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1. Introduction

Let X be a Tychonoff space, H(X) the group of all self-homeomorphisms
of X and e : (f, x) ∈ H(X) × X → f(x) ∈ X the evaluation function. Of
course, there are many different ways to topologise H(X). For instance, it can
be endowed with the subspace topology induced by any of all known func-
tion space topologies. Nevertheless, since H(X) is a group with respect to the
usual composition of functions, it seems worthwhile to focus our attention on
those topologies which yield continuity of both the group operations, product
and inverse function, and, at the same time, yield continuity of the evaluation
function. In other words, we will focus on topologies which make H(X) as
a topological group and the evaluation function as a group action of H(X)
on X. Topologies with these two features can be found obviously among uni-
form topologies. In fact, uniform topologies make as continuous the evaluation
function [4]. Furthermore, they make as continuous both product and inverse
function at (i, i) and at i respectively, where i is the identity function of X. We
will call a group topology on H(X) any topology on H(X) which makes H(X)
as a topological group. Following [3,4], a topology on H(X) which makes the
evaluation function as a continuous function is called admissible. As a matter
of fact, admissible group topologies on H(X) are those ones which determine
a group action of H(X) on X.

Being well aware that if X is compact T2, then the compact-open topol-
ogy on H(X), which is also the uniform topology derived from the unique
(totally bounded) uniformity on X, is an admissible group topology, [2,6], we
will search the admissible group topologies on H(X) by means of a compact
extension procedure. Whenever X is Tychonoff, since any self-homeomorphism
of X continuously extends to the Stone-C̆ech compactification βX of X, then
H(X) embeds as a subgroup in H(βX). Thereby, the relativisation to H(X) of
the compact-open topology of H(βX) is an admissible group topology. Anal-
ogously, whenever X is locally compact T2, H(X) embeds as a subgroup in
H(X∞), where X∞ is the one-point compactification of X. Thereby, the rela-
tivisation of the compact-open topology of H(X∞) to H(X), called in [3] the
g-topology, is an admissible group topology. Accordingly, the previous two
significant examples strongly suggest to investigate those uniform topologies
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on H(X) derived from totally bounded uniformities on X whose uniform com-
pletion is a T2−compactification of X to which any self-homeomorphism of
X continuously extends. We say that a T2-compactification γ(X) of X has
the lifting property if any self-homeomorphism of X continuously extends to
it. Of course, if γ(X) is a T2-compactification of X with the lifting property,
then H(X) embeds as a subgroup in H(γ(X)); thereby, the uniform topology
derived from the totally bounded uniformity naturally associated with γ(X)
is an admissible group topology. Furthermore, the compact extension proce-
dure reveals as a powerful method to prove the existence of a least admissible
group topology on H(X). For instance, if X is locally compact T2, then the
g−topology is the least admissible group topology. Besides, if X is the rational
numbers space Q, equipped with the Euclidean topology, then the clopen-open
topology, which is also the uniform topology derived from the C̆ech uniformity
of Q, is the least admissible group topology of H(Q), [7,20,21]. Namely, in the
acquired results, [3,6,7,8], the least admissible group topology has been con-
structed as the uniform topology derived from a totally bounded uniformity
associated with a T2−compactification of X with the lifting property.

The issues so far discussed lead us to show the Theorem 4.4: A uniform
topology on H(X) derived from a totally bounded uniformity on X is a group
topology ( hence an admissible group topology) if and only if it is derived from
a totally bounded uniformity of X associated with a T2-compactification of X
with the lifting property.

On the other hand, ifX is locally compact T2, then the compact-open topol-
ogy on H(X), which is also the topology of uniform convergence on compacta
derived from any uniformity on X, is admissible and yields continuity of the
product function. Unfortunately in general, the compact-open topology does
not provide continuity of the inverse function. But, with the following addi-
tional property: (∗) any point of X has a compact connected neighbourhood,
due to J.J Dijkstra, [11], the compact-open topology becomes a group topology
and, as a consequence, the least admissible group topology of H(X). According
to this issue the compact-open topology on H(X) quotes as the most eligi-
ble one if X is a manifold of finite dimension or X is an infinite dimensional
manifold modelled on the Hilbert cube.

In looking for topologies of uniform convergence on members of a given
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family, containing all compact sets, which are admissible group topologies, we
focus beyond local compactness. In order to do so, we follow as suggestive
example that of bounded sets of an infinite dimensional normed vector space
carrying as proximity the metric proximity associated with the norm. We em-
phasise first that local compactness of X is equivalent to the family of compact
sets of X being a boundedness of X, [14], which, jointly any EF-proximity
of X, gives a local proximity space,[16]. As a consequence, we make this par-
ticular case to fall within the more general one in which compact sets are
substituted with bounded sets in a local proximity space, while the property
(∗) is replaced by the following one: (∗∗) for each non empty bounded set B
there exists a finite number of connected bounded sets B1, · · · , Bn such that
B �δ int(B1) ∪ · · · ∪ int(Bn). So doing, we achieve the following issue: The-

orem 5.1: If (X,B, δ) is a local proximity space with the property (∗∗) and
any homeomorphism of X preserves both boundedness and proximity, then the
topology of uniform convergence on bounded sets derived from the unique to-
tally bounded uniformity associated with δ is an admissible group topology on
H(X).

The uniformities so far considered are totally bounded and the concept of
totally bounded uniformity can be dually recast as EF-proximity, and then
as strong inclusion. As a consequence, it is worthwile to reformulate uni-
form topologies derived from totally bounded uniformities as proximal set-open
topologies. Taking up the common proximity nature of set-open topologies as
the compact-open topology, the bounded-open topology and the topology of
convergence in proximity, S.A. Naimpally, jointly with the author, introduced
as unifying tool the notion of proximal set-open topology, simply replacing the
usual inclusion with a strong one, [10]. Let X be a topological space and (Y, δ)
an EF-proximity space. Let C(X,Y ) denote the set of all continuous functions
from X to Y and α a network of X. The proximal set-open topology relative
to α and δ is that having as subbasic open sets the ones of the following form:

[C,A]δ :=
{
f ∈ C(X,Y ) : f(C)�δ A

}
,

where C runs through α, A runs through all open subsets in Y and �δ is the
strong inclusion naturally associated with δ. The proximal set-open topology
relative to α and δ is designed by the acronym PSOTα,δ or, simply, PSOTδ
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when α is the set CL(X) of all non empty closed subsets of X. In [10] it has
been proven that if α is a closed and hereditarily closed network of X, then
the topology of uniform convergence relative to α on C(X,Y ) derived from
the unique totally bounded uniformity naturally associated with δ agrees with
PSOTα,δ. Consequently, the uniform topology on C(X,Y ) derived from the
unique totally bounded uniformity compatible with δ agrees with PSOTδ, as
already proven in [18].

By endowing H(X) with PSOT ′s, our two previous results can be refor-
mulated as follows. The former, when α is CL(X), as: A PSOTδ is a group
topology on H(X) if and only if it is PSOTδ′ relative to a proximity δ

′
whose

Smirnov compactification has the lifting property.
After recalling that the concepts of local proximity on a Tychonoff space X

and of T2 local compactification of X are dual,[16], and a T2 local compactifi-
cation of X has the lifting property if and only if any self-homeomorphism of
X continuously extends to it, then the latter result, when α is a boundedness
of X which jointly with δ gives a local proximity space, [16], can be recast as :
If (X,B, δ) is a local proximity space with the property (∗∗) and the T2 local
compactification of X naturally associated with it has the lifting property, then
PSOTB,δ is an admissible group topology on H(X).

2. Preliminaries

In order to give some useful background the definitions, the terminology and
the results quoted below are drawn by [5,12,15,17,19,22]. Besides, we expressly
remark that the word uniformity always means diagonal or Weil uniformity.

– Uniformity, proximity and T2−compactifications.

Uniformities, proximities and T2-compactifications have an intensive recip-
rocal interaction. EF-proximity and totally bounded uniformity are dual con-
cepts. Any uniformity U on X naturally determines an EF-proximity on X by
setting for A,B ⊆ X, A 6 δU B if and only if there exists a diagonal neigh-
bourhood U ∈ U such that U [A] ∩ B 6= ∅. The class of all uniformities on X
determining the same EF-proximity δ on X contains a unique totally bounded
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uniformity, which is also the least element in the class. In the opposite, by
the Smirnov compactification theorem, [19], any EF-proximity δ on X deter-
mines, up to homeomorphism, a T2-compactification γ(X) of X, whose unique
compatible uniformity in turn induces on X a totally bounded uniformity U∗,
whose naturally associated proximity is just the starting δ.

Both proximity and uniformity give rise to exhaustive procedures to gener-
ate all T2-compactifications of a Tychonoff space.

Let (X, δ) be an EF-proximity space, τδ the natural underlying topology,
U∗ the unique totally bounded uniformity compatible with δ and γ(X) the
uniform completion of (X,U∗). Given that γ(X) is obviously the Smirnov
compactification of (X, δ) up to homeomorphism, it is easily acquired that:

Lemma 2.1. The following properties are equivalent:

(a) Any self-homeomorphism of the underlying topological space (X, τδ) con-
tinuously extends to γ(X).

(b) Any self-homeomorphism of X is a proximity function w.r.t. δ.

(c) Any self-homeomorphism of X is a uniformly continuous function w.r.t.
U∗.

It is to be reminded that a T2-compactification γ(X) of X has the lifting
property if and only if any self-homeomorphism of X continuously extends to
it. According with Lemma 2.1 we naturally say that a proximity has the lifting
property if it satisfies the property (b) in Lemma 2.1 and that a uniformity has
the lifting property if it satisfies the property (c) in Lemma 2.1.

It is remarkable that, for each positive integer n, any metric uniformity
compatible with the space Rn, equipped with the Euclidean topology, for which
any homeomorphism is uniformly continuous, or which is equivalent with the
lifting property, is totally bounded,[1].

– Strong inclusion.

The concept of EF-proximity can be recast as strong inclusion or double
containment or non-tangential inclusion. For any given EF-proximity δ on a
space X the relative dual strong inclusion is the binary relation over the power
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set Exp(X) of X defined as follows:

A�δ B iff A 6 δ X −B.

Vice versa, for any given binary relation over Exp(X), �, which is a strong
inclusion the relative dual EF-proximity δ is the binary relation over Exp(X)
defined by:

A 6 δ B iff A�δ X −B.

The relations δ and �δ are interchangeable.
Furthermore, later on we essentially use the following betweenness property.

Let δ be an EF-proximity. If A�δ B then there exists a τδ−closed set C such
that A�δ int(C) ⊆ C �δ B.

– Uniform topologies and proximal set-open topologies on H(X).

Every uniformity U compatible with X induces on H(X) the uniformity of
uniform convergence derived from U , which admits as basic diagonal neigh-
bourhoods the sets:

Û :=
{

(f, g) ∈ H(X)×H(X) : (f(x), g(x)) ∈ U, ∀x ∈ X
}

as U runs through all diagonal neighbourhoods in U . The uniformity of uniform
convergence derived from U on H(X) generates in turn the uniform topology
or the topology of uniform convergence derived from U , that we denote as τU .

Different uniformities can generate the same uniform topology.
Some already stated basic facts are then summarised further. For a uni-

formisable space X, every uniform topology on H(X) is admissible, [4]. Fur-
thermore, every uniform topology on H(X) provides continuity of the inverse
function at i, and continuity of the product at (i, i), where i is the identity
function of X.

Let α stand for a family of non empty subsets ofX. The topology of uniform
convergence on members of α derived from U , which we denote as τα, U , is
that admitting as subbasic open sets at any f ∈ H(X) the following ones:

(A,U, f) :=
{
h ∈ H(X) : (f(x), h(x)) ∈ U, ∀x ∈ A

}
where A runs through α and U varies in U .
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Since the uniform topologies so far considered are relative to totally bounded
uniformities, it is worthwhile to reformulate them as proximal set-open topolo-
gies. To unify the concepts of compact-open topology, bounded-open topology
and topology of proximity convergence, [18], S.A. Naimpally, jointly with the
author, introduced the unifying tool of proximal set-open topology relative to
a network and a proximity,[10]. This recasting takes up the opportunity of re-
formulating topologies of uniform convergence on members of a network, when
the range space carries a proximity.

A collection α of subsets of a topological space X is said to be a network on
X provided that for any point x in X and any open subset A of X containing
x there is a member C in α such that x ∈ C ⊆ A. A network α is a closed
network if any element in α is closed and is a hereditarily closed network if
any closed subset of any element in α is again in α.

Let (Y, δ) be an EF-proximity space and α a network inX, then the proximal
set-open topology relative to α and δ, in short denoted by the acronym PSOTα,δ

or, simply, PSOTδ when α is the network CL(X) of all non empty closed
subsets of X, is that admitting as subbasic open sets the following ones:

[A : W ]δ :=
{
f ∈ Y X : f(A)�δ W

}
where A runs through α and W is open in Y. Whenever α coincides with the
family of all closed subsets ofX, the relative PSOTδ on C(X,Y ) is the topology
of proximity convergence relative to δ. We note that a net of functions {fλ}
converges in proximity w.r.t. δ to f if and only if for A ⊆ X and B ⊆ Y then
f(A) 6 δ B implies fλ(A) 6 δ B eventually. For continuous functions the topo-
logy of proximity convergence relative to an EF-proximity δ agrees with the
uniform topology derived from the unique totally bounded uniformity naturally
associated with δ,[18]. Besides, when α is the family of all compact subsets of
X, for any proximity we get the compact-open topology, which is the prototype
within the class of set-open topologies.

Different proximities can induce the same PSOT .
The proximal set-open topologies have remarkable properties. Later on, the

following Arens-type result,[10], will reveal as very useful.

Theorem 2.1. Let α be a closed, hereditarily closed network in X and δ an
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EF-proximity on Y . Then PSOTα,δ is the topology of uniform convergence on
members of α derived from the unique totally bounded uniformity compatible
with δ.

– Boundedness plus proximity.

Blending proximity with boundedness gives local proximity. Local prox-
imities play the same role in the construction of T2 local compactifications
of a Tychonoff space X as that of EF-proximities in the construction of T2-
compactifications of X.

Let X be a Tychonoff space. Any given T2 local compactification l(X) of
X takes up two features of X. Whereas the former one is the separated EF-
proximity on X induced by the one-point compactification of l(X), the latter
one is the boundedness made by all subsets of X whose closures in l(X) are
compact. By joining proximity and boundedness in the unique concept of local
proximity, S. Leader put this example in abstract, [16].

A non empty collection B of subsets of a set X is called a boundedness in
X if and only if:
(a) A ∈ B and B ⊆ A implies B ∈ B and (b) A,B ∈ B implies A ∪B ∈ B.
The elements of B are called bounded sets. It is to be underlined that in
[14] S.T. Hu proposed the notion of space with a boundedness as a natural
generalisation of that of metric space.

We expressly remark that we look at a local proximity as localisation of
an EF-proximity modulo a free regular filter,[16]. A local proximity space
(X, δ,B) consists of a set X, together with an EF-proximity δ on X and a
boundedness B in X containing all singletons, which satisfies the following
axiom: If A ∈ B, C ⊆ X and A � C then there exists some B ∈ B such that
A� B � C, where � is the strong inclusion of δ.
A local proximity space (X, δ,B) is said to be separated when δ is separated.

It is remarkable that the boundedness in a local proximity space (X, δ,B) is
also a uniformly Urysohn family w.r.t. the unique totally bounded uniformity
naturally associated with δ, [5].

Now we consider some interesting properties of boundedness in proximity
setting, which we will use further. In a local proximity space the closure of
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a bounded set is again bounded. Every compact subset of a local proximity
space is bounded. Every local proximity space is also locally bounded. As a
matter of fact, proximity spaces are just those ones where the underlying set
X is bounded.

Finally, we add the following result: For a Tychonoff space X there exists
a bijection between the set of all, up to equivalence, T2 locally compact dense
extensions of X and the set of all separated local proximities on X, [16]. If
X is bounded the T2 local compactification associated with (X, δ,B) is just
the Smirnov compactification relative to δ, while, if X is unbounded, it can
be obtained by removing from the Smirnov compactification relative to δ the
point determined in that by the free regular filter F = {X \B : B ∈ B}.

3. Proximity and homeomorphism groups

Let (X, δ) be an EF-proximity space. It is easy to show that:

Theorem 3.1. Let G(X) be a subgroup of the full group H(X) of self-homeo-
morphisms of the underlying topological space X. Assuming that G(X) is
equipped with PSOTδ, then the evaluation function e : (f, x) ∈ G(X) ×X →
f(x) ∈ X is continuous.

Proof – As previously remarked, PSOTδ is a uniform topology and any
uniform convergence implies continuous convergence, which in turn provides
continuity of the evaluation function, [4].

Furthermore, given that a proximity-isomorphism or δ-isomorphism is a
self-homeomorphism of X that preserves proximity in both ways, then we can
show that:

Theorem 3.2. If (X, δ) is an EF-proximity space, then PSOTδ is a group
topology on the full group of δ-isomorphisms of X.

Proof – We show first that the product operation is continuous. In order
to do so, we assume that g ◦ f ∈ [C : W ]δ, or equivalently g ◦ f(C) �δ W,

with C closed and W open in X. Since g−1 preserves strong inclusion, then
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f(C)�δ g
−1(W ).Moreover, the betweenness property implies that there exists

an open set A in X such that f(C) �δ A ⊆ ClA �δ g
−1(W ). Of course,

[C : A]δ and [ClA : W ]δ are PSOTδ-neighbourhoods of f and g, respectively.
Furthermore, if h ∈ [C : A]δ and k ∈ [ClA : W ]δ, then k ◦h ∈ [C : W ]δ, so that
the first result is acquired. Next, the symmetry property of δ, jointly with the
preservation of strong inclusion, yields:

f ∈ [C : W ]δ iff f−1 ∈ [X −W : X − C]δ

for each δ-isomorphism of (X, δ). Thereby, the inverse function is PSOTδ-
continuous.

We summarise the previous two results as follows:

Theorem 3.3. If (X, δ) is an EF-proximity space, then the full group of δ-
isomorphisms of X, equipped with PSOTδ, is a topological group which con-
tinuously acts on X by the evaluation function e.

Besides:

Theorem 3.4. Whenever X is a T2 locally compact space, the PSOT asso-
ciated with the Alexandroff proximity, known as the g−topology, is the least
admissible group topology on H(X), [3,6].

Secondly:

Theorem 3.5. Whenever X is a T2, rim-compact and locally connected space,
the PSOT associated with the Freudenthal proximity is the least admissible
group topology on H(X), [7].

Finally:

Theorem 3.6. Whenever X is the rational numbers space Q, equipped with
the Euclidean topology, the PSOT associated with the C̆ech proximity is the
least admissible group topology on H(Q), [7,8].
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4. Compact extension procedure

Let U be a collection of subsets of X×X. For any U ∈ U and any h ∈ H(X)
put:

Uh :=
{

(x, y) ∈ X ×X : (h(x), h(y)) ∈ U
}
.

Furthermore, set:
SH :=

{
Uh : U ∈ U , h ∈ H(X)

}
.

Theorem 4.1. Let U be a uniformity on X. Then the following hold:

(a) The family SH is a subbase for a uniformity UH on X, which is separated
whenever U is so.

(b) The uniformity UH is totally bounded whenever U is so.

(c) Any self-homeomorphism of X is a uniformly continuous function w.r.t.
UH, or equivalently UH has the lifting property.

(d) The uniformity UH is the least uniformity with the lifting property finer
than U .

Proof – (a) Trivially, for any U ∈ U and h ∈ H(X), the diagonal ∆ =
{(x, x) : x ∈ X} is contained in Uh. Besides, if U ∈ U , V ∈ U and V 2 ⊆ U ,
then Vh ◦ Vh ⊆ Uh for any h ∈ H(X). Again trivially, if U ∈ U is symmetric,
i.e., U = U−1 = {(x, y) : (y, x) ∈ U}, then it happens that Uh = U−1

h for any
h ∈ H(X). Finally, from U ⊆ UH, it follows :

∩
{
U : U ∈ U

}
= ∆ ⇒ ∩

{
Uh : U ∈ U , h ∈ H(X)

}
= ∆.

(b) By assuming U totally bounded, it follows that for any diagonal neigh-
bourhood U ∈ U there exists a finite number of points x1, · · · , xn in X such
that X = U [x1] ∪ · · · ∪ U [xn]. Therefore, if h ∈ H(X) and xi = h(yi), i =
1, · · · , n, then X = Uh[y1]∪ · · · ∪Uh[yn]. And the above condition is sufficient
for UH being in turn totally bounded.

(c) It is enough to observe that for any h, k ∈ H(X) it happens that if
(x, y) ∈ Vh◦k then (h(x), h(y)) ∈ Vk.
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(d) Let V be a uniformity on X with the lifting property finer than U . In
order to verify that V is finer than UH it is enough to show that V contains the
subbase SH of UH. For any diagonal neighbourhood U of U and any h ∈ H(X),
since U ⊆ V and h is uniformly continuous w.r.t. V, then there exists a diagonal
neighbourhood V in V such that if (x, y) ∈ V then (h(x), h(y)) ∈ U . But this
yields V ⊆ Uh, so Uh ∈ V. And the result follows.

For every uniformity U the property (d) in theorem 4.1 motivates us to refer
to UH as the minimal H(X)-enlargement of U . Minimal H(X)-enlargements
have interesting properties.

Theorem 4.2. Let U be a totally bounded uniformity on X. Then the uniform
topology τUH on H(X) derived from UH is a group topology, hence it is an
admissible group topology.

Proof – The result follows from theorem 3.2. In fact, being UH a totally
bounded uniformity with the lifting property, then τUH agrees with PSOTδ

where δ is the proximity naturally associated with UH.

In the case U is totally bounded the previous result induces us to refer to
the uniform topology τUH as the fine group topology associated with U .

Theorem 4.3. Let U be a totally bounded uniformity on X. Then the uniform
topology onH(X), τU , derived from U is a group topology if and only if it agrees
with the uniform topology τUH derived from UH.

Proof – A net {fλ} uniformly converges to the identity function f w.r.t.
UH if and only if all nets {h ◦ fλ} uniformly converge to h w.r.t. U , h run-
ning through H(X). Thereby, whenever τU is a group topology, then, if {fλ}
uniformly converges to the identity function f w.r.t. U , it is obvious that any
net {h ◦ fλ} uniformly converges to h w.r.t. U , h running through H(X). But
this exactly means {fλ} uniformly converges to the identity function f w.r.t.
UH. Being both τUH and τU group topologies the above condition is enough for
τUH ⊆ τU , hence τUH = τU . The vice versa is obviously trivial.

The previuos result can be summarised as follows:
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Theorem 4.4. A uniform topology on H(X) derived from a totally bounded
uniformity on X is a group topology (hence an admissible group topology) if
and only if it is derived from a totally bounded uniformity of X associated with
a T2-compactification of X with the lifting property.

5. Locally compact extension procedure.

We say that a T2 local compactification has the lifting property if and
only if any homeomorphism preserves both boundedness and proximity, i.e.,
any homeomorphic image of a bounded set is bounded and if B �δ W, then
f(B)�δ f(W ), where f runs through H(X), B is bounded and W is open.

It is to be recalled that a local proximity space (X,B, δ) verifies the property
(∗∗) if and only if for each non empty bounded set B there exists a finite number
of connected bounded sets B1, · · · , Bn such that B �δ int(B1)∪ · · · ∪int(Bn).

Whenever (X,B, δ) is a local proximity space, then the subcollection of B
of all closed bounded subsets of X is a closed, hereditarily closed network of
X. Accordingly, due to theorem 2.1, PSOTB,δ is the topology of uniform con-
vergence on members of B derived from the unique totally bounded uniformity
associated with δ. Unfortunately, PSOTB,δ is not in general an admissible
group topology, neither a group topology.

Nevertheless, what stated above is sufficient to draw the following final
issue:

Theorem 5.1. If (X,B, δ) is an unbounded local proximity space with the
property (∗∗) and any self-homeomorphism of X preserves both boundedness
and proximity, then the topology of uniform convergence on bounded sets de-
rived from the unique totally bounded uniformity associated with δ is an ad-
missible group topology on H(X).

Proof – Admissibility comes from local boundedness. The proof of conti-
nuity of the group operation is similar to the one in theorem 3.2. The inverse
function is continuous as well. Let f ∈ [F : X \ B]δ, with F closed and B

bounded, then, f−1(B) is bounded too. So, from (∗∗) it follows that:

f−1(B)�δ int(B1) ∪ · · · ∪ int(Bn),
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for some connected bounded sets B1, · · · , Bn. This entails that there exist
n points in B, x1, · · · , xn, such that f−1(xi) ∈ int(Bi), i = 1, · · · , n. As
a consequence, f ∈ [{xi} : f(int(Bi))]δ. In turn, C = B1 ∪ · · · ∪ Bn, being
bounded, is distinct from X. For that C can be strongly embedded in a closed
bounded set C

′
, again distinct from X. Of course, f ∈ [C

′ ∩ F : X \ B]δ. We
distinguish two cases. In the former one, where X is connected, the boundary
of C

′
, ∂C

′
, is not empty. Consequently, ∂C

′
�δ X \ C. Thus, f ∈ [∂C

′
:

f(X \ C)]δ. Clearly, the following subset of H(X):

U := ∩
{

[{xi} : f(int(Bi))]δ : i = 1, ···, n
}
∩ [F ∩C

′
: X \B]δ ∩ [∂C

′
: f(X \C)]δ

is a PSOT -neighbourhood of f. We show that if h ∈ U , then h ∈ [F : X \B]δ.
Therefore, from f−1(B) �δ C and from the lifting property, it follows that
there exists a diagonal neighbourhood U such that U [B] ⊆ f(C). Also, since
h ∈ [F ∩ C ′

: X \ B]δ, there exists a diagonal neighbourhood V such that
V [h(F ∩C ′

)] ⊆ X \B. Given a symmetric diagonal neighbourhoodW ⊆ U ∩V ,
if h 6∈ [F : X \B]δ, thenW [h(F )]∩B 6= ∅. This implies there exists a point x in
B and a point y in F such that x ∈ W [h(y)]. Of course, h(y) ∈ W [x] ⊆ f(C).
Thus, h(y) ∈ f(Bi) for some i = 1, · · · , n. Yet, h(xi) also belongs to f(Bi),
so h−1(f(Bi)) is a connected set which intersects both the interior of C

′
and

the interior of its complement, which implies that it has to intersect also the
boundary ∂C

′
of C

′
. At the same time, h ∈ [∂C

′
: f(X \ C)]δ implies that

h(∂C
′
) cannot intersect f(Bi), which is an evident contradiction. In the latter

case, where X is not connected, the property (∗∗) implies that any bounded
set can intersect only a finite number of components, so that we can proceed
in every component exactly as before.

This final result can be recast as the following:

Theorem 5.2. Whenever (X,B, δ) a local proximity space with the property
(∗∗) and the T2 local compactification associated with it has the lifting property,
then PSOTB,δ is an admissible group topology on H(X).
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