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ABSTRACT: The reverse nonequilibrium molecular dynamics (RNEMD) method is implemented to predict the
viscosity of a coarse-grained model of short-chain polystyrene. The coarse-grained model has been derived to
reproduce the structure of polystyrene. It is therefore not a generic model, but polymer-specific. Here, its
performance for dynamical quantities is tested. The zero-shear viscosity is compared with experimental data.
The pronounced difference can be mainly attributed to the inherent dynamic properties of the coarse-grained
model. The qualitative results are compared to previous results calculated via conventional nonequilibrium molecular
dynamics (NEMD) and more generic polymer models, and the agreement is reasonable. The structural alterations
under shear are investigated by characterizing the molecular deformation and birefringence extinction angle.

1. Introduction

In the last two decades, several simulation methods for the
prediction of shear viscosities have been proposed. In equilib-
rium molecular dynamics (EMD), the shear viscosity is obtained
from pressure or momentum fluctuations based on the Einstein
and Green-Kubo relations;1 In conventional nonequilibrium
molecular dynamics (NEMD),2 the shear viscosity can be
calculated by reproducing the experimental setup, i.e., an
appropriate perturbation is applied, the ensemble averages of
the resulting flux and the corresponding field are measured, the
ratio of flux and field gives the shear viscosity. The most widely
used NEMD methods are homogeneous shear (HS) and surface-
driven shear methods (SD). In the HS method, the shear flow
is imposed by modifying the equation of motion of the
molecules and using sliding-wall periodic boundary conditions.
In the SD method, the shear is imparted on the fluid through
the actual motion of the confining walls. A comparison of the
applicability, accuracy, and efficiency for these methods can
be found in ref 3.

A more recent alternative is the reverse nonequilibrium
molecular dynamics (RNEMD) method,4,5 which is used here.
It reverses the experimental cause-and-effect picture: the
momentum flux (stress) is imposed by a Maxwell daemon and
the corresponding field (velocity gradient) is measured. Com-
pared to the more traditional NEMD techniques, RNEMD offers
certain advantages but also has its shortcomings. They have been
discussed in more detail elsewhere.5 Its chief advantage is the
fact that no energy is deposited into the simulation, in contrast
to other NEMD methods, and hence no energy need be removed
by an external thermostat. As most thermostats interfere with
the linear momentum, they are a potential error source in

viscosity calculations. Further advantages are the absence of
boundary regions (as in SD method), the ease of implementation
and analysis, and parallelisability.6 The major shortcoming of
RNEMD is that the temperature in the system is not uniform
but develops a stationary quadratic profile.4 As a consequence,
the density is also not uniform, so that the calculated viscosity
is an average over different temperatures and densities. This
aspect requires great care in designing the perturbation to be
small enough for these variations to be numerically irrelevant.
As one usually attempts anyway in NEMD to make the
perturbation as small as possible, in order to have linear-response
conditions, this is not a serious restriction, but more a point to
be watched. RNEMD has been very successfully applied to
predict the viscosity of Lennard-Jones liquids,4 atomistic models
of molecular liquids,7 simplified models of amphiphiles,8 liquid
crystals,9 and Yukawa liquids.10 In particular, ref 10 shows that,
for small shear rates, the viscosity values calculated via RNEMD
and NEMD simulations are mutually consistent and also in
agreement with equilibrium MD calculations. So far, the
RNEMD method has not been tried for the calculation of
polymerviscosities.

The viscosities of polymer melts and structural changes under
shear flow are of great practical importance in manufacturing
and processing of polymers. Viscosity and structure of polymer
melts under shear were intensively studied by conventional
NEMD in previous work. Among these studies, some simple
and general models have successfully captured the rheological
properties and contributed to the understanding of their physical
origin.11-15 A detailed review on simple models for complex
nonequilibrium fluids can be found in ref 16. However, the
generic models have not been designed to provide quantitative
properties ofspecificpolymer melts. Some studies on specific
macromolecules, which were based on realistic models, have
also been carried out.17-19 The presence of many different time
and length scales and the associated computational costs usually
preclude the use of fully atomistic force fields. One, therefore,
tries to find a coarse-grained (CG) model at a level between
atomistic and generic. It should be detailed enough to be
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material-specific and simple enough to be computationally
viable. One way to approach the problem is to reduce the
degrees of freedom by coarsening the models, keeping only
those degrees of freedom deemed relevant for the particular
properties of interest. Parametrization of coarse-grained force
fields can be roughly classified into two different approaches.
In the first, both static and dynamics properties are used to
develop the force field, and the dynamics is matched by an
appropriate selection of friction constant appearing in Langevin’s
equations of motion at the coarse-grained scale.20,21In the second
approach, only static properties are utilized in the force field
parametrization and Newton’s equations of motion are used to
evolve the system.22,23 The coarse-grained models developed
from this approach can accurately describe the static properties,
while on the other hand, the dynamics is generally too fast.24

In some cases, it was possible to recover the dynamical
properties by appropriate time scaling.25 The dynamical proper-
ties predicted by such CG model are based on the philosophy
that the same basic mechanisms are still operative at a different
time rate when the molecular mobility changes. Therefore, the
accelerated dynamics is expected to retain some reality of the
motion in the system. Ideally, one would like structurally
optimized models to also be able to predict polymer viscosities
without any further calibration. Finding out whether this is
possible is one aspect of the current investigation.

The aim of this paper is therefore twofold. First, the
applicability of the RNEMD algorithm to the prediction of the
viscosity of polymers is investigated. We compare the shear
behavior to previous studies of similar models, where conven-
tional NEMD methods have been used. Second, we study the
rheological behavior of the specific,realistic coarse-grained
model of polystyrene, which has been developed by taking only
structural information into account. For the shortest polymer
chain, the zero-shear viscosity is compared to recent experi-
mental results. The material functions (first and second normal
stress difference) are briefly discussed and structural properties
of polystyrene under shear are also quantitatively characterized
in this work.

2. Reverse Nonequilibrium Molecular Dynamics

The RNEMD method for calculating shear viscosity is briefly
reviewed in this section, for details, see refs 4 and 5. The shear
viscosityη relates the transverse momentum fluxjz(px) and the
flow velocity gradient∂Vx/∂z via eq 1

The magnitude of momentum flux|jz(px)| is equal to the off-
diagonal (xz) component of the stress tensorτxz, and∂Vjx/∂z is
also called the shear rateγ̆. The momentum fluxjz(px) can be
described as a transport through a surface perpendicular to its
direction within a certain time. In RNEMD,jz(px) is imposed
in an unphysical way, and the flow field corresponds to two
symmetric planar Couette flows, with a shear flow in thex
direction and the velocity gradient in thezdirection, as illustrated
in Figure 1. The orthorhombic simulation cell with size ofLx,
Ly, Lz in the periodic system is partitioned into an even number
of slabs, here 20, inz direction. One selects in slab 1 the atom
with the largest negativex component of momentum (mVx1),
and in the central slab (slab 11), the atom with thelargest
positivex component of momentum (mVx2). These two atoms
must have the same massm. One exchanges thex component
of the velocity vector between these two atoms. As the two
atoms have the same massm, the unphysical momentum swap

conserves both the total linear momentum and the total kinetic
energy. The exchanged quantity∆px is thex component of the
momentum,

By such velocity swap, momentum (∆px) is transferred un-
physically across the system. The velocity swap is performed
everyW time steps, so the time elapsed between two velocity
swaps isW‚∆t, with ∆t being the length of the time step. The
total transferred momentum during the simulation is given by
px ) ∑∆px. The response of the system to this nonequilibrium
perturbation is a momentum fluxjz(px) in the opposite direction
via a physical mechanism, the friction. In the steady state, the
unphysical and the physical momentum flux are balanced, and
jz(px) can be evaluated by eq 3

The factor 2 arises because of the periodicity of the system,
and t is the duration of the simulation. The momentum flux
jz(px) leads to a continuous velocity gradient∂Vjx/∂z in the fluid
except slab 1 and slab 11, where velocities are not differentiable.
The local flow velocity in slabn, Vjx(n) is determined by
averaging over the particles in this slab.

The velocity profile is linear and its slope〈∂Vj/∂z〉 can be
extracted by a linear least-squares fit. The local temperature in
slab n, T(n), is evaluated from peculiar velocities, i.e., the
difference between the actual velocities and the local flow
velocities, as eq 5

wherekB is Boltzmann’s constant,Nbeadis the total number of
beads in slabn, mi andVi denote the mass and actual velocity
of ith bead. The temperature profile is parabolic in both upper
and lower halves of simulation cell, with cooling in the exchange

Figure 1. Sketch of the RNEMD method for calculating the shear
viscosity. The flow field imposed on the system corresponds to two
symmetric planar Couette flows, which have the shear flow in thex
direction, and the velocity gradient is inz direction. Horizontal arrows
in the simulation cell indicate the velocity field. The periodic orthor-
hombic simulation cell with size ofLx, Ly, andLz (Lx ) Ly ) Lz/3) in
periodic system is partitioned into 20 slabs inz direction. For details,
see text.

∆px ) mVx1 - mVx2 (2)

jz(px) )
px

2tLxLy
(3)

Vjx(n) ) 〈Vx,i〉, i ∈ slabn (4)

T(n) )
1

3NbeadkB
∑
i)1

Nbead

[(Vx,i - Vjx(n))2 + Vy,i
2 + Vz,i

2],

i ∈ slabn (5)

jz(px) ) -η
∂Vjx

∂z
(1)
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slabs 1 and 11 and heating in between.4 As the transport of
momentumpx is exactly known, the shear viscosityη at a given
shear rateγ̆ ) 〈∂Vj/∂z〉 can be calculated by eq 6

The momentum fluxjz(px) is controlled by adjusting the time
elapsed between two velocity swapsW‚∆t. As a result, different
shear ratesγ̆ are achieved.

It is worth considering the influence of the thermostat. As
the total linear momentum and total energy are conserved, the
RNEMD method, in contrast to other NEMD methods, does
not need any external thermostat. However, calculations on
realistic systems often necessitate a thermostat for reasons
unrelated to the RNEMD scheme because eitherNVTconditions
are explicitly required or temperature shifts due to round-off or
cutoff noise need to be corrected. As any thermostat introduces
an artificial dissipation of momentum, the calculated viscosities
may carry an intrinsic error. We use an atomic version of
Berendsen’s thermostat,26 i.e., the actual temperature is calcu-
lated from atomic velocities rather than center-of-mass veloci-
ties, and the atomic velocities are being rescaled. An atom-
based thermostat is dictated by the system being a melt of long,
flexible, and entwined polymer chains. First, in contrast to fluids
of small rigid molecules, they create no problems from rotational
motion, as they reorient much more slowly than they thermalize.
Second, confining the temperature analysis and control only to
the center-of-mass velocities (1/100 of all degrees of freedom
for chain of 100 beads, namely PS-100, see Section 3) would
lead to large statistical uncertainties. Finally, we need the
thermostat only to counteract a very slow drift due to round-
off errors. The usual main source of spurious heat generation,
namely cutoff noise, plays a minor role here because our cutoff
is long and the nonbonded potentials have a finite range. As
the Berendsen thermostat applies a uniform scaling to all
velocities, it may change velocity profiles only uniformly and
only by a small amount, avoiding local artefacts. In this sense,
it might have an advantage over alternative thermostats, which
perform velocity scaling on an individual-atom basis.27 In Figure
2, we report the rate of energy input into or removal from the
system by the thermostat in the simulation of the biggest system
(PS-100, Section 3) at the highest shear rate. It is evident that,
in the steady state, the average kinetic energy added/removed
by the thermostat is zero.

3. Model and Computational Technique

References 24 and 28 report, respectively, the CG model of
atactic polystyrene and the corresponding force field parameters

used in this work. The most important characteristics of this
model are: the polystyrene diad is coarse-grained as a superatom
in the mesoscale effective force field; the center of the superatom
is placed at the methylene carbon; two different types of
superatoms can be designated according to the configuration
of two adjacent pseudoasymmetric-CHR- methyne groups,
either meso (same configurations RR or SS) or racemo (opposite
configurations RS or SR), as shown in Figure 3; the corre-
sponding force-field contains three different bonds, six angles,
and three nonbonded terms.

This model has been successfully tested against structural
properties of polystyrene melts with different chain lengths, the
dynamical behavior can be properly evaluated by taking into
account the time scale.

The RNEMD simulations of monodisperse polystyrene melts
are performed for four different chain lengths. Every system
consists ofNchainpolystyrene chains ofNbeadbeads, whereNbead

is taken to be 9, 20, 30, and 100. These systems are referred to
as PS-9, PS-20, PS-30, and PS-100, respectively. They are all
unentangled systems. The densities of the systems are obtained
from equilibrium simulations at constant temperature 500 K and
constant pressure 1 atm. The relaxation time of a chainτ is
obtained by time integration of the autocorrelation function for
the end-to-end vectors, as given by eq 7

The correlation function is noisy, so the long-time behavior is
hard to take into account. To arrive at practical estimates for
comparing the dynamics, we have integratedC(t) until it reaches
zero for the first time. The parameters of these systems are
summarized in Table 1. These well-equilibrated systems are used
as initial configurations of the RNEMD calculations.

All RNEMD simulations are carried out with the modified
GMQ_num code, the numerical version of the molecular dyna-
mics simulation software package GMQ.29,30 In this modi-
fied code, orthorhombic periodic boundary conditions are ap-
plied. The simulation cells are elongated in thez direction (Lx

) Ly ) Lz /3), in which the momentum flux is imposed. The
equations of motion are numerically integrated by the Verlet
algorithm, the loose-coupling method of Berendsen26 is used
to control the temperature of the system, with temperature
coupling time 1 ps, and neighbor lists1 are used to speed up the
computation of the nonbonded potential. The cutoff for the

Figure 2. Evolution of the rate of heat energy (dQ/dt) input to the
system by the thermostat during the simulation for PS-100 system at
the highest shear rate 5.06× 1010 s-1.

η )
px

2tLxLy〈∂Vjx/∂z〉
(6)

Figure 3. Illustration of the coarse-grained model of atactic polysty-
rene: (a) the meso (m) and racemo (r) of diads in transplanar
conformation (hydrogen atoms on phenyl rings are omitted for clarity);
(b) one superatom corresponding to a diadicm or r unit. The centers
of these superatoms, as indicated by filled squares, are the methylene
carbons. Reproduced from ref 24.

τ ) ∫0

∞
C (t) dt ) ∫0

∞
〈s(0)‚s(t)〉 /〈s2〉 dt (7)
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nonbonded potential isrc ) 1.5 nm. The simulations are
performed at constant temperatureT ) 500 K. The momentum
flux is imposed by exchanging thex component of the velocity
of beads, as described in Section 2. To cover a wide shear rate
window, different velocity swap intervalsW‚∆t are applied:∆t
is taken in the range of 1-7 fs, W in the range of every 60-
500 time steps. The velocity profile sampling rateW′ ) W +
1 is in the range of every 61-501 time steps for the production
runs. The velocity profiles are sampled only in those time steps
in which no velocity swap is performed. Table 2 lists all the
RNEMD control parameters. The system takes a certain time
to reach the steady state after the perturbation is applied; this
time depends on the chain length and perturbation strength. The
steady state can be monitored from the time evolution of the
momentum flux during the simulation, which decays to a stable
average. The initial transient stage has been excluded when
calculating viscosity and analyzing structural changes. The
resulting shear rates for different systems are: PS-9 in the range
of 1.7 × 1010-1.3 × 1011 s-1, PS-20 in the range of 1.0×
1010-6.6 × 1010 s-1, PS-30 in the range of 5.3× 109-5.7 ×
1010 s-1, and PS-100 in the range of 1.2× 109-5.1 × 1010

s-1.
It should be pointed out that the shear rates used in this work

are very large compared to experiment. This results from (i) a
short simulation time, compared to experimental time, and (ii)
the requirement of a reasonable signal-to-noise ratio during the
accessible simulation time. Lower shear rates could, in principle,
be achieved by increasing the velocity swap intervalW‚∆t at
the expense of a less well-defined temperature gradient.4 The
same is true for the algorithmic alternative of more often
selecting an atom pair for exchange with a smaller velocity
difference.5 As a consequence, some of the simulations are
beyond the Newtonian regime. The shear rate where shear
thinning sets in can be roughly estimated as the inverse of the
chain relaxation timeτ-1,17,18,31 for PS-9,τ-1 ∼ 6.7 × 1010;
for PS-20,τ-1 ∼ 1.4 × 1010 s-1; for PS-30,τ-1 ∼ 6.3 × 109

s-1; and for PS-100,τ-1 ∼ 5.0 × 108 s-1. Thus, it drastically
decreases with increasing molecular weight. This is a problem
common to all nonequilibrium simulations. With any method,
one has to simulate long enough for polymer chains to move
past each other, and one has to accumulate enough such events

for a well-converged viscosity. Methods, such as the use of
nonlinear response theory and transient time correlation func-
tions have been used recently for molecular fluids such as
n-decane32 but are still waiting to be tried on high-molecular-
weight polymers. Therefore, there are but few reports on
molecular dynamics simulation of direct observation of the shear
thinning onset forrealisticpolymer models, with two exceptions
being the work on polyethylene chains by Padding and Briels,18

and Kim et al.50

The error bar of the shear viscosity is calculated according
to eq 8

where 〈η〉 is the average viscosity,〈jz(px)〉 is the momentum
flux averaged over the production run, and∆jz(px) is the standard
deviation of the average〈jz(px)〉; 〈γ̆〉 is the shear rate averaged
over the production run, and∆γ̆ is the standard deviation of
the average〈γ̆〉.

4. Results and Discussion

A. Shear Viscosity and Material Functions.Here we briefly
give the definition of some quantities used to analyze the results
of our simulations. The apparent viscosity is calculated accord-
ing to eq 1. The first and second normal stress differences
N1(γ̆) andN2(γ̆) are calculated from diagonal elements of the
stress tensor using the following equation:

PRR (R ) x,y,z) is calculated from the atomic implementation
of virial-theorem expression:

whereV is the volume of the simulation cell,N is the total
number of beads,mi andVi denote the mass and actual velocity
of ith bead,rij denotes the distance between beadi and j, Fij is
the force exerted on beadi by bead j, R refers to x, y, z
components in the Cartesian coordinate system,Vji is the local
flow velocity of ith bead, which is given byVji ) (Vjx,i,0,0). The
first and second normal stress differencesN1(γ̆) andN2(γ̆) are
presented here rather than the first and the second normal stress
coefficientsΨ1(γ̆) andΨ2(γ̆) (Ψ1 ) N1/γ̆2, Ψ2 ) N2/γ̆2), which
are sometimes reported, becauseN1and N2 obtained from the
simulations are associated with their relative errors (particularly
at low shear rate) and the division ofN1 andN2 by a very small
shear rate (γ̆ f 0) leads to large uncertainties inΨ1 andΨ2. In
addition, the hydrostatic pressureP is computed from the normal
stresses by eq 12

Table 1. Parameters of the Coarse-Grained Model System Useda

system Nbead MW (g/mol) Nchain F (kg/m3) Lx × Lz × Lz (nm) 〈R2〉eq
1/2 (nm) τ (ps)

PS-9 9 1043 150 929.8 4.534× 4.534× 13.602 0.549 ∼15
PS-20 20 2189 120 940.6 5.367× 5.367× 16.101 0.975 ∼70
PS-30 30 3230 120 945.4 6.099× 6.099× 18.297 1.276 ∼160
PS-100 100 10520 60 951.0 7.161× 7.161× 21.483 2.648 ∼2000

a Polymer systems, the number of beads per chainNbead, the molecular weight MW, the number of chainsNchain, densityF, simulation cell with size of
Lx, Ly, andLz, equilibrium root mean squared gyration radius〈R2〉eq

1/2, the chain relaxation timeτ.

Table 2. RNEMD Control Parameters: Length of the Time Step∆t,
Velocity Swap Interval W for PS-9, PS-20, PS-30, and PS-100

PS-9 PS-20 PS-30 PS-100

∆t (fs) W ∆t (fs) W ∆t (fs) W ∆t (fs) W

1 60 1 60 1 60 1 60
2 60 2 60 2 60 2 60
4 60 3 60 3 60 3 60
7 60 7 60 7 60 5 60
7 75 7 90 7 90 5 90
7 90 7 120 7 120 5 120
7 120 7 180 7 180 5 180
7 180 7 240 7 240 5 240
7 240 7 400 7 300 5 300

7 347 5 330
5 360
5 500

∆η e 〈η〉(|∆jz(px)

〈jz(px)〉| + |∆γ̆
〈γ̆〉|) (8)

N1 ) Pzz- Pxx (9)

N2 ) Pyy - Pzz (10)

PRR )
1

V
(∑

i

N

mi(Vi
R - Vj i

R)2 + ∑
i

N

∑
j > i

N

rij
R Fij

R) (11)
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Viscosity.Figure 4 shows the shear viscosity as a function
of the shear rate for polymer melts with different chain lengths.
For PS-9, PS-20, and PS-30, the shear viscosity functions exhibit
two distinct regimes: a visible plateau at lower shear rates and
a shear-thinning regime at higher shear rates. For PS-100, the
shear-thinning region is dominant and the Newtonian regime
is inaccessible in the given shear rate window.

The viscosity dependence on shear rate in the shear-thinning
regime is often empirically described as a power-law relation,
in the formη ∝ γ̆-n.33 The exponentn of the power-law can be
obtained from the linear region in the log-log plot of the
viscosity versus the shear rate. For comparison, the exponents
obtained from this work and from some previous simulations
on modeled polymers are collected in Table 3. Our results
suggests that the exponentn increases with molecular weight.
This dependence is more pronounced for the shorter chains
(PS-9 and PS-20) than for larger molecular weights. The data
qualitatively agree with Xu et al.15 and Bosko et al.,14 while
Kröger and Hess13 and Daivis et al.12 found invariant exponents,
and a weak shear dilatancy is detected for short chain (N < 20)
in the work of Kröger and Hess.13 In particular, Kröger et al.11

show a tiny dependence on short chain lengths and almost the
same exponent for longer chains. One should anyway be aware
that these simulations were performed at different conditions
and using different models. Moreover, the determination of the
exponents is extremely sensitive to where on the shear rate curve
one assumes the power-law to be valid.14 The exponentn for
PS-100 lies within the experimental values reported for poly-
meric liquids (n in the range 0.4-0.9).34 The exponent derived
by Doi and Edwards35 from reptation dynamics is much higher
(n = 1.5). Exponents reported from simulations are generally
in the range of 0.20-0.74, which are much lower than that
predicted by reptation theory. The basic assumption of reptation
theory is an entangled network of polymer chains, whereas chain
lengths used in simulations are often too short to form
entanglements. This could be one reason for the discrepancy.

The zero-shear viscosityη0 is of both theoretical and industrial
interest. It is defined as the melt viscosity in the limit ofγ̆ f
0, and it is a function of temperature and molecular weight.
Because in molecular dynamics, simulation of very low shear
rates are not accessible for complex liquids, the way to
extrapolate the data to low shear rates becomes a key issue when
estimating theη0. The extrapolation schemes used in previous
simulation are not entirely consistent. Cummings et al.36

evaluated theη0 for liquid rubidium by using the schemeη )
η0 - Aγ̆1/2, which is based on the mode-coupling theory of
Kawasaki and Gunton.37 Evans and Morriss2 confirm this
theoretical prediction via NEMD simulation for the triple-point
Lennard-Jones fluid. However, thisγ̆1/2 dependence of shear
viscosity has not been confirmed for complex molecular fluids.
Moreover, for recent work questions such dependence,38-40

Daivis et al.12 evaluated theη0 for the modeled polymer by the
extrapolation schemeη ) η0 - Aγ̆2, which is based on the
retarded motion expansion (RME) for a third-order fluid. Bosko
et al. determined theη0 for the dendrimer by taking the average
of several extrapolation schemes.14 As RME offers a systematic
and model-independent description of an arbitrary viscoelastic
fluid at low shear rates,41 it would be reasonable to evaluate
the η0 of the polymer by theη ) η0 - Aγ̆2 scheme. Theη0

value of polymers has also been obtained from experimental
work by the extrapolation scheme log(η-1) ) log(η0

-1) -
Aτxz,42-44 whereτxz is the off-diagonal component (xz) of the

stress tensor. In this work, theη0 is determined as an average
of values by using two different extrapolation schemes, as
demonstrated for the case of PS-9 in Figure 5: (1)η ) η0 -
Aγ̆2 and (2) log(η-1) ) log(η0

-1) - Aτxz. For the latter
extrapolation, we use the momentum flux|jz(px)| instead of the
shear stressτxz. The η0 determined for all systems are sum-
marized in Table 4, except for PS-100, because the given shear
rate window for PS-100 is unable to reach the Newtonian
regime. Theη0 determined by these two extrapolation schemes
agree well with each other in the uncertainty limit. The
dependence ofη0 on the molecular weight is linear (η0 ∝ M)
for short chains.45 Such dependence on the molecular weight is
predicted by the Rouse model. As shown in Figure 6, one
observes an almost linear dependence ofη0 on the molecular
weight, with the slopes of 0.98 and 1.10 obtained from both
extrapolation schemes.

Experiment46 indicates that the zero-shear viscosity for
polystyrene of molecular weight∼1000 g/mol at 500 K is
around15× 10-3 Pa‚s. Comparing theη0 for the similar
molecular weight of PS-9 in this work, the simulation result
(∼0.06× 10-3 Pa‚s) is much lower than the experiment, by a
factor of∼250. As predicted by hydrodynamics, the zero-shear
viscosity and the self-diffusion coefficient are approximately
reciprocal.47 The self-diffusion coefficient of the coarse-grained
model used in this work is, indeed, found to be a factor of∼200
higher than that of the fully atomistic model of the PS-9
system.24 Therefore, the difference of the zero-shear viscosity
between simulation and experiment can be traced mainly to the
fast dynamics of the coarse-grained model used. There could
be two possible explanations: (1) The reduction of the number
of degrees of freedom upon coarse-graining eliminates the
fluctuating force associated with those missing molecular
degrees of freedom.48 (2) The coarse-grained force field is
generally very soft. This leads to the reduction of nearest-
neighbor interactions, particularly of their repulsion, and thereby
atoms can more easily escape from the local cages formed by
their neighbors.25 According to Boltzmann’s superposition
principle, the zero-shear viscosity can be deduced from the time-
dependent shear modulusG(t),49 i.e.,

Hence, the fast dynamics of the coarse-grained model can affect
η0 through the shear modulus. Two parts contribute to the shear
modulus in an unentangled system49

The first termGmic(t) accounts for the short-time behavior, which
is controlled by the internal degrees of freedom or microstruc-

P(γ̆) ) 1
3

(Pxx + Pyy + Pzz) (12)

Figure 4. Shear-rate dependence of the shear viscosity for PS-9, PS-
20, PS-30, and PS-100. Error bars are approximately the same size as
the symbols and have been omitted for clarity.

η0 ) ∫0

∞
G(t) dt (13)

G(t) ) Gmic(t) + GRouse(t) (14)
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ture. This contribution cannot be reproduced well by a coarse-
grained model because short-time degrees have been eliminated
in order to improve the computational efficiency. The second
termGRouse(t) accounts for the generic Rouse dynamics, which

can be reproduced by the coarse-grained model by taking into
account a time scale factor. Both terms complicate the viscosity
prediction in the coarse-grained model, and for details, a further
study is required. Still, the agreement ofη0 with Rouse theory
and experiment is encouraging when the time scale factor is
taken into account.

Normal Stress Difference.As in experimental33 and previous
NEMD simulation data,15,19 the first normal stress difference
N1 predicted from this work is positive for all cases, as shown
in Figure 7. This validates the theoretical prediction that simple
shear is accompanied by a nonvanishing normal stress differ-
ence.49 Physically, this corresponds to a compressing force
perpendicular to the plane in which shear flow take place.

As the shear rate increases,N1 increases significantly,
following a power-law in the shear-thinning region in the
form: N1 ∝ γ̆R (For PS-9, 20, 30, 100,R ) 1.0, 0.72, 0.66,
0.53, respectively). A similar behavior has been observed for
polyethylene by Jabbarazadeh et al. in their NEMD simulation.19

Concerning the second normal stress differenceN2, both
experimental and simulation work provide only limited data.
However, it has been pointed out33 based on experimental
findings thatN2 is negative for homogeneous polymer liquids,

Table 3. Exponentn of the Power Law (η ∝ γ3 -n) in the Shear Thinning Region for Different Chain Length Nbead from This Work and Some
Other Conventional NEMD Simulationsa

author model force field ensemble and density
exponentn

(chain-lengthNbead)

this work realistic linear coarse-grained force field contains NVT 0.12( 5.2% (N ) 9)
polymer three different bonds, six angles different densities for 0.34( 5.6% (N ) 20)

and three nonbonded terms for the different chain lengths 0.43( 6.0% (N ) 30)
nonbonded part 0.56( 7% (N ) 100)

Xu. et al.b model linear LJ for any two beads interaction NVT 0.25 (N ) 10)
chain and FENE potential used for adjacent same density for 0.35 (N ) 20)

beads interaction different chain lengths 0.42 (N ) 50)
Kröger et al.c model linear all beads interact with a repulsive NVT 0.30 (N ) 10)

chain LJ and FENE potential is added same density for 0.45 (N ) 30)
for adjacent beads along different chain length 0.46 (N ) 60)
a chain interaction 0.47 (N ) 100)

Bosko et al.d model linear WCA potential for all two beads NVT 0.321( 2% (N ) 19)
chain interaction, FENE potential for same density for 0.413( 5% (N ) 43)

adjacent beads along a different chain lengths 0.523( 2% (N ) 91)
a chain interaction 0.743( 3% (N ) 187)

Daivis et al.e model linear WCA potential for all two beads NVT 0.45 (N ) 4)
chain interaction except the those same density for 0.43 (N ) 10)

that are bonded to each different chain lengths 0.42 (N ) 20)
other within a molecule, 0.45 (N ) 50)
rigidly constrained bonds

Kröger and Hessf model linear all beads interact with a repulsive NVT 0.60( 0.10 (N ) 20∼400)
chain LJ and FENE potential is added same density for weak shear dilatancy (N< 20)

for adjacent beads along different chain length
a chain interaction

a LJ potential refers to Lennard-Jones potential, WCA potential refers to Weeks-Chandler-Anderson potential, FENE potential refers to finitely extensible
nonlinear elastic potential.b Ref 15.c Ref 11.d Ref 14.e Ref 12. f Ref 13.

Figure 5. Demonstration of the extrapolation schemes used to obtain
the zero-shear viscosity from simulation for the PS-9 system: (a)
scheme 1: η ) η0 - Aγ̆2 (b) scheme 2: log(η-1) ) log(η0

-1) -
A|jz(px)|.

Table 4. Estimated Values of the Zero-Shear Viscosity (η0) by the
Different Extrapolation Scheme (1)η ) η0 - Aγ3 2, (2) log(η-1) )

log(η0
-1) - A|jz(px)|

extrapolation
scheme

PS-9
(mPa‚ s)

PS-20
(mPa‚ s)

PS-30
(mPa‚ s)

1 0.060( 0.3% 0.122( 0.5% 0.182( 2%
2 0.061( 8.0% 0.148( 10% 0.208( 12%

Figure 6. Zero-shear viscosity versus molecular weight. Data used
from extrapolation scheme (1)η ) η0 - Aγ̆2, (2) log(η-1) ) log(η0

-1)
- A|jz(px)|. The slopes of linear fits for these data are 0.98( 0.1%,
1.10 ( 0.3%, respectively. Solid lines are used to guide eyes.
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that - N2/N1 typically lies in the range 0.2-0.3, and that it is
insensitive to the shear rate. Figure 8 indicates thatN2 is negative
for nearly all the systems and it increases with the shear rate in
the shear-thinning region. The values of-N2/N1 in the shear-
thinning region for PS-9, 20, and 30 are in the range of 0.2-
0.3; for PS-100, it is 0.1-0.2.

Hydrostatic Pressure.Figure 9 shows the dependence of the
hydrostatic pressure on the shear rate. Two different regimes
are visible. At higher shear rate, the hydrostatic pressure
increases with the shear rate, and it seems again to follow the
power-law P ) P0 + γ̆â. Similar behavior was found for
polyethylene17,19 and dendrimers.14 At lower shear rate, there
is a small, if any, increase of the hydrostatic pressure, and it is
close to the equilibrium value. Moore et al.17 have found a
minimum of the hydrostatic pressure before a rapid increase,
and this pressure minimum occurs at the same shear rate in
which the intermolecular LJ potential energy has a minimum.
Because of uncertainty at the low shear rate in our result, the
existence of such a minimum can neither be confirmed nor ruled
out.

B. Structural Alteration under Shear. The dependence of
the molecular configurations and alignment on the shear rate is
covered in this section. In the following analyses, the molecules,

whose centers of mass are in the velocity-exchange slabs (slab1
and slab 11), have been excluded.

AVerage Chain Dimension.Figure 10 shows the root mean
squared gyration radius〈R2〉1/2 as a function of the shear rate
for different chain lengths. Figure 11 shows the configurations
of a single chain of PS-100 under different shear rate. At low
shear rates,〈R2〉1/2 approaches its equilibrium value. As the shear
rate increases, the shear field deforms the configuration and
elongates the chain. These changes are more marked for the
long chains.

Shear-Induced Alignment.Shear-induced alignment is inves-
tigated in term of birefringence extinction angleø. As in
RNEMD, the flow field imposed on the system corresponds to
two symmetric planar Couette flows; the momentum fluxes
jz(px) in the upper and lower halves are equal in magnitude but
opposite in direction. Both half cells have the same shear rate,
but the velocity profiles are symmetric. As a consequence,
polymer chains are aligned symmetrically in the two halves of
the simulation cell. This is found, indeed, in the distribution of
the single-molecule alignment angleθ, the angle between the
end-to-end vector, and the flow directionx, as shown for the
case of PS-30 in Figure 12. Therefore, the birefringence
extinction angleø should be calculated from both halves of the
cell separately. One can take the average ofø from both half
cells to improve the statistics.

To describe the shear-induced alignment, we calculate an
order tensorS defined in eq 15

where,ui is the unit vector along the end-to-end direction of
the moleculei, and I is the unit tensor. The angle brackets
indicate an ensemble average. The birefringence extinction angle
ø is calculated as the angle between the eigenvector ofS

Figure 7. First normal stress differenceN1 versus shear rateγ̆ for
polystyrene melts of PS-9, PS-20, PS-30, and PS-100.

Figure 8. Second normal stress differenceN2 versus shear rateγ̆ for
polystyrene melts of PS-9, PS-20, PS-30, and PS-100.

Figure 9. Hydrostatic pressure difference∆P ) P(γ̆) - P(0) versus
shear rate for polystyrene melts of PS-9, PS-20, PS-30, and PS-100.

Figure 10. Root mean squared gyration radius,〈R2〉1/2, versus shear
rate for PS-9, PS-20, PS-30, and PS-100.〈R2〉1/2 is normalized by its
equilibrium value〈R2〉eq

1/2 (no shear).

Figure 11. Typical configurations of individual chains of PS-100 under
different shear rates.

S )
1

N 〈∑
i)1

N (ui X ui -
1

3
I)〉 (15)
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corresponding to the largest eigenvalue of the order tensor and
the shear flow directionx.

As shown in Figure 13, the birefringence extinction angle
decreases as the shear rate increases. These changes describe
quantitatively the alignment of the system with respect to the
flow direction. The process of chain alignment, in combination
with chain stretching, leads to a macroscopic anisotropy of the
material. It is expected that the birefringence extinction angle
converges to 45° in the Newtonian regime.35 The birefringence
extinction angles of PS-9 and PS-20 system at low shear rates
are close to 45°, but the birefringence extinction angle of PS-
100 is still far from 45°. This indicates again that the shear
rates used in this work are not low enough to reach the
Newtonian regime for the long chains. Note that, for PS-100 at
the highest shear rate ofγ̆ ) 5.06 × 1010 s-1, the root mean
squared gyration radius〈R2〉1/2 is larger than the half length of
the simulation cell (Lx/2 andLy/2), and the finite box size limits
the minimum flow alignment angle to around 5°.

5. Summary

The RNEMD method has been used to calculate the viscosity
of a coarse-grained model of short-chain polystyrene. The
simulations were performed at constant temperature and constant
volume. The viscometric functions obtained in this paper can
be summarized as follows: (1) The zero-shear viscosity is
linearly dependent on the molecular weight for PS-9, PS-20,
and PS-30 systems; this agrees with experiments and the
theoretical prediction of the Rouse model. (2) The shear-thinning
behavior for all studied systems follows a power law. The
exponent of the power law increases with the molecular weight,
and this dependence is more pronounced for short chains (PS-9
and PS-20). (3) The first normal stress difference is positive,

and the second normal stress is negative for all systems. The
first normal stress difference follows the power law of form of
N1 ∝ γ̆R at higher shear rates. (4) The hydrostatic pressure
increases at higher shear rates. The structural changes under
shear are quantitatively investigated. The analysis of these effects
indicates that the process of chain alignment, in combination
with chain stretching, leads to a macroscopic anisotropy of the
material. The reverse nonequilibrium molecular dynamics
method gives reliable results in the Newtonian regime and a
still-reasonable agreement with homogeneous-shear NEMD
methods at higher shear rates. As other methods, it has problems
when the shear rates are extremely high.

The extrapolated zero-shear viscosity is linearly dependent
on the molecular weight even though its absolute value is lower
than the experiments by a factor of∼200 for the shortest chain
length. This scaling factor is probably due to the well-known
intrinsic speed up of the coarse-grained model. The scaling
factor found for the viscosity is close to that of the diffusion
coefficient calculated from equilibrium MD simulations of the
same model. This result indicates that the CG model which has
been developed by taking only structural information into
account can reproduce the generic Rouse behavior, and those
short-time degrees which have been actively removed in the
CG model are responsible for the larger difference of zero-shear
viscosity between simulation and experiment.
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