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Abstract

Conjoint Analysisis one of the most widely used techniquesin the assessment of the

consumer’s behaviors. This method allows to estimate the partial utility coefficients
according to a statistical model linking the overall note of preference with the attribute
level sdescribing thestimuli. Conjoint analysisresultsareuseful in new-product positioning
and market segmentation. In this paper a cluster-based segmentation strategy based on a
new metric has been proposed. The introduced distance is based on a convex linear
combination of two Euclidean distances em bedding information both on the estimated
parametersand on the model fitting. Market segments can be then defined according tothe
proximity of the part-worth coecientsand to the explicative power of the estimated models.
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1. INTRODUCTION

Conjoint analysis is a statistical technique useful to explain and predict consumer
preferences (Green et al., 1990). In this framework, the overall notes of prefer-
ence given to a set of attributes, are modeled through utility functions. They rep-
resent the analytical formulation that defines the relationship among the attribute-
levels and allow to determine the part-worth coefficients for each consumer. Con-
joint results are widely used in the field of Market Segmentation to identify con-
sumers group sharing similar taste and behavior with respect to different products
or services. A thorough discussion of several issues in the aggregation of utilities
in market simulation can be found in Gustafsson (2001).

The attributes can be modeled either as linear, quadratic function, or as main
effects in a regression model with dummy independent variables (part-worth model
When the part-worth model is assumed, the preference y; toward the j—th stim-
ulus is expressed as linear combination of the coded attribute-levels and the part-
worth parameters. A known drawback is the unreliability of the estimated coef-
ficients when using high reduced factorial designs. Too few degrees of freedom
available in the estimation phase, at individual level, affect data reliability and
may lead to classification errors (Vriens et al., 1996). This paper examines the
effect of introducing the information about the explicative power of the models in
a market segmentation strategy. At this aim, in section 2, we propose a new strat-
egy for discriminating among estimated models. It is based on different kinds of
information in the definition of the model distance. We introduce an Inter-Models
(IM) distance which is able to take into account both the analytical structure of
the models — through the difference between the estimated parameters — and the
information about the model fitting through the difference between the adjusted
Ad j—R? indexes related to each pair of models. From this, in section 3, a suitable
classification strategy highlighting the distance properties is showed. Finally, the
main results of the proposed approach are illustrated in section 4 by comparing
simulated datasets.

2. THE DATA STRUCTURE AND THE INTER-MODELSDISTANCE

Let consider the collection of utility models M = {m'._.‘.,mf,.‘.,mj}, where
each entry m/ is a K-dimensional vector defined as:

m! = (w{wﬁ,w’x) (1)
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where the value of w;\': is the information related to the j-th model. The first (K—1)
values are the estimated model parameters, the K-th value is the information re-
lated to the model fitting. For each of the J fitted utility models the part-worth co-

efficients (w{ sty wi,, " wjf(___I) are assumed to be estimated by Ordinary Least

Square (OLS). As with the classical cluster based segmentation strategies we ag-
gregate the estimated parameters to define market segments. Moreover, we use a
statistical index of model fitting (i.c. the Ad j—R?), as supplementary information
about the utility functions, in order to exploit the actual predictive power of the
models. Thus, the data collection M (Table 1) consists of two kinds of informa-
tion: the analytical terms and the statistical model fitting.

Tab.1: Thedata collection.

Utility models Coefficients Model fitting
Model 1 Wi W W wih
Model whoooowloowle wi
Model J WL W Wy w,?

The two information are combined to define the following measure:
M(m! m! |A) = AIM, + (1 — A)IM, 2)

with A € (0,1]. The IM measure is a convex combination of two quantities /M,
and IM,, where IM, is the Lr-norm between the estimated parameters:

=

I o [
my = [£5 (si-])] G20 ®
and /M, is the L;-norm between the Adj—Rz.

M, =

wh — wﬁ‘ (j#J) 4)
Let us consider J models m/ from an arbitrary input space €, the function
IM(mj.me} :QxQ— R
satisfies the following conditions:

1. IM(mi,m/|A) > 0and IM(mi,m"|A) =0Ym/ =m’ € Q
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2. IM(m!,m’'|A) is symmetric, i.e.IM(m/,m/ |A) = IM(m! ,m’|}.)
3. IM(m?,m7 | A) < IM(mI,m7* | A) + IM(m?" ,m/ | A) Y mi,m/,mi" e Q
The properties are a trivial consequence of the /M definition as a convex

combination of two distances. In particular, the third property can be proved as
follows. In the definition of the /M distance (2), for the first term we have for each

A
| o

A ril (1-vi— w{) 2} <i { [ fz_ll (wi - wi) 1 l+[ fz_ll (w;{F — w;{
wﬁ—u{‘+|w}’;—w{:‘} (6)

13—

~—
[
tdf—

k=1

while, for the second adding term we have:

<(1-1){

then from (5) and (6) we find:

(1—-24) ‘wﬁ—w‘{;

ID(m'm’ |A) < A [ID,,,(mj,m*’u]l)—HDp(mj‘,mj{IA)} +
L O [m,.(m-f',mf‘ \A)+ID, (m! m |,1)] 7
that is
IM(m/m? | A) < IM(m? m? |L) + IM(m?" .m7'|1).

It follows that the defined function IM(m/,m/|A) is a distance. The trimming
parameter A plays the role of a merging weight of the two components /M), and
IM,. In the trivial case when A = 1 the distance IM(m/,m/|A = 1) is defined as
a function of the part-worth coefficients (it is the usual approach in cluster based
segmentation). However, it may happens that for some consumers the estimated
utility function does not fit adequately. As a consequence, the derived segmenta-
tion could not be representative of the actual consumers’ behavior. In this case,
values of A # 1 allow to recover such kind of information. We looks for a A-value
for the set of models, taking into account the explicative power of their theoretical
preference models.

The definition of the IM distance (2) takes into account the different explicative
power of each models so that, two models with similar estimated coefficients are
mainly differentiated for their model fitting values. Of course, if two models have
different coefficient values they should not be moved closer because of a similar
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fitting measure. For this reason, the trimmer value of A should not be less than
a minimum level. As a rule of thumbs, this cut off level is chosen as a function
of the number of elements involved in the two part of the /M. For instance, if
we estimated K —1 coefficients, the trimmering A-value is settled not less than
ﬁ The cut off level protects against trivial classification results, since the IM),
is constrained to play the most important role in the whole distance.

3. CLUSTERING UTILITY FUNCTIONS

The market segmentation phase is based on a clustering method in the framework
of multidimensional data analysis.

A hierarchical classification technique based on the /M distance and the Ward’s
aggregating criterion is carried out. The choice of the linkage criterion strongly
influences the hierarchical tree structure, the Ward’s method allows to gather min-
imum intra-classes variance and maximum inter-classes variance, it is the best
suited for the proposed IM distance. The definition of the /M distance implies the
choice of a suitable value for the trimmering parameter A. The correct parame-
terization of the /M distance allows to put the right emphasis on the model fitting
adequacy. Setting A < 1 allows the IM, part to enter in the definition of the inter-
model distance and separate those models that even showing similar estimated
coefficients, manifest varying accuracy due to different fitting. The A-value is a
parameter to be optimized for each given set M of estimated utility functions. The
choice of the A* optimum is based on the capability of the /D(m/,m/ |A) to re-
alize the best tree structure in the sense of the Cophenetic Coefficient, defined as

follows:
me-(mf (1 mimi’ W) (!Mm-f_m.f’ — @

S Vi - ==\
[Em-i <m—"" (lef i ]M) Zm-i {m-f" (!Mm-i ' IM) :|

where IM, ;  » is the distance between each pairs of rows in the matrix M, g,

mi
and IM_; . corresponds to the linkage distances between the objects paired in

mi mi

Coph(m’,m’ |A) = (3)

b

mi mi’ and

the clusters. Finally 7M, and IM are, respectively, the averages of IM
IMmf i’

This coefficient measures the linear correlation between the original /M distances
and the linkage distance provided by the tree structure, it allows to measure how
the data fits into the hierarchical classification tree. The steps of the algorithm, on

which the strategy is based, can be summarized as follows :
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1. initialization phase: the computation of IM,, and IM, is carried out, and a

gridof A € [ﬁ, l] is settled with a user defined granularity;

2. classification phase: for each A the IM is computed, and the clustering al-
gorithm is performed according to the Ward’s linkage criterion. The linkage
distances related to each tree structure (dendrogram) are recorded;

3. optimization phase: the linkage distances are compared with the original
distance by means of the Cophenetic Coefficient. Therefore, the value of
A* is selected so that the cophenetic coefficient is maximum;

The final partition is settled according to the distance:
IM(m? m |A) = A*IM, + (1 — A*)IM, 9)

As usual, the number of clusters is chosen by exploring the hierarchical tree struc-
ture derived from the (9).
In the next section a simulation study is carried out to show the main advantages
of the proposed strategy.

4. SIMULATIONSSTUDY

The proposed approach is illustrated by simulating several datasets under different
conditions. The aim is to show how in presence of different model fitting, tradi-
tional clustering methods based on the estimated coefficients lead to unreliable
clustering structure. Indeed, in this case the coefficients may give a biased image
of the original preference data.

Two simulated data set are used to provide some useful insight into the procedure
and the distance properties.

* Models with different coefficients but similar fitting values.
In the first simulation study, we start considering the case of well fitted
models. Three classes of preference functions are generated from a parent
model:

yi=wo+ Y wixi+e (i=1,...,K) (10)

Each class is characterized by different coefficient values according to the follow-
ing scheme:
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Tab. 2: Simulation plan for thethr ee classesof modelswith dier ent coecientsand similar fitting
values.

N wo Wi w2 w3 W4 e;

Class A 30 6.50 —-1.33 1.00 1.25 —-1.83  N(0,1)
Class B 30 6.50 0.50 -1.50 —-2.25 0.33  N(0,1)
Class C 30 6.50 -0.50 -0.25 3.00 0.00 N(0,1)

In order to generate three sets of modelswith aquite good approximation, we
build the global preferenceratings according to the model (10) and with coecients
given in Table 2. They are used as dependent variables in a multivariate multiple
regression model with dummy explicative variables defined by the orthogonal
experimental design in Table 3.

Tab. 3: Experimental design.

I ntercept Xy X, X5 X,

1 1 1 -1 -1 1
2 1 -1 -1 -1 1
3 1 1 1 0 1
4 1 -1 1 0 1
5 1 1 0 1 1
6 1 -1 0 1 1
7 1 1 -1 -1 -1
8 1 -1 -1 -1 -1
9 1 1 1 0 -1
10 1 -1 1 0 -1
11 1 1 0 1 -1
12 1 -1 0 1 -1

The estimated models give raise to three sets of similar coefficients with very good
model fitting. In figure, 1 the box-plots of the adj—R? are reported, the intercepts
and the four sets of estimated coefficients distributions.

The next step of the simulation study consists in:

1. setting a grid of & values for the trimmer value A, with the constraint
0.2 < A < 1 and increments of 0.1 (i.e. h =9);

(]

. computing, foreach 4; i=1,..., h, the IM ;) distance among all pairs of the
90 models;
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3. building the A tree structures according to the Ward’s criterion;

4. obtaining, for ecach tree structure, the value of the cophenetic coefficient
Coph;;

5. choosing the tree structure for the largest value of A such that
max; (Coph;i=1,...,h).

—
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Fig: 1. Box-plot of the adj - R?, the inter cept and the four estimated coecients.

We obtain, at the optimum, for our models, the value of Coph; = 0.987 for A =
0.7. The related tree structure is shown in figure 2. The value of A at the optimum
indicates that the best classification result is obtained considering only the 70% of
the distance due to the analytical part and 30% due to the fitting information. Of
course, we expected a value of A close to 1, because of the strong structure of the
analytical part and the homogeneous values of goodness of fit (see above, figure
1). To validate this result, we have replicated the simulation study one hundred
times under the same conditions.

Figure 3 shows the distribution of the values of A at the optimum.
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Fig. 2. Thetree structure of the simulated models.
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Fig. 3. Distribution of the optimum A -values.



530 Romano E., Lauro C., Giordano G.

Note that almost the 50% of the tree structures have been obtained setting a
values of A less or equal to 0.5. The related cophenetic coefficients computed for
every tree structures and for each A;; (i =1,...,9;j = 1,...,100) range from 0.96
to 0.98 indicating that good classification results could be obtained with a value
of A greater than 0.3.

* Models with different coefficients and different fitting values.

When there are several models with almost similar coefficients it is likely to con-
sider them as belonging to the same market segment. However, the occurrence of
different fitting could mask the presence of hidden structures of preference. In or-
der to analyze the behavior of the defined models distance IM in this circumstance,
a cluster structure has been generated varying the coefficient values according to
the scheme in Table 4. Looking at this table, there are two classes which share

Tab. 4: Simulation plan involving a hidden tree structure.

N. W, w, w, W, w, e
ClassA 20 6.50 -1.33 1.00 125 -1.83 N(O, 1)
ClassB 20 6.50 -1.33 1.00 125 -1.83 N(, 3)
ClassC 20 6.50 -0.50 -0.25 3.00 0.00 N(O, 1)

the same coefficients but they have different fitting values due to error terms, and
a third class representing a well separated segment. In this case the aim is to find
the third structure that could not appear if we just look to the coefficient values.
As in the previous case, we replicate the steps | — 5 of the procedure one hundred
times and record the value of A related to the maximum value of the Cophenetic
Coefficient. The results are shown in figure 4. As expected, the most part of the
trimmering value A4 is equal to 0.2. It corresponds to the maximum cophenetic
coefficient value found in all replications. Finally, we have compared the two tree
structures obtained for the ID distance with A = 0.2 and A = 1, figures 5 and 6 il-
lustrate the differences. In particular, it is clear how the ID distance (withA = 0.2)
enhance the visualization of a three clusters structure in the dendogram.

5. CONCLUDING REMARKS

This article addresses the important issue of market segmentation in Conjoint
Analysis. A new distance based both on the difference between the estimated
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Fig. 4: Distribution of the A -values corresponding to the maximum cophenetic coecient in 100
replications of trhe clustering.

Fig. 5: Dendrogram of the models. A = 1:the bad fitted models are hidden in the two cluster
structure.

parameters and the information about the model fitting has been proposed. It has
the advantage to consider not only the trend but also the actual explicative power
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TR

Fig. 6: Dendrogram of themodels. A = 0.2:the cophenetic coecient ismaximum, athreecluster

structureis more evident.

of the models. Simulations results seem to support the proposed strategy. As
further research real applicative fields need to be explored.
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CLASSIFICAZIONE DI FUNZIONI DI UTILITA ATTRAVERSO
UNA DISTANZA TRA MODELLI

Riassunto

La Conjoint Analysis & una dell e tecniche maggior mente utilizzate nella val utazione
del comportamento dei consumatori. Questa metodologia consentedi stimarei coefficienti
di utilita parziale in base ad un modello statistico che lega la valutazione globale di
preferenza alle caratteristiche descrittive degli stimoli (prodotti o serviz). | risultati della
Conjoint Analysis trovano vasta applicazione nella segmentazione del mercato.

In questo lavoro viene proposta una strategia di classificaz one basata su una nuova
metrica. La distanza introdotta é definita come combinazione convessa di due distanze.
Essa consentedi tener conto di una duplice qualita dell’ informazionerelativa al modello:
il valore del coefficienti stimati ela bonta di adattamento. Di conseguenza, la differenzia-
zZione tra segmenti di mercato & ottenuta considerando la prossimita dei modelli di utilita
individuali stimati e la capacita predittiva degli stessi.



