data.
The pronounced difference can be mainly attributed to the inherent dynamic properties of the coarse-grained
model. The qualitative results are compared to previous results calculated via conventional nonequilibrium molecular
dynamics (NEMD) and more generic polymer models, and the agreement is reasonable. The structural alterations
under shear are investigated by characterizing the molecular deformation and birefringence extinction angle.

1. Introduction viscosity calculations. Further advantages are the absence of

In the last two decades, several simulation methods for the PoUndary regions (as in SD method), the ease of implementation
prediction of shear viscosities have been proposed. In equilib- 2"d analysis, and parallelisabilityrhe major shortcoming of
rium molecular dynamics (EMD), the shear viscosity is obtained RNEMD is that the temperature in the system is not uniform
from pressure or momentum fluctuations based on the EinsteinPUt develops a stationary quadratic profilas a consequence,
and GreerKubo relationst In conventional nonequilibrium '_the density is also not_ uniform, so that the calculated _\/_lscosny
molecular dynamics (NEMDJ, the shear viscosity can be IS @n average over d|fferen_t temperatures and denS|t_|es. This
calculated by reproducing the experimental setup, i.e., an aspect requires great care in designing the p_erturbgtlon to be
appropriate perturbation is applied, the ensemble averages ofsmall enough for these variations to be numerically irrelevant.

the resulting flux and the corresponding field are measured, theAS Oné usually attempts anyway in NEMD to make the
ratio of flux and field gives the shear viscosity. The most widely perturbation as small as possible, in order to have linear-response

used NEMD methods are homogeneous shear (HS) and Sun<acegonditions, this is not a serious restriction, but more a point to

driven shear methods (SD). In the HS method, the shear flow P& Watched. RNEMD has been very successfully applied to
is imposed by modifying the equation of motion of the predict the viscosity of_ Lenqard-Jones Ilquf(m,omlspc mod_els
molecules and using siiding-wall periodic boundary conditions. °f Molecular liquids, S|r.an.|f|egI models of amphiphileSliquid
In the SD method, the shear is imparted on the fluid through crystals? and Yukawa liquidg? In particular, ref 10 shows that,
the actual motion of the confining walls. A comparison of the for small shear rates, the viscosity values calculated via RNEMD
applicability, accuracy, and efficiency for these methods can @"d NEMD simulations are mutually consistent and also in
be found in ref 3. agreement with equilibrium MD _calculatlons. So far, the
A more recent alternative is the reverse nonequilibrium RNEMD method has not been tried for the calculation of

molecular dynamics (RNEMD) methdé,which is used here. polymerviscosities.

It reverses the experimenta| cause-and-effect picture: the The viscosities of polymer melts and structural Changes under
momentum flux (stress) is imposed by a Maxwell daemon and shear flow are of great practical importance in manufacturing
the corresponding field (velocity gradient) is measured. Com- and processing of polymers. Viscosity and structure of polymer
pared to the more traditional NEMD techniques, RNEMD offers Melts under shear were intensively studied by conventional
certain advantages but also has its shortcomings. They have beeNEMD in previous work. Among these studies, some simple
discussed in more detail elsewhéris chief advantage is the — and general models have successfully captured the rheological
fact that no energy is deposited into the simulation, in contrast Properties and contributed to the understanding of their physical
to other NEMD methods, and hence no energy need be removedrigin.t*"** A detailed review on simple models for complex
by an external thermostat. As most thermostats interfere with honequilibrium fluids can be found in ref 16. However, the

the linear momentum, they are a potential error source in generic models have not been designed to provide quantitative
properties ofspecificpolymer melts. Some studies on specific
* Corresponding author. E-mail: x.chen@theo.chemie.tu-darmstadt.de. macromOIeCU|,es’ Wh'fg were based on reallsuc, mOdels,’ have
Telephone:+49-6151-16-7315. Fak49-6151-16-6526. Address: Eduard-  also been carried odf.*° The presence of many different time
Zintl-Institut fur Anorganische und Physikalische Chemie, Technische and length scales and the associated computational costs usually
U”}Vféiﬁiis'?c?]rg‘aﬁete’rgf;g;fﬂl?ggfsezo D-64287 Darmstadt, Germany. nreclude the use of fully atomistic force fields. One, therefore,
* Present address: Bremen Center for Computational Materials Science.ri€s to find a coarse-grained (CG) model at a level between

8 Department of Chemistry, University of Salerno. atomistic and generic. It should be detailed enough to be
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material-specific and simple enough to be computationally } L B

viable. One way to approach the problem is to reduce the Fgﬁx—'

degrees of freedom by coarsening the models, keeping only 4 bl == l

those degrees of freedom deemed relevant for the particular Momentum = Momentum flux
properties of interest. Parametrization of coarse-grained force Transferred 4 (physical)
fields can be roughly classified into two different approaches. (unphysical) J: )/ 2
In the first, both static and dynamics properties are used to 5

develop the force field, and the dynamics is matched by an
appropriate selection of friction constant appearing in Langevin’s
equations of motion at the coarse-grained st%&in the second ~

Momentum flux

.Ii|”|||l.
2]
5
e 4

(physical)
approach, only static properties are utilized in the force field = B Jw)/2
parametrization and Newton’s equations of motion are used to e = :
evolve the systerf®23 The coarse-grained models developed i SlabT——
from this approach can accurately describe the static properties, i =

while on the other hand, the dynamics is generally too¥ast. Figure 1. Sketch of the RNEMD method for calculating the shear
In some cases, it was possible to recover the dynamical viscosity. The flow field imposed on the system corresponds to two
properties by appropriate time scali#tgThe dynamical proper- symmetric planar Couette flows, which have the shear flow inxthe
ties predicted by such CG model are based on the philosophydirection, and the velocity gradient is zdirection. Horizontal arrows
t_hat the same basic mechanisms are still operative at a differenl{?omgis 'Q#:ﬁltggﬁ ecl‘le;P&'ifﬁtgZtge(ji\i’elf;'gngilfil_?‘:e I‘_)yeiofz'/%)o :rrt]hor-
time rate when the molecular mobility changes. Therefore, the periodic system is partitioned into 20 slabszidirection. For details,
accelerated dynamics is expected to retain some reality of thesee text.

motion in the system. Ideally, one would like structurally ) o
optimized models to also be able to predict polymer viscosities CONServes both the total I|near_ momentum and the total kinetic
without any further calibration. Finding out whether this is ©€nergy. The exchanged quantiiy is thex component of the
possible is one aspect of the current investigation. momentum,

The aim of this paper is therefore twofold. First, the
applicability of the RNEMD algorithm to the prediction of the
viscosity of polymers is investigated. We compare the shear
behavior to previous studies of similar models, where conven-
tional NEMD methods have been used. Second, we study the
rheological behavior of the specificealistic coarse-grained
model of polystyrene, which has been developed by taking only
structural information into account. For the shortest polymer

O e 0 eCent X0 peutaion i momentum ) n e pposie drecton
stress differen.ce are briefly discussed and structural pro ertiesvia a physical mechanism, the friction. In the steady state, the
) y prop unphysical and the physical momentum flux are balanced, and

g?ﬁgi\%ﬁne under shear are also quantitatively characterlzedjz(px) can be evaluated by eq 3

Apx = My, — Mo, 2

By such velocity swap, momentuni\gy) is transferred un-
physically across the system. The velocity swap is performed
everyW time steps, so the time elapsed between two velocity
swaps isW-At, with At being the length of the time step. The
total transferred momentum during the simulation is given by
px = > Apx. The response of the system to this nonequilibrium

2. Reverse Nonequilibrium Molecular Dynamics i = L 3
The RNEMD method for calculating shear viscosity is briefly Xy
reviewed in this section, for details, see refs 4 and 5. The shear

; : The factor 2 arises because of the periodicity of the system,
viscosityn relates the transverse momentum fly(py) and the

andt is the duration of the simulation. The momentum flux

flow velocity gradientduy/dz via eq 1 jApx) leads to a continuous velocity gradietit/dz in the fluid
97 except slab 1 and slab 11, where velocities are not differentiable.
. X . . — . .
=—p2 1) The local flow velocity in slabn, 7x(n) is determined by
JZ(pX) 17 BZ (

averaging over the particles in this slab.

The magnitude of momentum fluA(py)| is equal to the off-
diagonal &2 component of the stress tensgy, and dv,/0z is

also called the shear rafe The momentum flu,(p) can be The velocity profile is linear and its slopBz/azllcan be

described as a transport through a surface perpendicular to its : ) : ;
direction within a certain time. In RNEMDpy) is imposed extracted by a linear least-squares fit. The local temperature in

in an unohvsical wav. and the flow field corresponds to two slab n, T(n), is evaluated from peculiar velocities, i.e., the
phy Y . p . difference between the actual velocities and the local flow
symmetric planar Couette flows, with a shear flow in the

r ; S o ; velociti
direction and the velocity gradient in taelirection, as illustrated elocities, as eq 5

o) = [0 i € slabn 4)

in Figure 1. The orthorhombic simulation cell with sizelgf Nbead

Ly, L, in the periodic system is partitioned into an even number T(n)=—— [(v,; — Ex(n))2 + i2 + Uzi2]1

of slabs, here 20, im direction. One selects in slab 1 the atom 3Npeads = ’ Y ’

with the largest negativex component of momentunmmya), i € slabn (5)

and in the central slab (slab 11), the atom with thegest

positive x component of momentummpy,). These two atoms  wherekg is Boltzmann’s constanyeaqis the total number of
must have the same masgs One exchanges thecomponent beads in slalm, m andy; denote the mass and actual velocity
of the velocity vector between these two atoms. As the two of ith bead. The temperature profile is parabolic in both upper
atoms have the same massthe unphysical momentum swap and lower halves of simulation cell, with cooling in the exchange
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Figure 2. Evolution of the rate of heat energy@it) input to the

system by the thermostat during the simulation for PS-100 system at
the highest shear rate 5.06 101° s™*.

slabs 1 and 11 and heating in betwéehs the transport of
momentunyy is exactly known, the shear viscosipat a given
shear ratey = [@v/0z[can be calculated by eq 6

Px

= 6
21L,L, 37, /620 ©)

n

The momentum fluxApy) is controlled by adjusting the time
elapsed between two velocity swapsAt. As a result, different
shear ratey are achieved.

It is worth considering the influence of the thermostat. As
the total linear momentum and total energy are conserved, the
RNEMD method, in contrast to other NEMD methods, does
not need any external thermostat. However, calculations on

realistic systems often necessitate a thermostat for reasons

unrelated to the RNEMD scheme because ei\éT conditions

are explicitly required or temperature shifts due to round-off or
cutoff noise need to be corrected. As any thermostat introduces
an artificial dissipation of momentum, the calculated viscosities
may carry an intrinsic error. We use an atomic version of
Berendsen'’s thermosté#tj.e., the actual temperature is calcu-
lated from atomic velocities rather than center-of-mass veloci-
ties, and the atomic velocities are being rescaled. An atom-
based thermostat is dictated by the system being a melt of long,
flexible, and entwined polymer chains. First, in contrast to fluids
of small rigid molecules, they create no problems from rotational
motion, as they reorient much more slowly than they thermalize.
Second, confining the temperature analysis and control only to
the center-of-mass velocities (1/100 of all degrees of freedom
for chain of 100 beads, namely PS-100, see Section 3) would
lead to large statistical uncertainties. Finally, we need the
thermostat only to counteract a very slow drift due to round-
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Figure 3. lllustration of the coarse-grained model of atactic polysty-
rene: (a) the mesom) and racemo r} of diads in transplanar
conformation (hydrogen atoms on phenyl rings are omitted for clarity);
(b) one superatom corresponding to a diadior r unit. The centers

of these superatoms, as indicated by filled squares, are the methylene
carbons. Reproduced from ref 24.

used in this work. The most important characteristics of this
model are: the polystyrene diad is coarse-grained as a superatom
in the mesoscale effective force field; the center of the superatom
is placed at the methylene carbon; two different types of
superatoms can be designated according to the configuration
of two adjacent pseudoasymmetricCHR— methyne groups,
either meso (same configurations RR or SS) or racemo (opposite
configurations RS or SR), as shown in Figure 3; the corre-
sponding force-field contains three different bonds, six angles,
and three nonbonded terms.

This model has been successfully tested against structural
properties of polystyrene melts with different chain lengths, the
dynamical behavior can be properly evaluated by taking into
account the time scale.

The RNEMD simulations of monodisperse polystyrene melts
are performed for four different chain lengths. Every system
consists ofNchainpolystyrene chains dflpeagbeads, wherdlpead
is taken to be 9, 20, 30, and 100. These systems are referred to
as PS-9, PS-20, PS-30, and PS-100, respectively. They are all
unentangled systems. The densities of the systems are obtained
from equilibrium simulations at constant temperature 500 K and
constant pressure 1 atm. The relaxation time of a cha
obtained by time integration of the autocorrelation function for
the end-to-end vecta, as given by eq 7

r= [FCHd= [ BOs)UEI  (7)

off errors. The usual main source of spurious heat generation, The correlation function is noisy, so the long-time behavior is

namely cutoff noise, plays a minor role here because our cutoff hard to take into account. To arrive at practical estimates for

is long and the nonbonded potentials have a finite range. As comparing the dynamics, we have integra®tj until it reaches

the Berendsen thermostat applies a uniform scaling to all zero for the first time. The parameters of these systems are

velocities, it may change velocity profiles only uniformly and  summarized in Table 1. These well-equilibrated systems are used

only by a small amount, avoiding local artefacts. In this sense, as initial configurations of the RNEMD calculations.

it might have an advantage over alternative thermostats, which  All RNEMD simulations are carried out with the modified

perform velocity scaling on an individual-atom ba&ifn Figure GMQ_num code, the numerical version of the molecular dyna-

2, we report the rate of energy input into or removal from the mics simulation software package GM&?® In this modi-

system by the thermostat in the simulation of the biggest systemfied code, orthorhombic periodic boundary conditions are ap-

(PS-100, Section 3) at the highest shear rate. It is evident that,plied. The simulation cells are elongated in théirection (.

in the steady state, the average kinetic energy added/removed= L, = L,/3), in which the momentum flux is imposed. The

by the thermostat is zero. equations of motion are numerically integrated by the Verlet

. . algorithm, the loose-coupling method of Berend8ds used

3. Model and Computational Technique to control the temperature of the system, with temperature
References 24 and 28 report, respectively, the CG model of coupling time 1 ps, and neighbor listsre used to speed up the

atactic polystyrene and the corresponding force field parameterscomputation of the nonbonded potential. The cutoff for the
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Table 1. Parameters of the Coarse-Grained Model System Us&d

system Nbead MW (g/mol) Nehain o (kg/n®) Ly x Ly x Lz (nm) R (nm) 7 (ps)
PS-9 9 1043 150 929.8 4.5344.534x 13.602 0.549 ~15
PS-20 20 2189 120 940.6 5.3675.367x 16.101 0.975 ~70
PS-30 30 3230 120 945.4 6.0996.099x 18.297 1.276 ~160
PS-100 100 10520 60 951.0 7.1617.161x 21.483 2.648 ~2000

aPolymer systems, the number of beads per chiig the molecular weight MW, the number of chaiNg..in densityp, simulation cell with size of
Ly Ly, andL, equilibrium root mean squared gyration radi®&C}?, the chain relaxation time.

Table 2. RNEMD Control Parameters: Length of the Time StepAt, for a well-converged viscosity. Methods, such as the use of
Velocity Swap Interval W for PS-9, PS-20, PS-30, and PS-100 nonlinear response theory and transient time correlation func-
PS-9 PS-20 PS-30 PS-100 tions have been used recently for molecular fluids such as
At(fs) W Atfs) W Atdfs) W At(fs) W n-decané but are still waiting to be tried on high-molecular-
weight polymers. Therefore, there are but few reports on
1 60 1 60 1 60 1 60 C ) . :
2 60 2 60 2 60 2 60 molecular dynamics simulation of direct observation of the shear
4 60 3 60 3 60 3 60 thinning onset forealistic polymer models, with two exceptions
7 60 7 60 7 60 5 60 being the work on polyethylene chains by Padding and Btfels,
7 75 7 90 7 90 5 90 and Kim et aF®
7 90 7 120 7 120 5 120 . - .
7 120 7 180 7 180 5 180 The error bar of the shear viscosity is calculated according
7 180 7 240 7 240 5 240 toeq 8
7 240 7 400 7 300 5 300
7 347 5 330 ;
> = A= ‘Ajz(px)th ‘é;ﬂ ®)
> 500 W)l 1y

nonbonded potential isc = 1.5 nm. The simulations are

performed at constant temperatire= 500 K. The momentum  Where jUis the average viscosityj(p)Uis the momentum
flux is imposed by exchanging thecomponent of the velocity ~ flux averaged over the production run, ahfl(py) is the standard

of beads, as described in Section 2. To cover a wide shear ratedeviation of the averag@y(px) G [yUis the shear rate averaged
window, different velocity swap interval&-At are applied:At over the production run, andy is the standard deviation of

is taken in the range of-17 fs, W in the range of every 60 the averageyLl

500 time steps. The velocity profile sampling r&te = W + . )

1is in the range of every 61501 time steps for the production 4+ Results and Discussion

runs. The velocity profiles are sampled only in those time steps ~ A. Shear Viscosity and Material Functions.Here we briefly

in which no velocity swap is performed. Table 2 lists all the give the definition of some quantities used to analyze the results
RNEMD control parameters. The system takes a certain time of our simulations. The apparent viscosity is calculated accord-
to reach the steady state after the perturbation is applied; thising to eq 1. The first and second normal stress differences
time depends on the chain length and perturbation strength. TheN;(y) andNx(y) are calculated from diagonal elements of the
steady state can be monitored from the time evolution of the stress tensor using the following equation:

momentum flux during the simulation, which decays to a stable

average. The initial transient stage has been excluded when N,=P,,— P, 9)
calculating viscosity and analyzing structural changes. The
resulting shear rates for different systems are: PS-9 in the range N, =Py, — P, (10)
of 1.7 x 109—-1.3 x 10 s71, PS-20 in the range of 1.&
109-6.6 x 10'°s™%, PS-30 in the range of 5.8 10°—5.7 x Poo (00 = X,Y,2) is calculated from the atomic implementation
10 s71, and PS-100 in the range of 12 1°>—5.1 x 10% of virial-theorem expression:
sL

It should be pointed out that the shear rates used in this work 1 N N N
are very large compared to experiment. This results from (i) a Py =— (z m@*— %%+ Z z i FD (11
short simulation time, compared to experimental time, and (ii) V4 T

the requirement of a reasonable signal-to-noise ratio during the

accessible simulation time. Lower shear rates could, in principle, where V is the volume of the simulation cellN is the total

be achieved by increasing the velocity swap inteMait at number of beadsn andv; denote the mass and actual velocity
the expense of a less well-defined temperature gradi€he of ith bead; denotes the distance between beaddj, Fj is
same is true for the algorithmic alternative of more often the force exerted on beadby beadj, a refers tox, y, z
selecting an atom pair for exchange with a smaller velocity components in the Cartesian coordinate sys@ns, the local
difference®> As a consequence, some of the simulations are flow velocity of ith bead, which is given by; = (24,,0,0). The
beyond the Newtonian regime. The shear rate where shearfirst and second normal stress differendagy) andNy(y) are
thinning sets in can be roughly estimated as the inverse of thepresented here rather than the first and the second normal stress
chain relaxation time—1171831for PS-9,771 ~ 6.7 x 109, coefficientsWy(y) andWy(y) (W1 = No/72, W, = No/j2), which

for PS-20,771 ~ 1.4 x 10°s7L; for PS-30,771 ~ 6.3 x 1(° are sometimes reported, becadd@nd N, obtained from the

s 1 and for PS-100771 ~ 5.0 x 1C® s™1. Thus, it drastically simulations are associated with their relative errors (particularly
decreases with increasing molecular weight. This is a problem at low shear rate) and the division df andN, by a very small
common to all nonequilibrium simulations. With any method, shear ratej{ — 0) leads to large uncertainties#; andW». In

one has to simulate long enough for polymer chains to move addition, the hydrostatic pressuPés computed from the normal
past each other, and one has to accumulate enough such eventtresses by eq 12
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N1 10°p :
P(’)/) = § (Pxx + IDyy + Pzz) (12) Y e PS9
= v o PS-20
Viscosity.Figure 4 shows the shear viscosity as a function 2 K 4 PS-30
of the shear rate for polymer melts with different chain lengths. i ., v Pso0
For PS-9, PS-20, and PS-30, the shear viscosity functions exhibit 0w “ ok
two distinct regimes: a visible plateau at lower shear rates and 'S "E' 10" o Ta ]
a shear-thinning regime at higher shear rates. For PS-100, the &= .o .\Z’?‘?
shear-thinning region is dominant and the Newtonian regime & , , o
is inaccessible in the given shear rate window. * 10° 10" 10"

The viscosity dependence on shear rate in the shear-thinning shear rate y (s™)

regime is often empirically described as a power-law relation, Figure 4. Shear-rate dependence of the shear viscosity for PS-9, PS-

in the formy 00 7~".%° The exponent of the power-law can be 20, pS-30, and PS-100. Error bars are approximately the same size as
obtained from the linear region in the letpg plot of the the symbols and have been omitted for clarity.

viscosity versus the shear rate. For comparison, the exponents

obtained from this work and from some previous simulations Stress tensor. In this work, thg is determined as an average
on modeled polymers are collected in Table 3. Our results Of values by using two different extrapolation schemes, as
suggests that the exponentncreases with molecular weight.  demonstrated for the case of PS-9 in Figure 5: 7(Ey 5o —
This dependence is more pronounced for the shorter chainsA?> and (2) logg™!) = log(o™!) — Arx. For the latter
(PS-9 and PS-20) than for larger molecular weights. The data €Xtrapolation, we use the momentum flXp,)| instead of the

qualitatively agree with Xu et @f and Bosko et a4 while shear stress,. The 1o determined for all systems are sum-
Kroger and Hes$ and Daivis et at?found invariant exponents, ~ Marized in Table 4, except for PS-100, because the given shear
and a weak shear dilatancy is detected for short chdin @0) rate window for PS-100 is unable to reach the Newtonian
in the work of Krager and Hes# In particular, Kiger et alt! regime. Theyo determined by these two extrapolation schemes

show a tiny dependence on short chain lengths and almost the2gree well with each other in the uncertainty limit. The

same exponent for longer chains. One should anyway be awaredependence ofo on the molecular weight is lineand [ M)

that these simulations were performed at different conditions for short chains® Such dependence on the molecular weight is
and using different models. Moreover, the determination of the Predicted by the Rouse model. As shown in Figure 6, one
exponents is extremely sensitive to where on the shear rate curvébserves an almost linear dependenceyobn the molecular

one assumes the power-law to be vafidthe exponenn for weight, with the slopes of 0.98 and 1.10 obtained from both
PS-100 lies within the experimental values reported for poly- €xtrapolation schemes. . .
meric liquids @ in the range 0.40.9)34 The exponent derived Experiment® indicates that the zero-shear viscosity for

by Doi and Edward® from reptation dynamics is much higher ~ Polystyrene of molecular weight1000 g/mol at 500 K is
(n = 1.5). Exponents reported from simulations are generally around15x 10-3 Pas. Comparing theno for the similar
in the range of 0.260.74, which are much lower than that molecular weight of PS-9 in this work, the simulation result
predicted by reptation theory. The basic assumption of reptation (~0.06 x 1073 Pas) is much lower than the experiment, by a
theory is an entangled network of polymer chains, whereas chainfactor of~250. As predicted by hydrodynamics, the zero-shear
lengths used in simulations are often too short to form viscosity and the self-diffusion coefficient are approximately
entanglements. This could be one reason for the discrepancy_reciprocal‘}7 The self-diffusion coefficient of the coarse-grained
The zero-shear viscosity is of both theoretical and industrial ~ model used in this work is, indeed, found to be a factor200
interest. It is defined as the melt viscosity in the limitjof—~ higher than that of the fully atomistic model of the PS-9
0, and it is a function of temperature and molecular weight. Systent* Therefore, the difference of the zero-shear viscosity
Because in molecular dynamics, simulation of very low shear between simulation and experiment can be traced mainly to the
rates are not accessible for complex liquids, the way to fast dynamics of the coarse-grained model used. There could
extrapolate the data to low shear rates becomes a key issue wheRe two possible explanations: (1) The reduction of the number
estimating thejo. The extrapolation schemes used in previous Of degrees of freedom upon coarse-graining eliminates the
simulation are not entirely consistent. Cummings effal. fluctuating force associated with those missing molecular

evaluated they for liquid rubidium by using the schemg= degrees of freedort. (2) The coarse-grained force field is
o — AyY2, which is based on the mode-coupling theory of generally very soft. This leads to the reduction of nearest-
Kawasaki and Gunto®. Evans and Morrigs confirm this neighbor interactions, particularly of their repulsion, and thereby

theoretical prediction via NEMD simulation for the triple-point ~ &loms can more easily escape from the local cages formed by
Lennard-Jones fluid. However, thjg/2 dependence of shear their neighborg®> According to Boltzmann’s superposition
viscosity has not been confirmed for complex molecular fluids. Principle, the zero-shear viscosity can be deduced from the time-

Moreover, for recent work questions such dependéfid®,  dependent shear modul@t),* i.e.,
Daivis et al'2 evaluated they, for the modeled polymer by the .
extrapolation scheme@ = 5o — Aj?, which is based on the No= j(') G(t) dt (13)

retarded motion expansion (RME) for a third-order fluid. Bosko

et al. determined thg, for the dendrimer by taking the average Hence, the fast dynamics of the coarse-grained model can affect
of several extrapolation schemiésAs RME offers a systematic 4, through the shear modulus. Two parts contribute to the shear
and model-independent description of an arbitrary viscoelastic modulus in an unentangled syst¥m

fluid at low shear rate$! it would be reasonable to evaluate

the 570 of the polymer by the; = 5o — Aj? scheme. Theyo G(t) = G, (1) + Ggrousdl) (14)
value of polymers has also been obtained from experimental
work by the extrapolation scheme lagl) = log(po™?) — The first termGn,ie(t) accounts for the short-time behavior, which

Aty %274 wherety, is the off-diagonal componenkZ) of the is controlled by the internal degrees of freedom or microstruc-
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Table 3. Exponentn of the Power Law (7 O ") in the Shear Thinning Region for Different Chain Length Npeag from This Work and Some
Other Conventional NEMD Simulations?

exponenn
author model force field ensemble and density (chain-lengthNpead
this work realistic linear coarse-grained force field contains NVT 0.12+5.2% \N=19)
polymer three different bonds, six angles different densities for 8.346% (N = 20)
and three nonbonded terms for the different chain lengths 0.8D% (N = 30)
nonbonded part 0.56 7% (N = 100)
Xu. et alb model linear LJ for any two beads interaction NVT 0.25 N =10)
chain and FENE potential used for adjacent same density for BL.3520)
beads interaction different chain lengths 0.8 50)
Kroger et alt model linear all beads interact with a repulsive NVT 0.30 N =10)
chain LJ and FENE potential is added same density for ON45 80)
for adjacent beads along different chain length 0M6~(60)
a chain interaction 0.4M™(= 100)
Bosko et al model linear WCA potential for all two beads NVT 0.321+ 2% (N=19)
chain interaction, FENE potential for same density for 0.418% (N = 43)
adjacent beads along a different chain lengths 05286 (N = 91)
a chain interaction 0.743 3% (N = 187)
Daivis et al® model linear WCA potential for all two beads NVT 0.45N=4)
chain interaction except the those same density for 3 (LO)
that are bonded to each different chain lengths ONE2 (20)
other within a molecule, 0.49\(= 50)
rigidly constrained bonds
Kroger and Heds model linear all beads interact with a repulsive NVT 0.60+ 0.10 (N = 20~400)
chain LJ and FENE potential is added same density for weak shear dilatarre2 QN

for adjacent beads along
a chain interaction

different chain length

aLJ potential refers to Lennard-Jones potential, WCA potential refers to WHandler-Anderson potential, FENE potential refers to finitely extensible

nonlinear elastic potentiat.Ref 15.¢ Ref 11.9 Ref 14.¢Ref 12.f Ref 13.
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Figure 5. Demonstration of the extrapolation schemes used to obtain
the zero-shear viscosity from simulation for the PS-9 system: (a)
scheme 1.y = 5o — Ay® (b) scheme 2: log(™") = log(no™") —
Alip)|-

Table 4. Estimated Values of the Zero-Shear Viscositynp) by the
Different Extrapolation Scheme (1) = 5o — Ay?, (2) log@p™) =
log@o™) — Aljpy)|

extrapolation PS-9 PS-20 PS-30
scheme (mPa- s) (mPa- s) (mPa- s)
1 0.060+ 0.3% 0.122+ 0.5% 0.182+ 2%
2 0.061+ 8.0% 0.148+ 10% 0.208+ 12%

ture. This contribution cannot be reproduced well by a coarse-

0.25 . . ’
2 02F —x—scheme 1 "%
0 —_—0—
g —o1sf ~° scheme 2

(7]
0 ®
>
= % 01F ]
QD S~
: >
¢
g 0.05 T Ps-9 . .
N ‘ 10° 2x10°  3x10°

molecular weight (g/mol)

Figure 6. Zero-shear viscosity versus molecular weight. Data used
from extrapolation scheme ()= 70 — Aj?, (2) logly™) = log(o™2)

— AljApy)|. The slopes of linear fits for these data are 098®.1%,
1.10+ 0.3%, respectively. Solid lines are used to guide eyes.

can be reproduced by the coarse-grained model by taking into
account a time scale factor. Both terms complicate the viscosity
prediction in the coarse-grained model, and for details, a further
study is required. Still, the agreementigfwith Rouse theory
and experiment is encouraging when the time scale factor is
taken into account.

Normal Stress Differencés in experiment&P and previous
NEMD simulation datd?1°the first normal stress difference
N1 predicted from this work is positive for all cases, as shown
in Figure 7. This validates the theoretical prediction that simple
shear is accompanied by a nonvanishing normal stress differ-
ence?® Physically, this corresponds to a compressing force
perpendicular to the plane in which shear flow take place.

As the shear rate increasebl; increases significantly,
following a power-law in the shear-thinning region in the
form: N; O y* (For PS-9, 20, 30, 100y = 1.0, 0.72, 0.66,
0.53, respectively). A similar behavior has been observed for
polyethylene by Jabbarazadeh et al. in their NEMD simulafion.
Concerning the second normal stress differetge both

grained model because short-time degrees have been eliminateédxperimental and simulation work provide only limited data.

in order to improve the computational efficiency. The second
term Grousdt) accounts for the generic Rouse dynamics, which

However, it has been pointed éttbased on experimental
findings thatN, is negative for homogeneous polymer liquids,
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Figure 10. Root mean squared gyration raditB?[¥?, versus shear

Figure 7. First normal stress differendd; versus shear ratg for rate for PS-9, PS-20, PS-30, and PS-1B8? is normalized by its
polystyrene melts of PS-9, PS-20, PS-30, and PS-100. equilibrium valueIZIRZQif (no shear).
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Figure 8. Second normal stress differenise versus shear ratg for y=1.25x 10°s!  y=5.06x 10"%s7!

polystyrene melts of PS-9, PS-20, PS-30, and PS-100.
Figure 11. Typical configurations of individual chains of PS-100 under

o 10 T T different shear rates.

< e PS9 v .

@ 8 o ps2o © ] whose centers of mass are in the velocity-exchange slabs (slabl
7 6F + PS30 4 * ] and slab 11), have been excluded.

g Tal PS-100 s : | Average Chain DimensiorFigure 10 shows the root mean
oo * squared gyration radiu®R?[}¥2 as a function of the shear rate

2 220 N @@‘ vt ] for different chain lengths. Figure 11 shows the configurations
..g olv  ve o CRRN ] of a single chain of PS-100 under different shear rate. At low
° A shear rategR2¥/2 approaches its equilibrium value. As the shear
-g -L;o’ 16,., 1("1. rate increases, the shear field deforms the configuration and
= elongates the chain. These changes are more marked for the

shear rate y(s") long chains

Figure 9. Hydrostatic pressure differenceP = P(7) — P(0) versus _ i i i ic i -
shear rate for polystyrene melts of PS-9, PS-20, PS-30, and PS'loO'tigiPe?jarirI]n?;r(r:T?d Oﬁllgirrl;nfﬁrrgziire|nedXL:icneC(:i§rI]|ggnmg(Je£tEslni\r/]es
RNEMD, the flow field imposed on the system corresponds to
two symmetric planar Couette flows; the momentum fluxes
jApx) in the upper and lower halves are equal in magnitude but
opposite in direction. Both half cells have the same shear rate,
e ) ‘ but the velocity profiles are symmetric. As a consequence,
th|n.n|ng region fqr.PS-g, 20, and 30 are in the range 0+-0.2 polymer chainsyafe aligned syrr){metrically in the two hglves of
0.3; for PS-.100, itis 0&,0'2' the simulation cell. This is found, indeed, in the distribution of
Hydrostatic Pressurerigure 9 shows the dependence of the o single-molecule alignment ange the angle between the
hydrostatic pressure on the shear rate. Two different regimesg,4_to-end vector, and the flow directionas shown for the
are visible. At higher shear rate, the hydrostatic pressure coqe of ps-30 in Figure 12. Therefore, the birefringence
increases with the shear rate, and it seems again to follow theextinction angley should be calculated from both halves of the

power-law F;;g Po + 77. _Simi?r behavior was found for o) separately. One can take the averagg &bm both half
polyethylené”*®and dendrimers? At lower shear rate, there s to improve the statistics.

is a small, if any, _i.ncr.ease of the hydrostatic pressure, and itis - 14 describe the shear-induced alignment, we calculate an
clpse to the equilibrium \{alue. Moore et dlhave f'oulnd a order tensoiS defined in eq 15
minimum of the hydrostatic pressure before a rapid increase,

that — N2/N; typically lies in the range 0:20.3, and that it is
insensitive to the shear rate. Figure 8 indicateshds negative
for nearly all the systems and it increases with the shear rate in
the shear-thinning region. The values-6N,/N; in the shear-

and this pressure minimum occurs at the same shear rate in 1 1

which the intermolecular LJ potential energy has a minimum. S=_ & (u- QU —— |)D (15)
Because of uncertainty at the low shear rate in our result, the N =% ' '

existence of such a minimum can neither be confirmed nor ruled

out. where, u; is the unit vector along the end-to-end direction of

B. Structural Alteration under Shear. The dependence of  the moleculei, and| is the unit tensor. The angle brackets
the molecular configurations and alignment on the shear rate isindicate an ensemble average. The birefringence extinction angle
covered in this section. In the following analyses, the molecules, y is calculated as the angle between the eigenvecto® of
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~ 0.020 r r T r T and the second normal stress is negative for all systems. The
2 first normal stress difference follows the power law of form of
-% 0.015 N1 O y* at higher shear rates. (4) The hydrostatic pressure
£ increases at higher shear rates. The structural changes under
o o.010 shear are quantitatively investigated. The analysis of these effects
£ indicates that the process of chain alignment, in combination
,3 0.005 with chain stretching, leads to a macroscopic anisotropy of the
5 SN material. The reverse nonequilibrium molecular dynamics
8 oo00f A nolshelar . method gives reliable results in the Newtonian regime and a
%0 60 -30 0 30 60 90 still-reasonable agreement with homogeneous-shear NEMD
alignment angle 6 (degree) methods at higher shear rates. As other methods, it has problems
Figure 12. Distributions of the single molecule alignment anglat when the shear rates are extremely high.

various shear rateg for the PS-30 system. The solid lines are from The extrapolated zero-shear viscosity is linearly dependent
the upper half of the simulation cell, the dashed lines from the lower on the molecular weight even though its absolute value is lower

half. The distribution is weighted by a factor of 1/ginFor (a) shear ; .
ratey = 1.82 x 10° s %, the distribution maxima obtained from the than the experiments by a factor-e200 for the shortest chain

upper and lower halves of the simulation cell are 228d —22.C, length. This scaling factor is probably due to the well-known
respectively. For (b) shear rafe= 3.34 x 10* s71, the maxima are intrinsic speed up of the coarse-grained model. The scaling
16.5 and —16.T, respectively. factor found for the viscosity is close to that of the diffusion

o 45 . . coefficient calcu!ated from gquilibrium MD simulations qf the

T:;, wl® PS9 ] same model. This result |_nd|cates that the CG_ model v_vhlch has

S _ 3sl° PS-20 ’%c'-‘.b 1 been developed by taking only structural information into

S 3 5l PS-30 “a % o ] account can reproducg the generic Rousg behavior, anq those

2 §, 2517 PS-100 , © ° 1 short-time degrees Whlch have been ac_tlvely removed in the

3 2 ol . 4.0 1 C_G quel are respo_nS|bIe_for the larger c_ilfference of zero-shear

8 . 1s) vy, A viscosity between simulation and experiment.
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