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Abstract

Automatic text summarization is an important NLP task with many ap-
plications. Our particular area of focus is summarization of news articles.
We introduce a new Czech summarization dataset created from CNA art-
icles. Using this dataset, we trained multiple state-of-the-art approaches for
extractive summarization using the BERT and Longformer model architec-
tures and evaluate them using ROUGE-N, ROUGE-L and BertScore. We
found that a pretrained Czech Longformer is the best approach regarding
BertScore (0.802), when the number of summary sentences is known. If
it is unknown, we found that the best approach is sentence-wise classifica-
tion with context and positional metadata using a pretrained Czech BERT
(BertScore 0.79).

Abstrakt

Automaticka sumarizace textu je dulezity kol z oboru zpracovani priroze-
ného jazyka s mnoha aplikacemi. V této praci se zamérujeme na sumarizaci
novinovych ¢lanki. V préaci predstavujeme novy sumarizacni dataset vytvo-
feny z ¢lankd CTK. Na tomto datasetu jsme natrénovali nékteré z nejmo-
dernéjsich modeli pro extraktivni sumarizaci s vyuzitim neuronovych siti
BERT a Longformer a zhodnotili je podle metrik ROUGE-N, ROUGE-L a
BertScore. Z experimentii vyplyva, Ze nejlepsi model dle BertScore je zalo-
zeny na predtrénovaném Longformeru (0.802), ale lze jej vyuzit jen pokud je
dopredu znam ¢i zadan pocet vét ve shrnuti. Pokud tato informace k dispo-
zici neni, nejlepsim pristupem se jevi klasifikace jednotlivych vét s kontextem
a pozi¢nimi metadaty pomoci predtrénovaného modelu BERT (0.79).



Contents

1 Introduction

2 Analysis

2.1 Definitions . . . . . . ...
2.2 Metrics. . . . . ..
221 ROUGE Family . . . . ... ... ... ... .....
2.2.2 BertScore . . . .. ...
2.3 Single vs. Multi-Document Summary . . . . . .. ... ...
2.4 Automatic Summarization Techniques . . . . .. . ... ..
2.4.1 Extractive Summarization . . . ... ... ... ...
2.4.2 Abstractive Summarization . . . . . .. .. ... ..
2.4.3 Neural-net-based Abstractive Summarization . . . . .
25 BERT . ... . ...
2.5.1 Tokenizer . . . . .. . .. . ... ... ... .
2.5.2 Input Embedding . . . . . ... ...
2.5.3 Positional Encoding . . . . . . ... ...
2.5.4 Multi-Head Self-Attention . . . . . .. .. ... ...
2.5.5  Add and Norm Operations . . . . . . ... ... ...
2.5.6 Feed Forward . . . ... ... ... ... ... ....
2.5.7 Additional details . . . . . .. ... ... ...
2.6 Longformer . . .. .. ... ... ...
2.7 Projection . . . . . ...
2.7.1 Special Tokens . . . . ... .. .. ... ... ....
2.72 Pooler . . . . . .. ...
2.7.3 Aggregative Reduction . . . . . . ... ... ... ..
2.8 Extractive BERT Summarization . . . ... ... ... ...
2.8.1 BERT Sentence Classification . . . . .. ... .. ..
2.8.2 BERT Sentence Classification with Context . . . . .
283 BertSum . . ... ... ...
2.8.4 BERT Clustering . . . . .. ... ... ... .....
285 BERT RNN . ... ... . ... ... ... . .....
2.9 Analysis Conclusion . . . . . . . . ... ... ... ... ...

3 Realization
3.1 Datasets . . . . . . ..
3.1.1 Annotation Procedure . . .. .. ... .. ... ...

o o ©

10
14
14
15
15
16
17
18
21
22
22
23
25
25
26
26
26
27
27
28
28
28
28
29
29
29
30



3.2

3.3

3.4

3.5

3.6

3.1.2 Building the Summarization Dataset . . . . . .. ..

BERT-based models . . . . ... ... ... .........
3.2.1 Pretraining and Tokenization . . .. ... ... ...
3.22 Inputs . .. . ...
3.23 Training . . . . . .. oo
3.24 Evaluation . . . . .. ... o000
3.2.5  Activation Function and Dropout . . . . .. ... ..
STSmodel . . . . . . .. ...
3.3.1 Two-sentence Input into Regression . . . . . . . . ..
3.3.2 Siamese One-sentence Input, Cosine Similarity . . . .
3.3.3 Comparison . . . . . ... .. ... ...
3.3.4 Architecture . . . . . ...
3.3.5 Training . . . . . . . ... oo
3.3.6  Summary inference . . . . . ... ...
CZERT classifiers . . . . . . .. ... ... ... ... ....
3.4.1 Architecture . . . . . ...
3.42 Training . . . . . . ..o
CZERT RNN (rnn-pretr/fntn) . . . . .. .. ... ... ...
3.5.1 Architecture . . . . . ...
3.50.2 Training . . . . . . . ..o o
Implementation and system architecture . . . .. .. .. ..
3.6.1 Model swapping . . . . . .. ...
3.6.2 Data processing . . . . . . ... oL
3.6.3 Model configuration . . .. ... ... ... ... ..
3.6.4 Evaluationdetails . . . . .. ... ... ... ...

4 Discussion

4.1 Baselines. . . . . . ...

4.2 Clustering . . . . . . ...

4.3 Supervised approaches . . . . . .. ... ... ... ... ..

4.4 Final comparison . . . . ... ... oL

4.5 Conclusion . . . . . . ... o
Bibliography

5 Common abbreviations

A Appendix

A1l Usermanual . . . . . . . . . .

53
23
o4
25
59
61

62

68

69



1 Introduction

Summarization is the process of condensing information from a document
into a shorter, more concise form. Summaries are useful for reducing the
size of long documents, leaving their most essential information, and can be
helpful for both authors and consumers.

Natural language processing (NLP) methods are generally applicable to
all language domains, such as all-media communication, genetics [YMO02],
byte codes [Popl7], etc. However, in the context of this thesis, we will be
focused on human language in textual form, and specifically, on that of the
Czech News Agency (CTK, CNA).

Automatic summarization of text specifically finds various applications
in (but not limited to) social media [CA13, ACM™18], search engine optim-
ization [Mat18, RF00, SCJ*20], research and medicine [FRK04, LRFP13],
marketing [SSTWO01, APPH16|, question answering [DHD20, EBE19] and
programming [HAM10], as opposed to summaries of music, genetic code,
byte code or other natural and artificial languages.

There are multiple advantages of automatic over manual summarization:
the former can be completed faster than the latter, especially for longer
texts. It can be more accurate as well, since it relies on algorithms rather
than human interpretation. Finally, automatic summaries can be easily
customized to the needs of the user, whereas manual summaries require
more time and effort to tailor.

In this thesis, we will explore the potential of state-of-the-art (SoTA)
neural network models in automatic text summarization by evaluating their
performance on a brand-new summarization dataset created from CNA art-
icles. The best performing model will then be used to implement a system
capable of summarizing multiple documents into a single summary.



2 Analysis

The first chapter of this thesis will focus on the study of existing summariz-
ation methods. Before we start, let us define the basic terms which we will
use throughout this thesis.

2.1 Definitions

Documents are serialized entities (of any length) comprised of atoms origin-
ating from a single language domain. For example, a text document consists
of individual textual characters, each one having a specific, unique position.
One of many purposes of documents is conveying information between au-
thors and consumers.

An n-gram is a substring (connected subsequence) of a document of
length n (consisting of n atoms).

A summary is a document related to another document (an original) and
exists in the same domain. The author of the summary tries to shorten its
length while including the maximal amount of (general or specific) inform-
ation from the original. Hence, the sole purpose of a summary is to carry
information; the artistic, educational, or other value may be lost. From the
syntactical point of view, summaries might have nothing in common with
the originals, as they focus purely on semantics. Summarization, then, is
the process of creating a summary from an original.

Since summaries rely only on the principles of compression and informa-
tion preservation, it is easy to imagine summarizations of multiple semantic-
ally similar documents at once. The area of research developing and studying
such techniques is called multi-document summarization.

2.2 Metrics

In order to assess the quality of automatic summaries without the need for
human evaluators, a variety of metrics were designed. Discussing these met-
rics first, and only then describing the individual summarization methods,
will help us understand the potential difference between training a summar-
ization model and optimizing its metric value.

Every metric mentioned in this section is a function with two inputs:



1. ground-truth reference summary (usually created by humans, consequently

denoted R) and

2. evaluated summary (consequently denoted F),

which returns a real number signifying how good the evaluated summary is.

2.2.1 ROUGE Family

The acronym ROUGE stands for Recall-Oriented Understudy for Gisting
Evaluation. ROUGE was invented in 2004 by Chin-Yew Lin in order to
solve the problem of the necessary involvement of humans in validations of

automatically generated summaries, which previously required 3000 man-

hours of effort for the Document Understanding Conference [Lin04]. It is

word-level oriented, i.e. it thinks of documents as sequences of words.

ROUGE-N The simplest method for calculating the ROUGE score is
ROUGE-N, which creates unordered sets of all N-grams R,, E, from R
and E respectively before calculating the recall of E, on R, (hence recall-
oriented). In other words, it calculates the amount of N-grams in R, which

were present among F, divided by the amount of N-grams of R, in total, as

shown in Equation 2.1. N stands for N-gram co-occurrence statistics.

E.NR
ROUGE-N, (R, E) = M (2.1)
| Ry

For example, if we had:

e R = cats have fur

e I = cats have ears

e« N =1,

we obtain R, = {cats, fur, have} and E, = {cats,ears, have} with

R, N E, being {cats, have}, therefore arriving at the final recall value of

2/3. However, consider the case if F were to be 'cats have ears, whiskers,
paws and fur” instead. The updated E is much longer than the ground-truth

summary, which suggests that E is of poor quality (summaries should be as
short as possible). Nonetheless, the ROUGE-N value becomes 1 (the max-
imum). Generally speaking, recall approaches 1 as |R,| approaches zero and

|Ey| approaches infinity. This is a classic problem appearing when recall is

used as a metric of performance.
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In the original ROUGE paper [Lin04], Lin assumed R to be a set of
documents instead, therefore expecting (after concatenation of source doc-
uments) that |R,| >> |E,|. Such expectation also motivates the choice to
avoid using precision as the metric core. Precision is calculated similarly

ROUGE-N, (R, ) = (2o 1l (2.2)
| Bl
and — inversely — approaches 1 as | E,| approaches zero and |R,| approaches
infinity.

Improvements Fortunately, at least two possible ways to combat this
problem exist. In machine translation, the BLEU [PRWZ02] metric is com-
monly used for evaluating automatic translations [PRWZ02, AL08, CBOKO06].
Translation is a sequence-to-sequence task, just like summarization (map-
ping documents to documents). It is therefore unsurprising to find that
metrics applicable to translation can be applied to summarization as well,
be an inspiration for summarization metrics, and vice versa. BLEU is based
on precision and its standard implementations include something called a
brevity penalty [PRWZ02], which penalizes generated E's which are shorter
than the originals, R. An extension of ROUGE-N can include a similar pen-
alty called redundancy penalty, which functions in the opposite manner, as
we intend to penalize E's [onger than the corresponding Rs.

Another solution would be to simply calculate a mean of Equations 2.1
and 2.2, which automatically handles both cases at once. Two such metrics
exist: the geometric mean of precision and recall,

GM(p,r) =/|p* ] (2.3)

called G-measure, and the harmonic mean of precision and recall,

1

HM(p,r) =17
p

(2.4)
called F-measure. Both are suitable for this purpose, because unlike the
arithmetic mean, they represent a soft minimum: the resulting metric value
will be reduced more severely if either precision or recall are smaller than
the other, which is intended. This forces the evaluated generator to produce
outputs which have both high precision and recall. The harmonic mean is
stricter in this sense.

In scientific publications, it is common to specify the parameter of N
directly in the name: ROUGE-1 stands for ROUGE-N with N=1, ROUGE-
2 stands for ROUGE-N with N=2, etc.
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ROUGE-L Another way to calculate ROUGE is to attend to the longest
common subsequence in both R and E. Thinking of D € {R,E} as a
sequence of atoms, we call s a subsequence of D if there exists a strictly in-
creasing sequence of indices [ig, 71, ..., i) such that Vk € Nk <n:sp = D;,.
The longest common subsequence of R and F, then, would be a subsequence
which is both in R and E and has maximum length [Lin04]. Again, ROUGE-
L is equal to 1 if R is equal to E and 0 if they have no common subsequence.

The difference between a substring and a subsequence is that, for a sub-
string, the sequence of indices i, must be specifically an interval of natural
numbers (no skipping allowed). The longest common subsequence approach
therefore does not punish exclusion of words of sentences from the summary
as severely.

The common subsequence length does not suffice as a standalone met-
ric however, since it scales with the length of R and E. Hence, it requires
normalization. When normalizing with respect to the reference summary
R, the LCS length is divided by the length of R, and vice versa with E.
Intuitively, the former approach is recall-oriented (equals 1 if the whole ref-
erence is covered) and the latter approach is precision-oriented (equals 1 if
the whole evaluated summary is correct).

This metric suffers from the same problems regarding the use of purely
recall-or-precision-based metrics as the previous one; Lin recommends using
the F-measure improvement with this metric as well. In the Document
Understanding Conference 2004, which motivated the invention of ROUGE,
however, the evaluators have applied a bias = 8 to the recall part of F-
measure Fj, as seen in Equation 2.5, which linearly weighs the importance
of recall by a factor of 8 over precision.

_LOS(R.E)| o A+ B)RB

|LCS(R,E)|
B=""

There are two advantages of using ROUGE-L over ROUGE-N. Word-
level n-gram-based metrics are sensitive to consecutive word matches, which
can punish good abstract summaries that can, for example, insert custom
words in what would be an extracted summary sentence. LCS, on the other
hand, pays attention to sequence matches, which just reflect the word order
on the sentence level, skipping non-matching words. Another advantage is
that the LCS is non-parametric, so there is no need to empirically set the
N-gram size, perform grid evaluations, or anything of the like [Lin04].

Notice that ROUGE-L and ROUGE-1 both calculate unigram precision
and recall and differ only in the fact that ROUGE-1 does so regardless

12



of word order. This inherent feature of ROUGE-N unjustifiably forgives
incorrect sentence structure. Consider the following example with ROUGE-
2:

e R = the cat chased a mouse
e I, = a mouse chases the cat

e F5 = the cat chases a mouse

Here, the ROUGE-2 score for (R, Ey) and (R, F2) are the same, since all
three summaries have exactly two common 2-grams: 'the cat’ and 'a mouse’.
Notice, however, that £; and F, have completely opposite meanings. This
factor has been exaggerated in this example for the purpose of explanation,
however, in practice, this can pose a significant problem. The ROUGE-L
score, on the other hand, equals 0.4 for (R, E;) and 0.8 for (R, E»), signal-
izing that Fs is of much higher quality.

One significant disadvantage of ROUGE-L is the fact that only the
longest common subsequence matters, which disregards other common sub-
sequences [Lin04].

ROUGE-W Another disadvantage of ROUGE-L is its disregard for the
spacing between atoms in the sequence. A human evaluator would claim
that, when choosing between two summaries £, and FEs, both having the
same LCS with R as the other, the one that has more consecutive atoms
(i.e. is more like a common substring) is better [Lin04]. Therefore, Lin
recommends the use of ROUGE-W (weighted LCS) instead. Using dynamic
programming, ROUGE-W stores the lengths of consecutive matches during
the computation of LCS, which are weighted and summed together. The
sum of the weighted lengths, then, substitutes the LCS length.

The weighting is done by a separate function f which maps the num-
ber of consecutive matches to a real number. Meaningful variants of f are
polynomials f(k) = k%, a > 1, which assign more value to longer substrings.

Finally, the sum of weighted lengths is normalized as shown in Equation
2.6.

(2.6)

Ry 1 (WLCS(R, E)>

F(RI)

P, is adjusted likewise.

13



2.2.2 BertScore

Although the ROUGE family metrics are very popular as summarization
evaluators, these metrics rely mostly on syntactical properties of the com-
pared summaries and are slowly becoming obsolete. BertScore [ZKW'19] is
one of the most recent methods of summarization evaluation which utilizes
the contextual embedding capabilities of large neural network models such
as BERT (Section 2.5).

In order to calculate BertScore, both E and R are input to BERT, which
returns a vector of size d, for every single token of both E and R (see Sec-
tion 2.5.1 for more details). These vectors are normalized to unit vectors and
dot-multiplied between E and R, creating a matrix of size (|E|, |R|). This
matrix represents the similarity of individual tokens of F and R. To calculate
BertScore precision and recall, one has to find the average maximum value
of this matrix across the second and first dimension respectively. BertScore,
then, is the F1 measure (harmonic mean) between these two values, calcu-
lated using Equation 2.4. It has been shown that this value correlates much
more strongly with human judgment as opposed to ROUGE [ZKW*19].

2.3 Single vs. Multi-Document Summary

Before we begin with examining possible approaches to multi-document sum-
marization, let us enumerate the most significant differences between single-
document summarization (SDS) and multi-document summarization (MDS)

[GMCKO00].

Redundancy Every input document will contain the relevant information
to be highlighted by the summary, however, these documents will share a
significant fraction of their content regardless of its relevance. For example,
multiple news articles about a specific research conference might include
historical information about its previous instances. Generally speaking, all
input documents will contain irrelevant text, such as background descrip-
tion, introduction, etc., which will be shared by the individual documents.
Therefore, a greater focus on redundancy elimination should be exercised.

Temporal Difference Topically similar documents may be created with
an unspecified temporal gap between each other, which is typical for a stream
of news reports. Specific parts of newer documents might override inform-
ation carried by their older counterparts, for example, when reporters piece

14



more data together and update their stories. This implies that a certain
priority should be given to newer documents in MDS.

Compression Ratio In MDS, intuitively, the summary size should not
depend on the amount of input documents. However, their number can vary
and is usually larger than one (SDS), meaning that the compression ratio
is much larger, roughly proportionally to the amount of input documents.
According to Goldstein et al. in [GMCKO00], in contrast to the TIPSTER
Text Summarization Evaluation (SUMMAC) in 1998 [MHK™99], where the
summary compression ratios were 10%, Goldstein et al. summarized clusters
of 200 documents each, which caused their compression ratios to drop as low
as 0.1%, which puts more pressure on summary quality.

2.4 Automatic Summarization Techniques

In this section, we will discuss the possible ways of summarizing multiple
documents, where the input is an ordered set of documents, and the output
is a single document - a summary.

From the viewpoint of automatic summary generation methods, in prac-
tice, two standard approaches exist: extractive and abstractive. Methods
belonging to the former group generate summaries by starting with the ori-
ginal documents, selecting which parts of the text to preserve. The "parts'
are usually sentences, but counterexamples exist, such as when Jadhav, A.
and Rajan, V. extracted summaries word-wise [JR18|. After selecting the
important parts, the remnant is cropped and the result is deemed a sum-
mary. Hence, this approach is called "extractive', as it extracts the summary
from the source text. The latter approach uses text-generation techniques
to create an original summary from the source text.

2.4.1 Extractive Summarization

The most common approaches to extractive summarization are based on
clustering sentences or representing the set of documents as a discrete graph.
Both of these approaches will now be described.

Graph-based Graph-based methods function similarly as the PageRank
algorithm [PBMW99] used in information retrieval. The common feature is,
as was stated, trying to represent a document (or multiple documents) with
a single discrete/network graph. Vertices of such graphs represent individual

15



sentences of the original documents. The similarity of these sentences indic-
ates whether there should be an edge between the corresponding vertices.
The similarity can be calculated statistically using TF-IDF or by applying
function approximator methods.

The subgraphs created by this process represent different topics covered
by the source documents. More importantly, sentences being connected to
many others signalizes their usefulness as a representative delegate. Such
sentences should be more likely to be included in a summary [APAT17].

Allahyari et al consider TF-IDF weighting to be suboptimal for the use
in this approach because of its reliance on statistics solely without taking
the semantic similarity of sentences into account [APA17]. This approach
can be substituted by using a function approximator directly for calculating
similarity, or by embedding the sentences in a semantic space.

Cluster-based Cluster-based methods function similarly to the graph based
ones: sentences are split into clusters depending on their similarity. Specify-
ing the distance between individual elements in clustering is key. There are
two basic approaches this paper studies. One can either explicitly provide a
full distance matrix, which is computed from sentence similarity, or one can
embed the individual sentences into a vector space. The representations are
then thought of as points in Euclidean space and their distance is deemed
as Euclidean (Equation 2.7) or they can be projected onto the unit sphere
centered at the origin and compared via their dot product (cosine distance,
Equation 2.8).

—

n—

d@Ste(p7 Q) = Z(pl - %)2 (27)

=0

dist.(p,q) =p-q (2.8)

The main difference between graph based and cluster based methods is
the fact that latter select a single representative sentence for each created
cluster.

2.4.2 Abstractive Summarization

Abstractive methods can be further divided into fully abstractive methods,
graph-based methods, template-based methods and neural-net methods, which
will briefly be explained in this subsection.
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Fully abstractive Fully abstractive methods are methods which extract
information in the form of candidate phrases from the source text, se-
lect a subset of those phrases fit for inclusion in the summary, and fi-
nally combine them into syntactically correct sentences. The extracted
noun and verb phrases can be selected according to automatically gener-
ated queries, ignoring content which is unlikely to be included in a summary
[BLL"15, GL12, MCN14]. The work of Wang and Cardie [WC13], which
summarizes dialogue acts of spoken meetings, also shows that topic and do-
main knowledge can be utilized to guide the information extraction [LN19].

Graph-based Graph-based methods are methods which start by building
a discrete graph over the information atoms, capturing (potentially com-
plex) abstract relations between them [Grell]. Every node corresponds to
a specific action, trigger or state change (generalized as event) in the input
text, while edges signify the semantic correspondence or relation between
two events. After such a graph is built, it can be used to select the sum-
mary content by picking specific nodes to process. Those nodes can either
be selected according to a length constraint [BLL*15] or in order to keep
the resulting subgraph connected [LN19].

Template-based Template-based methods are methods which seek to fill
out trained summary template slots using the source document text. It
has been observed that domain-specific summaries created by humans have
recurring structures. If a dataset of such summaries existed, it is possible to
learn and encode these templates directly from the dataset. Then, given an
input document, the best-fitting template for the input document domain is
selected and filled. An example of this approach can be found in [OMCN14].

2.4.3 Neural-net-based Abstractive Summarization

Neural-net based methods utilize general function approximation tools to
map between input documents or extractive summaries and abstract sum-
maries. For the purpose of mapping between ordered sets, the sequence
to sequence (seq2seq) architecture is commonly used [Dug21, LN19]. Since
these methods are currently state of the art, we allocate additional space for
them in this thesis and pay increased attention to them.

Seq2seq networks can be split into two parts, an encoder and a decoder.
The encoder learns to compress a sequence of any length into a constant-
sized vector of features called the context vector, capturing the meaning of
the sequence. If it is captured well enough, in theory, a decoder should be
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able to reconstruct the sequence from the context vector, possibly in another
domain, language, etc., which is precisely what the decoder is trained to do.
Encoders and decoders communicate only via context vectors; apart from
the fact that the output of one is the input of another, they are independ-
ent of one another and do not have to share the same architecture. Their
only common structural feature is an ability to process sequences of variable
length; an input of length n is compressed to length O(1), which is sub-
sequently converted to an output of length m. This is commonly achieved
using recurrent neural networks [SVL14], but convolutional neural networks
can be used for this purpose as well. CNNs are more suitable for handling
character-based representations of sentences as opposed to the classic word-
based sentence representations. This is because the sentence length grows
when represented by character atoms in contrast to word atoms, which fur-
ther increases the risk of vanishing gradient [Hoc98| in already vulnerable
RNN architectures.

Since the creation of the context vector is a process which has a theoret-
ically unlimited compression ratio, encoding long documents without losing
relevant information can be difficult. This is a serious problem particularly
in the MDS case, as the input size is scaled by yet another factor: the num-
ber of documents. A possible solution lies in the extractive summarization
methods, which can be used to filter out unnecessary sentences in order
to shorten the input size [CB18, HLL"18, LSL18]. Let us assume that a
constant-length summary can be created from a variable amount of docu-
ments. If that is the case, it is safe to assume that such extractive methods
can lead to the desired result, as the number of clusters (and therefore the
amount of extracted sentences) will approach a constant limit.

2.5 BERT

The previous sections discuss the usage of neural networks frequently for
purposes like contextual embedding, sentence representation, etc.. However,
we have not yet introduced any specific architecture. Since most of our
experiments utilize BERT directly (or its variants), we allocate this section
for the description of this model.

BERT [DCLT18] stands for Bidirectional Encoder Representations from
Transformers. Back in 2018, when it was initially released, it caused an
uproar in the machine learning community, since it successfully overcame
the state of the art in a vast range of NLP tasks. The main improvement
of BERT over the Transformer [VSP*17] is the implementation of bidirec-
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tional training using Masked Language Modeling [DCLT18], which combines
processing the input sequence left-to-right and right-to-left [Hor18].

Language modeling [Ros00] is a NLP discipline which attempts to create
computational models able to predict the next word in a partially built sen-
tence or sequence. When performed using a neural network model however,
its layered structure allows us to remove the last layer used for prediction
and instead keep only those trained for representing the sentence as a feature
vector in order for the prediction layer to work properly, leaving us with a
powerful sentence embedding model usable as-is or for any other NLP task.
This technique is called transfer learning and our work, among many others
[PY09], makes great use of it.

Output
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Forward

T\ Add & Norm je~
£dd & Norm Multi-Head
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— J —' )
Positional 4 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
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Figure 2.1: The architecture of a Transformer, highlighting the encoder part
(the left-hand side), which evolved into BERT, a standalone model. The
decoder (right-hand side) is used for generating text; it, too, has evolved
into separate standalone models, none of which, however, were utilized in
this thesis.

An overview of the entire Transformer architecture is visualized in Figure
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2.1. In the remainder of this section, we will focus on describing the input
embedding and the encoder.

20



2.5.1 Tokenizer

input raw text

output | sequence of tokens

The original input to BERT, most other NLP neural network architec-
tures, or systems which include those networks, is raw text. To help neural
networks parse raw text, we first let it undergo a process called tokenization,
splitting the input sequence into tokens. Tokens can be individual words,
characters, or parts of words (called subwords).

In order to create tokens from text, an input corpus is converted into a
stream of tokens and every unique token identified in it stored in a vocab-
ulary, which is an ordered set of tokens. This allows us to assign a unique
integer (an ID) to each token in the future. The representation is discrete
on purpose — the models should not be able to infer anything about the
syntactical or semantic similarity of two tokens based on their vocabulary
index.

Using a word-level tokenizer helps assign meaningful representations to
each token, however, this approach struggles with out-of-vocabulary (OOV)
tokens: words that are included in the input text, but happened to be ex-
cluded from the original input corpus on which we built the vocabulary. The
classic approach to solving this problem is adding a special token, [OOV],
to the vocabulary, which does allow the system to assign a token to a pre-
viously unseen word with the caveat that such words will be represented by
that single token, completely losing any semantic information. Apart from
that, word-level tokenization results in a very large vocabulary.

On the other hand, using a character-level tokenizer makes sure that
any input written in a target alphabet (or in any from a set of alphabets)
is tokenizable and the resulting vocabulary is minuscule compared to the
previous approach, but introduces two big disadvantages. Firstly, for most
alphabets and languages (the Czech language for example), it is impossible to
assign meaning to and therefore learn the meaning of any specific character,
rendering the entire concept useless. Secondly, tokenizing by characters
leaves us with a significantly longer token stream, which, in the best case
scenario, scales the time and memory complexity of our model’s forward
pass by a linear factor.

The subword tokenization method is a compromise between these two
approaches. Subwords are short character sequences - not quite words yet,
but can be used as word building blocks. The first subword tokenizer called
WordPiece [WSCT16] was introduced by Wu et al. in 2016 for the purposes
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of machine translation and is used by BERT as well. The idea is simple -
initialize the vocabulary with just the set of all characters and then keep
merging units in the vocabulary in order to maximize the likelihood of their
appearance in the input corpus until a given size of the vocabulary is reached.
The resulting set of tokens contains the most common words whole, word
stems, common prefixes and suffixes, etc.

This approach solves all of the aforementioned problems. First, the al-
phabet will most likely be included in the vocabulary as a whole, so there
is no need for using the [OOV] token. Second, the vocabulary size is chosen
according to the designer’s needs. Third, the tokens can now be assigned a
certain degree of meaning, as they usually represent entire words, and in the
rarer occasions, three or more characters. And last, the token stream lengths
are significantly reduced in comparison to character-level tokenization, since
most tokens will be entire words. This, of course, depends on the input text
rarity.

2.5.2 Input Embedding

input sequence of tokens

output | input embedding matrix

Tokens as simple integers have no meaning by themselves. The idea be-
hind tokenization in neural-network-based NLP is letting the network learn
the embedding of all vocabulary tokens itself. The input embedding layer is
parameterized by a large matrix of shape (|V|,d.), where |V| is the size of
the vocabulary and d, is a chosen embedding dimension. The original paper
uses 768 = 256 - 3. One-hot encoding the sequence of tokens and stacking
them yields a matrix of shape (N, |[V|), where N is the input sequence size.
Multiplying those two matrices together results in an embedding matrix of
shape (NN, d.), which represents the entire input sequence for processing by
the neural network. Gradient is propagated into this layer as well, which
allows the network to learn meaningful token representations.

2.5.3 Positional Encoding

input input embedding matrix

output | input embeddings with positional encoding

As we will show in the remainder of this section, BERT does not process
the input sequence as a sequence per se, but instead as an unordered set of
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tokens. To add positional information to the network, the authors added
another, very similar layer to the beginning of the BERT stack. However,
the inputs to the positional encoding layer are not the tokens themselves,
but instead their positions (as a natural number). Positional encodings can
be trained; in that case, the layer is parameterized by a matrix of shape
(max(L),d.), where maz(L) is the maximum allowed length of an input
sequence; the positional representation is calculated similarly as the input
embeddings. However, Vaswani et al. found that instead computing the
positional encoding as shown in Equation 2.9 has negligible impact on model
performance and does not limit the model input length.

pOs

PE(pOS, 22) = sin (]_(]O()()Ql/de

, B pos
) , PE(pos,2i + 1) = cos (1000022./%) (2.9)

The positional encoding generates an N by d. matrix, which is added to
the input embedding matrix and passed to the main stack of BERT.

2.5.4 Multi-Head Self-Attention

input embedding matrix (N, d,)
output | attended embedding matrix (N, d,)

The attention mechanism is one of the key features of Transformers, and
transitively, of BERT. Intuitively, it is a parameterized querying mechanism
that returns values corresponding to keys which are similar to input queries
(see Figure 2.2). More formally, it maps a query and a set of key-value
pairs to a specific output, with the query, key, and value being all vectors.
The output is computed as a weighted sum of all values, where the weights
corresponding to each value are derived from a similarity metric between the
query vector and the key vector corresponding to this particular value. This
mechanism lets the network assign the contextual importance to individual
tokens with respect to another token, helping it build deep knowledge about
the language itself.

Thanks to the nature of the algorithm, the dimensions of the value vec-
tors, key vectors and query vectors do not necessarily have to equal, but
as BERT uses dot-product attention (for the purposes of speed), the query
dimension and key dimension are the same, d,. The value dimension is equal
to d,,.

Queries, keys, and values are computed from the input matrix using a
projection matrix for each class, which have shapes (d.,d,), (d.,d,), and
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Figure 2.2: The query-key-value mechanism: output is created as a weighted
sum of values according to the similarity of query to the individual keys.

(de, d,) respectively. Every input vector is therefore transformed by matrix
multiplication into a single (but separate) key, query, and value, compacti-
fied in matrices ), K, and V of shapes (N,d,), (N,d,) and (N,d,). Given
the fact that the queries, keys and values come from the same source, the
attention mechanism is called self-attention, since the inputs attend to them-
selves. Attention, then, is computed as seen in Equation 2.10,

. (QKT>
Attention(Q, K, V') = softmax % (2.10)
v,

where the softmax argument is scaled down by the factor of \/Eq in order to

prevent the function from being calculated in regions where the gradient is
too small [VSP*17].

However, instead of performing a single attention function, Vaswani et

al. found it beneficial to project the inputs to smaller dimensions A times. h

signifies the number of heads in the multi-head attention mechanism. Each

head computes its own self-attention with the key, query and value dimen-

sions h times smaller in order to preserve the total computational cost. The

individual head results are concatenated along the last dimension, receiving

the full weighted value matrix of shape (N, d,). This matrix is then projec-
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ted back to the original input dimension using another parameterized matrix
multiplication, resulting in a matrix of shape (V,d.), just like the original
input.

2.5.5 Add and Norm Operations

input embedding matrix (N, d,)

output | normalized embedding matrix (N, d.)

This layer consists of two normalization mechanisms which function as a
stabilizer to the gradient flow. Neither transforms the shape of the input.

Operation Add stands for a residual connection sum [HZRS16], which
is heavily used in deep neural networks to prevent gradient vanishing over
long distances in the network. The problem is solved by introducing skip
connections over sequences of layers (or individual layers).

Basically, if f is a layer in the network, it turns y = f(z) into y =
f(z) + x, which allows gradient to bypass the layer logic completely and
makes modeling the identity mapping trivial, which, in theory, allows the
model designer to add as many layers as desired without worry of vanishing
gradient, since redundant layers can be trained to simulate identity.

Operation Norm stands for layer normalization, which simply keeps track
of the first two moments of feature values token-wise and normalizes them
(sets mean to 0 and std to 1) for processing by the next layer. Normalization
helps regularization (generalization) and speeds up training [BKH16].

2.5.6 Feed Forward

input embedding matrix (N, d.)

output | linear projection of the embedding matrix (N, d,)

The feed-forward layer consists of two classic, densely connected MLP
layers. The authors use RELU as the activation function for the first pass
and no activation for the second pass.

The self-attention and feed-forward together with normalization and re-
sidual connections form a BERT block that can be chained, as its input and
output dimensions equal. This helps BERT fully utilize the representational
power of deep learning.
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2.5.7 Additional details

The tokenization process for BERT includes adding a classification token,
[CLS], at the beginning of each token sequence. This token attends to other
tokens as well and is used for classification purposes, for example during
next sentence prediction. It also adds [SEP] tokens between sentences, for
example, during question answering, where the question is separated from
the answer this way. For this purpose, BERT also includes token type ids,
which is a binary vector of the same length as the input length, which is used
to distinguish between individual sequences further. This simply introduces
a new, parallel input layer like the one which computes position encodings;
all embeddings/encodings of a single token are always summed together be-
fore entering the BERT stack. Furthermore, if the input sequence size is
longer than the sequence which is actually input, BERT uses a special at-
tention mask vector, which is a binary mask signifying which tokens are used
for padding, so that they are ignored during the computation of attention.

2.6 Longformer

Although the inferential power of the self-attention mechanism is huge, it
also poses a problem: the computational and memory complexity of self-
attention in BERT is quadratic in terms of sequence length. This motivated
the design of Longformer [BPC20], which addresses this problem by adjust-
ing the attention mechanism.

By default, every key vector was dot multiplied with every query vector.
To reduce the complexity with respect to the sequence length to linear, the
authors of Longformer replaced the full quadratic attention with a sliding
window attention, letting tokens attend to a constant amount of only a
handful of tokens in their close neighborhood, as seen in Figure 2.3.

2.7 Projection

As we have stated in Section 2.5, particularly in Section 2.5.6, the output
of a BERT model is a vector v of some given size d. for every input token,
resulting in a matrix O consisting of vectors vg, vy, ...,v,—1. For nearly all
purposes in the context of this thesis, we need a way to convert this matrix
to a constant-size vector representation for each sentence or even for the
entire input sequence. An exception is the computation of BertScore, which
uses vector representations of all tokens, see Section 2.2.2.
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Figure 2.3: Longformer sliding window attention in comparison with BERT
full n? attention. Each row represents one individual attention operation.
The diagonal elements refer to tokens which are used as queries, i.e., which
are going to be attending to other tokens. The remaining row elements
are either dark (attended to) or light (ignored). Variant (a) visualizes the
attention in BERT. In the Longformer, variants (b), (c¢) and (d) refer to ways
in which the attention mechanism is adjusted. Variants (b) and (c) make
the central token attend to its neighboring tokens consequently or with a
given gap respectively. Variant (d) builds upon this idea by attending to
important tokens, such as [CLS] and [SEP] globally, regardless of distance.

We have dubbed the function which handles this conversion in our thesis
a projection. There are many ways to implement a projection and we have
decided to analyze a few of the most basic approaches. Of course, simply
reshaping the matrix, i.e. concatenating the individual vectors into one
single vector does not work, as the size would not be constant (dependent
on the input sequence size).

2.7.1 Special Tokens

This — according to our previous research on BERT — is the most common
way of converting the output matrix O to a vector. The principle is simple:
keep only the vector v corresponding to one of the special tokens, like [CLS]
or [SEP], and discard the remainder. [CLS] has been created specifically
for this purpose [DCLT18, Horl8] and is used for representing the entire
sequence, [SEP] can be used in a similar manner to represent individual
sentences.

2.7.2 Pooler

This approach can be extended by processing the [CLS]| vector representation
v by a fully connected layer called the pooler. This layer has its own matrix
of weights of shape (d,, d.), which performs a linear combination of vy with
itself and transforms this output element-wise by a tanh function.
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2.7.3 Aggregative Reduction

The final projection variant we have examined performs a reduction opera-
tion f over the input sequence dimension, like averaging or maximum. This
results in a vector

f(U070, Vo,1, e U07n—1) Jo,

f(Ul,o, V1,1, P U1,n71) _ 1,

ey ey ey
f(Wa.—10, Vdo—115 -y Vde—1m—1) Jao—1

Such vector has the expected size d. and can therefore be used for further
processing.

2.8 Extractive BERT Summarization

Given the fact that BERT and its derivative models, such as the Longformer,
are the SOTA for many NLP applications, it is not surprising to find BERT
being applied to summarization. This section will briefly summarize the core
idea behind these models, which will be thoroughly described and evaluated
through experiments in the later sections.

2.8.1 BERT Sentence Classification

One of the simplest ways to perform extractive summarization using BERT
has been suggested by Gu and Hu [GH19]. They simply used BERT as a clas-
sifier of individual sentences, deciding whether they belong to the summary
or not. Their results show that, without the knowledge of the surrounding
context, it is hard to figure out whether a sentence should be included in a
summary.

2.8.2 BERT Sentence Classification with Context

An improved variant of this approach is to add the surrounding context of the
classified sentence to the input. Since BERT has a limited amount of input
tokens (sequence length), one can center out the classified sentence in this
sequence and clip/pad the remainder. Adding context should theoretically
help the classifier in identifying sentences which are significant for summary
inclusion.
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2.8.3 BertSum

A better approach has been suggested by Liu and Lapata [LL19]. The
core idea is captured well by Figure 2.4, where the authors simply alter the
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Figure 2.4: Difference between BERT and BertSum. Notice how the clas-
sification token [CLS] has been appended after each separator [SEP] token
in the input. This allows the model to output classification embeddings for
each sentence, which can be used for deciding whether a sentence belongs to
the summary or not. Moreover, the segment embeddings used for NSP and
QA are now used to distinguish between individual sentences.

tokenization procedure for the output to conform to its prerequisites, that is,
being able to classify each sentence as being part of the extracted summary;,
or not, independently on one another.

For abstractive summarization, the authors used a 6-layered Transformer
as a decoder [LL19].

2.8.4 BERT Clustering

Another approach to summarization using BERT has been proposed by
Miller [Mil19], where a pretrained BERT is used as a sentence embedder.
The embeddings are then passed along to a k-means algorithm, which is one
of the simplest clustering methods. After the clustering algorithm converges,
the sentences closest to the centroid are selected as summary sentences.

2.8.5 BERT RNN

These sentence embeddings can be used as an input to a recurrent neural net-
work (RNN), such as LSTM or GRU, inspired by the Extractor architecture
in [WLZ"19]. In order to encode context in both directions, the bidirectional
extension of each is preferred over the unidirectional alternative. Bidirec-
tional RNNs function by splitting the RNN layer into two branches/heads,
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each processing the input separately and in opposite directions. Finally, the
outputs from both heads are concatenated.

RNNs can be chained the same way BERT blocks can, since their inputs
and outputs have the same format. Finally, the RNN outputs are processed
by a single-neuron layer (perceptron), whose outputs signalize whether the
sentence corresponding to the embedding should be included in the sum-
mary.

2.9 Analysis Conclusion

Given the scope of this thesis and the expected quality of extractive sum-
marization methods, we had opted for using one of the above methods for
implementing the summarization system, as each of them utilizes BERT,
the SoTA neural network model for natural language processing. Based on
our analysis of these methods, we have decided that our units of separa-
tion will be individual sentences. Since we were unable to determine which
one of these methods works best for our purposes, we have decided to con-
duct experiments, evaluating each one of the methods described above. The
underlying models were trained on our unpublished summarization dataset
— which will be presented in the following chapter — and evaluated using

ROUGE-N, ROUGE-L and BertScore.
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3 Realization

This chapter will focus on presentation of datasets used for experimentation,
detailed description of our experiment models, implementation details and
obtained results.

3.1 Datasets

Before we discuss model implementation details, let us first present the data-
sets we have used for implementing and evaluating these models.

Both datasets mentioned here have been based on incidents provided
to us by the Czech News Agency (CNA). An incident — in this context —
is any media-relevant event reported by CNA. Each event is described by
multiple articles created by individual authors, which are sorted by their
time of creation. An abstractive summary of these documents is included
in the incident as well.

type train size | eval size format
summarization 1,431 159 sentences, labels, perm
STS 116,956 1200 S1, S2, sts score

Table 3.1: Overview of datasets used for training the models used in this
thesis. The semantic textual similarity (STS) dataset was created by Sido et.
al. [SSPT21] from news article annotations, and the summarization dataset,
which was created for the purpose of this thesis, was built by us from the
same annotations. The format descriptions for summarization and STS are
explained in Sections 3.1.2 and 3.1.1 respectively.

3.1.1 Annotation Procedure

During the first round of annotation [SSP*21], given one specific incident,
annotators were shown sentences from its summary and each article. Their
task was — for each summary sentence — to pick three sentences from the cor-
responding articles: one as semantically similar to the summary sentence (S)
as possible (type A), one as semantically dissimilar from the summary sen-
tence as possible (type C), and one vaguely related to the summary sentence
(type B). Furthermore, their task was to provide a semantic textual simil-
arity (STS) score for all three pairs SA, SB and SC. These STS scores were
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used for building the published Czech News Dataset for Semantic Textual
Similarity dataset [SSP*21].

In this thesis, we have utilized this dataset given the need to estimate
the similarity of two sentences for the purpose of clustering. Individual ele-
ments are 3-tuples (57, Sz, stsscore), where Sy, Sy are two Czech sentences
and stsscore is a real number in the range [0 — 6] representing their semantic
similarity, where 0 stands for "unrelated" and 6 stands for "equivalent'. The
dataset contains 116,956 such tuples for training and 1200 tuples for evalu-
ation.

3.1.2 Building the Summarization Dataset

However, in the context of this thesis, we clearly require an extractive sum-
marization dataset as well. The aforementioned data annotation procedure
has been designed with this purpose in mind. Therefore, during the prepar-
ation phase of training and evaluating the summarization models introduced
in the Analysis chapter, we have been able to build such a dataset from the
annotated data.

Starting with the abstractive summaries, we simply claim that the corres-
ponding extractive summary is built from type A article sentences. However,
the mapping between abstractive summary sentences and article sentences
is not 1:1, but M:1, because any article sentence could have been selected as
type A for a given summary sentence. If any such collisions occurred, they
were ignored, allowing possibly shorter extractive summaries than their ab-
stractive counterparts. This decision was motivated by the fact that such
collisions simply signify the great quality of a sentence being included in a
summary; we felt no need for forcing the annotators to select distinct article
sentences for multiple summary sentences.

We have compiled this dataset into a JSONL file. JSONL is a text file
format which contains a separate stringified JSON object on each line. The
advantage of using JSONL instead of a JSON array is the possibility of
loading individual lines of the dataset without having to load the entire file
into memory or utilizing advanced parsing.

Each line contains one dataset element. The element structure is as
follows:

« 'text": array[ array[sentence] |,
 'label": array| array[0/1] |,

e 'perm': array[ array[integer] ]

32



One array of sentences makes up an article. Given the fact that this is
a multi-document summarization dataset, we include every article, which
therefore makes an array of arrays of sentences. Since the dataset is ex-
tractive as well, each sentence in "text" is assigned a binary label signifying
whether the sentence was type A or not. Both of these array structures have
equal shape; neither of them are padded, they are ragged instead.

Perm stands for permutation. An argument supporting the idea that
extracted summaries should be reordered can be made, so the information
about correct permutation is included in our dataset as well. Every integer
in the "perm" substructure corresponds to a specific sentence; it is 0 iff the
corresponding label is 0, otherwise it is the positional index of an abstractive
summary sentence corresponding to the extracted type A summary sentence,
starting with 1.

During training and evaluation, the full JSONL file, which had 1590
lines (elements), was split into train and test files using the commonly used
90%/10% split, producing files train. jsonl with 1431 lines and test. jsonl
with 159 lines. The elements were randomly shuffled before the split occurred
so as to not introduce any bias to our training and evaluation data: for ex-
ample, the original full JSONL file contained elements sorted by abstractive
summary length (caused by the script which generated it). Without shuff-
ling, test. jsonl would contain summaries of previously unseen length to a
model trained on train. jsonl.

3.2 BERT-based models

Before we start describing the individual model architectures, let us first
address the common features shared by each of these models.

3.2.1 Pretraining and Tokenization

The BERT and Longformer models used as a basis for each model evaluated
in this thesis were pretrained by Sido et. al. [SPP*21]. The tokenizer used
for tokenizing the input text is a WordPiece subword tokenizer with vocab-
ulary size = 30522. The models were pretrained on roughly 340,000 Czech
sentences (approx. 50x more than the SOTA multilingual BERT models) and
proved to outperform the competition in many NLP disciplines concerning
the Czech language [SSP121].

With accordance to the origin article, we will call these pretrained mod-
els (BERT and Longformer with specific parameter settings) CZERT and
CZERT-long respectively in the remainder of this thesis.
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Figure 3.1: Linear learning late scheduler curve.

3.2.2 Inputs

Models that tokenize the entire set of input articles concatenate them into a
single bulk of text without breaking their order. This — in theory — allows the
models to attribute the significance of individual sentences to their positional
IDs which now include the temporal information carried by each article.

3.2.3 Training

All models have been trained over 100 episodes using a linear learning rate
scheduler (see Figure 3.1) with peak 107 at step 100 for STS and 500 for
summarization. Our preliminary hyperparameter grid search showed that
adjusting these values has negligible impact on model performance.

Unless specified otherwise, every model was trained end-to-end, that is,
no layers were frozen during training.
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3.2.4 Evaluation

No model in this thesis (with the exception of clustering, see Section 3.3.6
for details) provides the binary summarization classes directly. Instead, it
provides real numbers (called logits) from which these classes are computed
through comparison with a specific threshold. We have decided to experi-
ment with the following two options for extracting a summary:

« a) using the aforementioned threshold for converting the logits to bin-
ary classes: logit > threshold — 1, otherwise 0

e b) returning 1 for the largest k logits and 0 for the rest, where £k is the
expected summary length

Option b) assumes that the model receives the expected number of sum-
mary sentences from an oracle. We intended this to be the default mode of
execution: the user inputs articles and selects the desired summary length,
not enforcing a specific output length on the user. This makes the paramet-
erless option a) worse, as no trivial solution to limiting the summary length
after thresholding the logits exists.

In the end, all summarization models are evaluated using the metrics
we have arrived at in Section 2.9. However, during training, the models’
performance is monitored using F1 measure, as seen in Equation 3.1. This
decision is motivated by the fact that extractive summarization is de facto
a classification task and computing F1 between two binary vectors is much
faster than converting these vectors to textual summaries and computing
any of the aforementioned evaluation metrics. Furthermore, we wanted to
avoid biasing the models towards optimizing any single one of these metrics,
because our final measurements should serve as an unbiased description of
the summarization dataset we created.

B TP
~ TP+05(FP+FN)
That being said, we did not make use of early stopping, which is a tech-

F1

(3.1)

nique used to prevent overfitting. Instead, we kept track of the F1 measure
on our evaluation dataset and whenever the model arrived at a new max-
imum, we saved its weights. After the model was done training, we computed
ROUGE-N, ROUGE-L and BertScore on the saved model weights.

3.2.5 Activation Function and Dropout

After the BERT output is projected, it is almost always processed by more
layers — either perceptrons or RNNs. Every such layer makes use of dropout
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with a probability of 0.5 and the Gaussian-error linear unit (GELU) activ-
ation function (Equation 3.2, & = normal distribution CDF, o = sigmoid
function) derived from the normal distribution. Dropout 0.5 introduces the
maximum amount of neuron combinations (arg max,, (2’:) =0.5-m). GELU
has been shown to outperform the standard RELU as an activation function
in many different disciplines [HG16].

GELU(z) =z - ®(x) = z - 0(1.7022) (3.2)

3.3 STS model

We found the unsupervised approach described in Section 2.8.4 to fall short
of the potential of a fine-tuned model. Therefore, we have decided to ex-
periment with creating a model able to output distance matrices between
article sentences according to their semantic textual similarity.

We assume two possible approaches for estimating the STS between pairs
of sentences using CZERT. Both approaches make use of the same dataset
and train/test split as described in Section 3.1.1.

3.3.1 Two-sentence Input into Regression

One way of having CZERT estimate the STS between two sentences is to
input both of them separated by a [SEP] token, resulting in the following
sequence: [CLS] sentence_1 [SEP] sentence_2 [SEP] and training the
BERT model as a regressor. This approach has been shown to correlate
slightly better with the test data [SSP*21].

3.3.2 Siamese One-sentence Input, Cosine Similarity

Another option is to input the sentences separately, let CZERT create their
embedding (no regressive or any other head), and extract the resulting ST'S
by computing cosine similarity (Equation 2.8) between their normalized em-
beddings. This architecture is the exact same as that of SentenceBERT
[RG19].

3.3.3 Comparison

Even though the former model performs slightly better [SSP*21], it suffers
from a massive disadvantage with respect to the system it would be imple-
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Figure 3.2: Overview of the difference between the two-sentence input (2-SI)
approach and one-sentence input (1-SI) approach. The thicker arrow signal-
izes the operation which runs in quadratic time. Pairing matriz represents
an imaginary matrix of sentence pairs for visualization purposes; the pairs
are input separately. Although the creation of the STS matrix takes more
steps for 1-SI, clearly, the 2-SI approach uses more computation time, as
CZERT is the main performance bottleneck.

mented in. The essential difference between these two models is the stage
during which the actual STS is calculated.

Using the two-sentence input model requires inputting every single pair of
sentences and therefore performing w € O(n?) CZERT forward passes
[RG19]; see Figure 3.2. The distance matrix is then built trivially. However,
using the one-sentence input Siamese model lets us embed each sentence
separately (n € O(n) CZERT forward passes) and then perform @ dot
product calculations (see Figure 3.2), which is significantly faster. This has
been the main motivation behind deciding to use the Siamese model for any

further STS estimations throughout this thesis.
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3.3.4 Architecture

Input The input sequence length for the CZERT model used here was
originally 128, which is the smallest power of two larger than the size of
almost every single tokenized sentence in our summarization dataset (see
Figure A.6a). However, reducing it to 64 still includes a vast majority of
sentence content and has negligible impact on STS quality while speeding up
the forward pass speed by a factor of ~ 4. Generally speaking, comparing
the semantics of two sentences is much easier than selecting sentences for
extractive summarization, which supports our decision to halve the available
input size.

sentence embeddings

| —

/l\ God

dot product
] )
S1 SZ
input sentence pair  sts score

Figure 3.3: STS model architecture overview. The sentences s; and s
are input separately, as per the one-sentence approach, which results in
two separate, independent embedding vectors. The dot product operation is
preceded by vector normalization.

Forward pass First, the two input sentences are separately tokenized,
treated as a full sequence. Both are then input to the CZERT model and
projected (using a projection from Section 2.7). We then normalize both
resulting vectors and compute their dot product (see Figure 3.3).

Cosine similarity to STS However, since the STS scale from [SSP*21]
is in the range (0,6) and a dot product of two normalized vectors is in the
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range (—1,1), the variety of ways in which to execute this mapping opened
up more room for experimentation.

We have opted for choosing from three separate mappings, where p stands
for the dot product of the two embedding vectors:

- a) sts(p) = 6p
* b) sts(p) =3(p+1)
* c) sts(p) = 6[p|

Depending on the exact implementation of SentenceBERT, either variant
a) or variant b) is equivalent to their method of inference [RG19]. This de-
pends on whether the authors re-scaled their STS datasets from range (0, 1)
to (—1,1) (resulting in variant b) or not (resulting in variant a), however,
such details have been omitted from the paper.

We find variant b) suspicious, since it forces the model to embed unre-
lated (sts = 0,p = —1) sentences on the same line (see Figure A.9), even
though there are theoretically infinitely many more unrelated sentences with
respect to a given sentence.

Variant a) improves upon this, as the larger the angle between two sen-
tence embeddings is, the smaller their STS score. However, if an angle
between two sentences becomes greater than 7, the STS score leaves the
expected range (0,6). We expect this would mean that the model would try
to force the entire embedding space to fit a single hyperoctant (a multidi-
mensional analogy of a quadrant in 2D), shrinking the possible embedding
space. Moreover, during inference, the STS score would have to be clipped.

These observations led to the proposal of variant ¢), which extends vari-
ant a) through symmetry. Using it states that all sentences, whose embed-
dings approximately lie on a single line, are equivalent, and sentences which
are orthogonal to this line are unrelated, with varying degree of similarity
in between.

STS distance matrix Of course, regarding summarization, to finally con-
vert the STS similarity matrix to an STS distance matrix, one has to sub-
tract the similarity matrix from a constant matrix of sixes: ST Sgsli,j] =
6 — ST Saimli, 5]

3.3.5 Training

We have trained the model using the aforementioned STS dataset using the
mean-squared error as our loss function (regression, Equation 3.3). The
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optimality of the STS model was measured by a correlation metric with
respect to the evaluation dataset with 1200 elements.

n—1

J(y,9) = > (v — 9:)? (3.3)

1=0

3.3.6 Summary inference

After executing our experiments, we have shown that the optimal configur-
ation of this model is the usage of mean aggregation projection and variant
c) for conversion between dot products and STS.

In order to use this STS model for summarization, we need to execute
the following steps. First, the entire input article set is split into a set
of individual sentences. These sentences are then embedded by the STS
model, allowing us to compute a distance matrix (the output in Figure 3.2,
1-SI). This matrix is then used as an input to a hierarchical agglomerative
clustering algorithm [Miilll], which separates the individual sentences into
equivalence groups called clusters. Finally, a single centroid is selected from
each of these clusters, identifying an extracted summary sentence.

Clustering In the context of agglomerative hiearchical clustering, there
are two possible approaches: clustering by number of target clusters k, which
forces the algorithm to identify precisely k clusters, or by element cutoff
distance d, which claims that two elements lie in the same cluster iff the
distance between them is less than d.

During inference, instead of evaluating logit thresholding (Section 3.2.4),
which bears no meaning in clustering context, we simply perform clustering
with 20 target clusters. Similarly to the top-k approach (Section 3.2.4),
we perform clustering with k target clusters.

Furthermore, in order to discover the performance ceiling of STS clus-
tering, we experiment with distance-based clustering using an oracle for
distance. The purpose of these oracles is to find such cutoff distance which
maximizes summary quality.

Both oracle variants we have experimented with make use of a simple lin-
ear search over the cutoff distance space. In our setting, this space amounts
to the set of all numbers between 0 and 6. With our chosen granularity 25,
the values to evaluate form a discrete set {0,0.25,0.5,...,5.5,5.75,6}. For
each incident, we have tried building a clustering with a cutoff distance d for
each number from this set. One oracle variant, called local distance oracle,
always simply returned the clustering which maximized the F1 measure. The
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other oracle variant, called global distance oracle, first computed which
distance d maximized the average F1 and then performed distance cluster-
ing with this d for each incident. Figures A.7a, A.7b and A.7c visualize the
average F'1 values for each evaluated d, showing that the optimal value of d
is 2.5.

Centroid selection Given a distance matrix, performing agglomerative
clustering is simple. However, choosing an appropriate representative — a
centroid — for every given cluster is not trivial. For this purpose, we define
two measures of centroid quality.

If C'is a set of sentence embeddings inside the currently processed cluster
and S is the set of all sentences, we define measures centrality ¢ and unique-
ness u as shown in Equations 3.4 and 3.5:

_ Ygecdist(p,q)

>ges\c dist(p, q)
u(p) =
[S\ C]
Both centrality and uniqueness are desirable qualities of a cluster centroid.
High centrality signalizes the fact that the centroid candidate represents the

(3.5)

cluster well, as it is semantically close to the remaining cluster members.
High uniqueness, on the other hand, means that a cluster member is suffi-
ciently semantically different from members of the other clusters.

Therefore, given a specific clustering, the three options for centroid ex-
traction we have experimented with are:

« argmax, c(p) ~ (selecting according to) centrality
« argmax, u(p) ~ uniqueness

o argmax, c(p) + u(p) ~ both centrality and uniqueness

Further notes The unweighted, simple sum of ¢ and wu is justified, be-
cause both are sums of our STS distance matrix row subsets divided by the
subset size. Since ST'S scores are in the range (0,6) and therefore the mat-
rix elements are as well, both ¢ and u values are limited to the same range
regardless of the size of C' or the distances themselves.

This setup does not guarantee the triangle inequality to hold; for ex-
ample, with vectors v; = [—?, ?], v = [0,1] and v3 = [?, g] (as seen in
Figure A.8), it follows that vy -v3 =0 and vy - vy = vy - v3 = g Converting
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these values to STS simply scales them by a constant factor, so this step is
skippable. Finally, subtracting these values from 1 (unscaled) leaves us with
STS distances 1,1 — g and 1 — ? respectively, but 2 - (1 — ?) < 1, so the
triangle cannot be built.

It should be noted as well that the clustering method makes no use of
the summarization training data, which makes it unsupervised with respect
to the summarization dataset.

3.4 CZERT classifiers

The summarization models which rely on direct BERT classification of art-
icle sentences have quite similar architectures, hence this section will discuss
all of them at once.

3.4.1 Architecture

The key idea behind CZERT classifiers is inputting article sentences to
CZERT or CZERT-long and directly receiving logits loosely correlating to
the estimated probabilities of those sentences being part of the extractive
summary. We experiment with three such models: single-sentence classifier
(Section 2.8.1), single-sentence classifier with context (Section 2.8.2), and
multi-sentence classifier (Section 2.8.3).

Single-sentence classifier (ssc) The simplest of each models: a single
sentence is tokenized, input into CZERT, the output is projected and the
output vector is dot-multiplied with a parameter vector [Og, Oy, ..., 04, _1]
corresponding to a single output neuron (see Figure 3.4). The input sequence
length of this CZERT model is 128.

Single-sentence classifier with context and metadata (ssc-ctx-md)
This model extends the above model through the introduction of context, as
seen in Figure 3.5. The input sequence length is increased to 512, which is an
empirically established value maximizing the input size before the quadratic
full attention becomes unfeasibly complex.

However, instead of inputting a single sentence to the model, we tokenize
the entire article which contains our target sentence. This tokenization dif-
fers from the standard by adding appending a [CLS] token after every [SEP]
token for the purpose of classification. This results in a sequence
[CLS] sentence 1 [SEP] [CLS] sentence 2 [SEP] [CLS] ... [SEP]
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Figure 3.4: Architecture of the single-sentence classifier model.

We consequently reduce this tokenized sequence to 512 tokens by select-
ing the entire target sentence (which is always possible, see Figure A.6a)
and centering it inside a window of size 512 (Figure 3.6a). If such centering
would introduce the need for padding, the window is shifted towards the
other sequence end until no padding is required (Figures 3.6b and 3.6c¢).
However, if the entire sequence is shorter than 512 tokens, it is input as a
whole and padded.

The target sentence, for which the classification happens, is marked using
token type IDs. For every token belonging to the target sentence (including
[CLS] and [SEP]), the token type ID is set to 1, otherwise it is set to 0.

The output is projected only with respect to the target sentence. Any
remaining tokens are always ignored.

To improve this approach further, we have decided to add specific metadata
as features to the output of CZERT before processing the vector by the final
one-neuron layer. The metadata in question are the sentence position index
with respect to the article which contains this sentence and the position of
this article with respect to the entire incident. Basically, these are the two
indices used to identify a specific sentence inside the "text" element object
from Section 3.1.2. The inclusion of this metadata requires an extension of
the final layer weight vector, increasing its size to d. + 2. Choosing not to
add the same metadata to the first model is in accordance to the original
paper, where no such metadata inclusion is mentioned [GH19].
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Figure 3.5: Architecture of the single-sentence classifier with context model.
The key differences are that the surrounding tokens are included as well at
the input, while adding metadata to the penultimate regression layer.

Multi-sentence classifier (msc) This model expects the whole article
concatenation to be input (see Figure 3.7), just like in BertSum [LL19].
However, given the fact that the tokenized lengths of concatenated articles
reach much longer lengths than 512 almost all the time (see Figure A.6b), the
underlying model has to be switched from CZERT to CZERT-long. Clipping
the article concatenation does not help, because the model outputs should
be extracted from [CLS] tokens at the beginning of each sentence.

Apart from this change, the model still functions the same way as the
previous two, except for the fact that the entire article set is processed in a
single forward pass instead of one forward pass for each article sentence.

3.4.2 'Training

Each one of these models is trained on our summarization dataset using
binary cross entropy loss (Equation 3.6). In order to balance the classes for
the second model, for each incident, we have purposely left out a fraction
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(c) Centering around sentence 1, shifting the context window to
the right to avoid padding.

Figure 3.6: Different ways of selecting context for the target sentence. Con-
text window is not to scale.
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Figure 3.7: Architecture of the multi-sentence classifier model.

of negative samples, because the amount of summary sentences is equal to
approximately 0.369 times the amount of non-summary sentences. Again,
we chose not to perform the same balancing for the first model in order
to more reliably replicate the training conditions proposed by Gu and Hu
[GH19].

n—1

J(y,9) =>_ Gi-logy; + (1 — g;) - log (1 — yy) (3.6)

=0

3.5 CZERT RNN (rnn-pretr/fntn)

The final model we have decided to experiment on extends BERT by append-
ing a RNN network to its final layer. The idea behind this approach is em-
bedding each article sentence separately, projecting the results and passing
them into an RNN model, which is suitable for processing sequential data.

3.5.1 Architecture

The vanilla RNN networks suffer from gradient vanishing, which is a problem
tackled by using gated recurrent cells such as the LSTM [HS97] or GRU

46



output logits D D D

() 0 0
regression layer D:D:D D:D:El DID:I
() 0 0
GRU | — [ GRU |—| GRU
cell | <— | cell |<—| cel

b

CZERT | |CZERT | |CZERT

R

input sentences e [sepjicLs] [sepllicts] (s

R e e

sentence 1 sentence 2 sentence 3

Figure 3.8: Architecture of the multi-sentence classifier model.

[Hoc98]. Since research suggests that these gated cell types are comparable
in terms of performance [CGCB14] and our experiments in this environment
confirm this assumption, we have opted for using GRU, since it is simpler
and therefore faster.

We use the bidirectional variant of GRU, which allows us to utilize both
left and right contexts at once, which is impossible in vanilla GRU (or
LSTM).

The input sequence size for this CZERT model has been left as the default
128 for embedding sentences.

3.5.2 Training

The training procedure is exactly the same as for the CZERT classifiers in
Section 3.4.2, however, we have encountered a major disadvantage of this
model compared to the simple classifiers. Given the fact that they had their
gradients computed with respect to a single sentence at a time, processing an
entire incident requires constant memory with respect to the concatenated
articles length. That is not the case for CZERT RNN, as the RNN gradient
propagates to all input sentences at once. Such computation required large
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amounts of memory (over 16GiB for batch size = 1), forcing us to prevent
the gradient from propagating to CZERT, which was left untrained. CZERT
RNN is therefore the only model not trained end-to-end.

Since we were unable to train the model end-to-end and forced to freeze
the CZERT model during training, for experimentation purposes, apart from
simply using CZERT as the base of this model (pretr), we experimented with
using the best performing fine-tuned instance of a single-sentence classifier
with context instead (fntn). Both versions were evaluated separately.

3.6 Implementation and system architecture

The entire system has been implemented in Python 3.9.7, which is an in-
terpreted language suitable for small projects and data science. This fea-
ture comes from the fact that Python is dynamically typed and supports
a vast scale of data manipulation operations through libraries like NumPy
(fast tensor operations, low level), SciPy (high level data analysis), scikit-
learn (general machine learning), PyTorch (gpu/distributed tensor opera-
tions, gradient calculation, propagation, and descent), and many others.
Our system makes great use of all of these libraries, including Hugging Face,
which provides NLP tools for tokenization and processing inputs by BERT
and similar models.

The motivation behind not using the latest Python version comes from
the fact that each of these libraries is updated and maintained separately;
there is no guarantee that the newest Python version is compatible with any
of the newest library versions and vice versa.

We have designed this system with two purposes in mind: a) simple
design and execution of training experiments, and b) fast and easy inference
whilst ensuring availability of all pretrained/fine-tuned/fitted models. This
section will discuss related architectural decisions we made in order to fulfill
these purposes.

3.6.1 Model swapping

Most models we have implemented in our system take up multiple gigabytes
of memory on the GPU. Our system is meant to be run locally, on personal
computers; it is therefore safe to assume that it will be very rare for more
than one such model to fit on the GPU. However, even if it does, the GPU
memory allocated by PyTorch (or its alternative, TensorFlow) is not auto-
matically released, which can very quickly lead to out-of-memory errors. To
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Figure 3.9: Model swapping system architecture. The diagram visualizes
the communication process between the Interface and Runner modules
through the CUDA context. The circular connector symbol between Inter-
face and Runner signalizes our ability to disconnect the Runner (killing
it) and connecting a new one.
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solve this problem regardless of the library used for GPU gradient calcula-
tions, we have decided to split the system into two separate modules, the
Interface and the Runner.

The Runner module isolates the entire subsystem that is dependent
on PyTorch directly. Its purpose is to create a separate process containing
a single ModelBundle instance, which bundles a tokenizer and a neural-
network model together with relevant method handlers according to whether
the bundle is intended for training or for prediction/inference. The Run-
ner keeps this bundle running and awaits incoming CzertTasks, which
are messengers holding target handle identifiers, input data and other re-
quired configuration arguments. These CzertTasks are read from a single-
producer-single-consumer (SPSC) task queue suitable for multiprocessing.
Each CzertTask is handled accordingly and the result is returned through
another, result SPSC queue.

The Interface, as a module, is a set of high-level functions, such as
compute_sts_matrix, embed_sentences, etc., which make use of GPU neural-
network data operations. It is responsible for communicating with the Run-
ner. Whenever a new request for data processing is created, the Interface
checks whether the appropriate ModelBundle currently runs or not. If
it is running, the Interface simply generates a CzertTask instance and
passes it to the Runner for processing; if it is not, the Runner is killed and
therefore, without exceptions, all allocated GPU memory is released. A new
Runner instance is then created with the appropriate ModelBundle, a
CzertTask instance is generated, and so on. The results of ModelBundle
handlers are retrieved from the result queue and returned to the Interface
function caller, as shown in Figure 3.9.

Since Hugging Face and PyTorch models return tensors which are still
occupying GPU memory, in order to return them to the Interface without
introducing its (main) process to the CUDA context, the values are cleansed;
usually, this means simply converting them from tensors to NumPy arrays,
which are allocated on RAM, however, when the method handler returns a
more complex structure containing references to such tensors, these tensors
have to be identified and converted separately.

3.6.2 Data processing

Each summarization model we have evaluated shares a significant portion
of its training and evaluation procedures with the other models, from train-
ing files to output values. In order to speed up the process of declaring
new model experiments and avoid duplicating code, we utilized a pipeline
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Figure 3.10: The data processing pipeline.

approach for data processing (Figure 3.10).

If a model needs to convert input files to training/evaluation element in-
stances, it uses a subclass of DataProvider. DataProvider is an abstract
class which serves data from an input file according to its implementation.
It takes care of properly opening and closing the file.

If a model needs to convert training/evaluation element instances to
tensors (in order to process them), it uses a subclass of TensorProvider.
The TensorProvider, too, is an abstract class, which handles sequence
tokenization, padding, clipping, pairing elements with labels, batch serving,
shuffling and converting data types for compatibility purposes.

Generally speaking, each dataset has its own DataProvider derivate,
which is shared among all models making use of it. Regarding Tensor-
Providers, models are split according to the input format they expect;
each such format is implemented in a separate TensorProvider derivate.
For example, models which predict a value from a document (such as art-
icle concatenation) make use of the EncodeDocumentInputNoOutput
tensor provider. In most cases, the tensor provider for model training and
prediction is the same, with the exception of the clustering model from Sec-
tion 3.3, which expects two sentence inputs during training (Figure 3.3) and
one sentence input during inference (Figure 3.2).

3.6.3 Model configuration

In order to make use of this data pipeline pattern, we allocate one source file
for model configuration. This file defines a ModelConfig class, which fully
describes each distinct ModelBundle, including but not limited to its type
(prediction/training), save/restoration paths, model and tokenizer classes,
arguments for model and tokenizer initialization, data and tensor providers,
training arguments, loss functions, metrics, etc. The ModelConfig class
itself contains the descriptions of individual ModelBundles as attributes
and, as such, functions as a factory for ModelConfig instances. Defining
a brand-new ModelBundle is then simply reduced to filling out the re-
quired ModelConfig descriptions and the bundle is ready to be trained or
evaluated, without having to create new code.
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Thanks to this approach, performing searches over hyperparameter spaces
is also incredibly simple, as one just has to create a specific ModelConfig
and adjust the attributes one wants to optimize.

3.6.4 Evaluation details

Since the language of our summarization dataset is Czech, which includes
many morphological (syntactic) word variants, such as inflection, having
little impact on semantics, for the purpose of ROUGE calculations, we have
decided to parse the summaries through a stemmer, which extracts word
stems to a certain degree of precision. Stop words were ignored as well. We
have opted for using a stemmer instead of a lemmatizer because stemmers
are much faster, which makes them the optimal choice for our already heavily
time-consuming evaluation pipeline.

All experiments were executed on a MetaCentrum cluster called adan
using the gpu queue. Consequently, they were evaluated on the same sum-
marization evaluation dataset as described in Section 3.1.
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4 Discussion

After implementing all models in our system, we have proceeded to run the
aforementioned experiments, tracking their progress. Each experiment has
been run 15 times, all instances have been evaluated, and the average results,
which represent the general summarization capabilities of the underlying
models, are presented in the following sections. For an insight into the
actual result distributions, see Figures A.1 through A.5.

4.1 Baselines

In order to show the performance of these models in stronger contrast, we
have opted for implementing two simple untrained baseline models which
select the initial or random sentences respectively. Both baselines have two
versions: one which selects 20 sentences and the other selects k sentences
of the article concatenation, where k is the expected summary length. The
baselines that select a fixed amount of sentences — particularly 20 — exist for
the purpose of comparison with other baselines and evaluated summarization
approaches; to highlight the difference between knowing and not knowing
the amount of reference summary sentences.

method rouge-1 rouge-2 rouge-3 rouge-l bertscore

topk-initial 0.540 0.402 0.362 0.383 0.781
20-initial 0.525 0.388 0.348 0.368 0.780
topk-random | 0.511 0.340 0.291 0.347 0.773
20-random 0.491 0.320 0.272 0.328 0.768

Table 4.1: Overview of the baseline methods, sorted by performance. Bold
values are maxima.

It is unsurprising to find that top-k baselines outperform fixed, 20 baselines,
and that initial baselines outperform random baselines. However, as we will
later infer from Tables 4.2 and 4.3, the topk-initial baseline outperforms
most of our evaluated models as well, which makes it a very strong baseline
given its simplicity. In performance-heavy applications, using it as a main
approach should be considered.
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4.2 Clustering

method ‘ rouge-1  rouge-2 rouge-3 rouge-l bertscore
20-cent 0.330 0.200 0.165 0.209 0.593
20-uniq 0.280 0.158 0.130 0.175 0.552
20-comb 0.288 0.162 0.133 0.182 0.563
topk-cent 0.518 0.364 0.319 0.357 0.776
topk-uniq 0.517 0.363 0.317 0.355 0.775
topk-comb 0.517 0.362 0.317 0.356 0.775

loc-orcl-cent 0.504 0.371 0.327 0.359 0.726
loc-orcl-uniq 0.459 0.321 0.278 0.313 0.685
loc-orcl-comb 0.487 0.352 0.308 0.345 0.716

glob-orcl-cent | 0.541 0.383 0.335 0.375 0.788
glob-orcl-uniq 0.528 0.363 0.313 0.359 0.779
glob-orcl-comb | 0.534 0.373 0.324 0.369 0.786

Table 4.2: Clustering results grouped into four groups by clustering type:
20, topk, loc-orcl and glob-orcl, which stand for 1. 20 clusters, 2. k clusters
(equal to expected summary size), 3. local distance oracle and 4. global dis-
tance oracle (cutoff distance = 2.5) respectively; see Section 3.3.6, paragraph
Clustering. Each clustering method then examines three ways of centroid
selection: cent, uniq, and comb, which stand for "by centrality", "by unique-
ness" and "by centrality and uniqueness (combined)", as described in Section
3.3.6, paragraph Centroid selection. Underlined values are group maxima,
bold values are global maxima.

Centroid selection Our clustering experiments show that selection by
centrality (Section 3.3.6) is the optimal centroid selection approach, as it
improves the results across all four clustering approaches in Table 4.2. How-
ever, the difference is very slight, as shown in both the results table and
across Figures A.7a, A.7b and A.7c, compared to the impact the clustering
method itself has on the final results.

Clustering by cluster count Trying to perform clustering given target
cluster count 20, which is an approach comparable to our baselines, signi-
ficantly under-performs in comparison to the topk cluster count approach,
which uses the same amount of clusters as the amount of sentences in our
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reference summary. This tells us that if we wanted to use clustering for sum-
marization according to cluster count, specifying the summary size would
be absolutely necessary.

Clustering by cutoff distance On the other hand, the data in Table 4.2
suggest that clustering by cutoff distance may be the best approach. Since
we were unable to estimate a good cutoff distance empirically, we have de-
veloped two distance oracle variants as described in Section 3.3.6, which are
to be regarded as performance ceiling estimators for summarization through
clustering. The global distance oracle, which is equivalent to clustering by
cutoff STS distance = 2.5, slightly outperforms the local distance oracle,
which selects the cutoff STS distance individually in order to maximize bin-
ary F1 measure (BF1). (The local oracle has around 0.09 better BF1 on
average.) This means that the BF1 does not necessarily correlate with our
other evaluation metrics.

Furthermore, since the meaningful cutoff distance space is limited to
the range (0,6), claiming that a best specific cutoff distance exists makes
much more sense than, for example, claiming that a best amount of clusters
exists. This leads us to the conclusion that clustering by cutoff distance,
specifically 2.5, may be the best clustering method for summarization, but
evaluation on more datasets is required to confirm this.

4.3 Supervised approaches

Thresholding vs. top-k Our supervised summarization experiments in
Table 4.3 show that, regarding the method of logit-to-classes conversion
(Section 3.2.4), the difference between thresholding and top-k approaches
is significant. Almost every single model improves across the entire scale of
metrics when it knows how many sentences its output summary should have.
The sole exception is the best-performing model ssc-ctz — the single-sentence
classifier with context — which actually performs worse. We have examined
the cause of this and found that the reason the ROUGE-N, ROUGE-L,
and BertScore F1 measures (not to be confused with classification, binary
F1 measure) are so high for ssc-ctz-md is that the model has very high
thresholding recall at the cost of precision; see Figures A.1 through A.5 for
more details. Essentially, this means that the model outputs very similar
logits, most of which are positive. Consequently, the model tends to create
overly long summaries, which human judges would not consider very good,
even though the model maximizes all of the aforementioned metrics with the
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method rouge-1 rouge-2 rouge-3 rouge-l bertscore

thr-ssc 0.372 0.270 0.240 0.281 0.610
thr-ssc-ctz-md 0.605 0.485 0.447 0.464 0.790
thr-msc 0.495 0.337 0.291 0.339 0.754
thr-rnn-pretr 0.437 0.286 0.246 0.290 0.713
thr-rnn-fntn 0.057 0.026 0.020 0.036 0.371
topk-ssc 0.565 0.420 0.376 0.429 0.801
topk-ssc-ctz-md | 0.542 0.405 0.366 0.406 0.790
topk-msc 0.510 0.345 0.297 0.349 0.772
topk-rnn-pretr 0.508 0.346 0.300 0.345 0.770
topk-rnn-fntn 0.520 0.371 0.328 0.361 0.770

Table 4.3: Supervised summarization results grouped into two groups by
logits-to-classes conversion: thr and topk, which stand for "thresholding'
and "top-k' respectively. The individual approaches are ssc, ssc-ctz-md, msc,
ran-pretr and rnn-fatn which stand for 1. single-sentence classifier (Section
3.4), 2. single-sentence classifier with context and metadata (Section 3.4),
3. multi-sentence classifier (Section 3.4), 4. GRU with CZERT embeddings
(Section 3.5) and 5. GRU with the best ssc-ctr embeddings (Section 3.5)
respectively. Underlined values are group maxima, bold values are global
maxima.

exception of BertScore.

method rouge-1 rouge-2 rouge-3 rouge-l bertscore
thr-ssc 0.372 0.270 0.240 0.281 0.610
thr-ssc-ctz-md 0.605 0.485 0.447 0.464 0.790
thr-ssc-ctz-nomd 0.597 0.489 0.453 0.461 0.790
topk-ssc 0.565 0.420 0.376 0.429 0.801
topk-ssc-ctz-md 0.542 0.405 0.366 0.406 0.790
topk-ssc-ctz-nomd | 0.531 0.380 0.336 0.376 0.777

Table 4.4: Comparison between single-sentence classifiers methods where
context is added (ctz) and positional metadata is added (md) or excluded
(nomd). Underlined values are local maxima, bold values are either global
maxima or near global maxima.
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Comparison between single-sentence classifiers The same pattern
— thresholding outpeforming top-k — is not observed in the vanilla single-
sentence classifier ssc. Therefore, adding positional metadata and/or con-
text to a single sentence causes the model’s to correctly decrease its amount
of false negatives significantly, but at the cost of a decreased true negative
rate. In order to narrow down the cause of this performance shift, we ran
an additional experiment, ssc-ctz-nomd, which excludes the addition of po-
sitional metadata to the penultimate model layer. The comparison between
all three models is captured by Table 4.4. The first thing to notice is the
fact that both ctr methods perform better under thresholding than top-k,
as opposed to the simple ssc method. This means that it is actually the
addition of context, not positional metadata, to the ssc, which causes the
model to have such low false-negative rate.

Furthermore, regarding thresholding only, the models are comparable
— almost equivalent — in performance. This would — without further in-
vestigation — make us conclude that the inclusion of positional metadata
in thr-ssc-ctr is an irrelevant feature. However, Figures A.1 through A.5
show us that without metadata, the model’s recall becomes 1.0 and its pre-
cision drops further; the model stops being able to differentiate between
individual sentences and the logits it outputs all become positive, rendering
them unusable for thresholding. We assume the reason the inclusion of con-
text hinders the model’s ability to distinguish between individual sentences
is that marking the central sentence by updated token type IDs (Section
3.4) is insufficient. Regardless, the thr-ssc-ctz-md remains to be the best
approach for summarization with unknown amount of target sentences.

The observed results lead us to two conclusions about the vanilla ssc —
without context. First, the ssc is not capable of deciding whether a given
sentence belongs to a summary or not, confirming the results obtained by
[GH19], but they are effective at comparing whether one sentence is more
suitable for a summary than another (topk-ssc). Second, the information
that the model bases this comparison upon must clearly be contained within
the individual sentences. This means that there are certain phrases or words
in our CNA summarization dataset which are more likely to appear in a
summary than not.

GRU models The improvement of top-k over thresholding is most sig-
nificant in the GRU model with a fine-tuned ssc-ctz as an embedder. In
Figures A.1 through A.5, we can observe that the cause of such low met-
ric scores is its very low recall. This is caused by the model’s tendency to
output negative logits in general. However, when selecting the top-k logits
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as positive answers instead, the GRU with a fine-tuned ssc-ctz performed
best out of all its variants. Hence, if the GRU model cannot be trained
end-to-end, finetuning the underlying CZERT embedder is recommended.

method rouge-1 rouge-2 rouge-3 rouge-l bertscore
thr-msc 0.495 0.337 0.291 0.339 0.754
thr-msc-md 0.338 0.238 0.210 0.243 0.594
thr-msc-mean-nomd 0.464 0.342 0.306 0.349 0.695
thr-msc-mean-md 0.386 0.283 0.252 0.288 0.618
topk-msc 0.510 0.345 0.297 0.349 0.772
topk-msc-md 0.555 0.409 0.365 0.411 0.798
topk-msc-mean-nomd | 0.563 0.416 0.371 0.424 0.802
topk-msc-mean-md 0.561 0.415 0.371 0.421 0.801

Table 4.5: Comparison between multi-sentence classifier methods where we
compare 1. the default msc architecture as described in Section 3.4, 2.
msc with added positional metadata to the penultimate layer (msc-md),
3. msc with mean aggregative projection without (msc-mean-nomd) and 4.
with (msc-mean-md) metadata. Underlined values are group maxima, bold
values are global maxima.

Multi-sentence classifiers (Longformer) We were surprised by the ap-
parent lack of quality of our msc model in comparison to the ssc models in
Table 4.3, given the fact that the msc has the entire article context ready
for processing. We have identified two significant differences between these
two approaches. First, the ssc-ctr includes positional metadata. This — we
theorized — should be irrelevant for msc thanks to its positional encodings.
It should be noted that the positional metadata in the context of msc are
always the same vectors [0, 0], [0, 1],[0,2], ..., [1,0], ..., [m,n], where m + 1 is
the amount of input articles and n + 1 is the amount of setences in the last
article. Second, both ssc and ssc-ctz make use of the mean aggregative pro-
jection over sentences when converting the CZERT output matrix to a single
vector, as opposed to msc, which selects the [CLS] tokens corresponding to
each sentence instead. In order to compare these two model architectures
in detail, we have designed and performed additional experiments with the
msc; the results can be seen in Table 4.5.

Regarding thresholding, which we have already shown to be generally a
sub-optimal way to extract binary classes from logits in this domain, neither
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the updated projection nor adding metadata helped improve the model’s
performance significantly. Figures A.1 through A.5 show that the training
of these models tends to result in them returning similar logits, which in
turn causes them either exhibit high recall and small precision or vice versa.

On the other hand, the top-k approaches improved significantly, particu-
larly by the employment of the mean aggregative projection over individual
sentences. Moreover, when this projection is utilized, the metadata addition
becomes obsolete. Indeed, using the aforementioned projection instead of
[CLS] token representations should be better in general, as all [CLS] token
representations are very similar because of the way global attention works
in Longformer (Figure 2.3).

4.4 Final comparison

type method ‘ rouge-1 rouge-2 rouge-3 rouge-l bertscore
base 20-initial 0.525 0.388 0.348 0.368 0.780
topk-initial 0.540 0.402 0.362 0.383 0.781
20-random 0.491 0.320 0.272 0.328 0.768
topk-random 0.511 0.340 0.291 0.347 0.773
unsup. glob-orcl-cent 0.541 0.383 0.335 0.375 0.788
loc-orcl-cent 0.504 0.371 0.327 0.359 0.726
topk-cent 0.518 0.364 0.319 0.357 0.776
sup. thr-ssc-ctz-md 0.605 0.485 0.447 0.464 0.790
topk-ssc 0.565 0.420 0.376 0.429 0.801
topk-msc-mean-nomd | 0.563 0.416 0.371 0.424 0.802

Table 4.6: Overview of the best methods compared to our baselines. Under-
lined values are instances where an evaluated method was better than all of
our baselines. Bold values are global maxima.

The best model The results in Table 4.6 show clear dominance of the
supervised approaches over the unsupervised approaches, leaving us to con-
clude that the multi-sentence classifier with mean aggregative projection is
the best model overall, as it maximizes BertScore, which has been shown to
correlate better with human annotators. Suffice to say, we used topk-msc-
mean-nomd for implementing our summarization system. However, this
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approach is applicable only if the amount of summary sentences is known.
Therefore, to complement this model, we make use of the thr-ssc-ctz-md,
which tends to return large summaries, but it turns out to be the strongest
model for solving the problem of unknown target summary size.

Clustering We can also see that the topk-initial baseline, which selects
the initial k sentences, is stronger than clustering with an oracle for distance
according to some of the evaluation metrics, and therefore clustering in gen-
eral. Such revelation reflects very negatively on any neural-network-based
method, since their execution takes significantly more time (Table 4.7).

type archetype speedup
supervised ssc-ctx 1.0x
ssc 3.1x
nn 4.8x
msc 7.7x
unsupervised  dist-clust 9.6x
top-k-clust 9.6x
20-clust 9.6x
baseline random 520,000x
initial 2,200,200x

Table 4.7: Speedup of individual model archetypes in comparison to the
slowest one: single-sentence classifier with context. We have let each model
archetype to summarize every element from our test summarization dataset
and measured the time it took. The performance benchmark has been ex-
ecuted on an Nvidia GeForce GTX 1050 Ti GPU and Intel(R) Core(TM)
i5-4440 CPU @ 3.10GHz. The benchmark conditions were loose; its purpose
was not to arrive at exact results, but to provide us with an approximate
relative performance overview.

Speedup To assess the relative execution time of each summarization
model, we have performed a simple benchmark whose results are displayed
in Table 4.7. Notice that all clustering methods take almost the same time;
clearly, the CZERT pass is the bottleneck here. The single-sentence classi-
fiers take the longest time, as they process the entire article concatenation
as individual sentences separately. The GRU processes the input similarly,
however, the sentence embeddings it produces as a middle step are dependent
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on one another. Therefore, the entire article concatenation must be input
to the model as a whole, hence it can calculate the sentence embeddings
batch-wise, which causes a minor speedup compared to ssc, even though
the embeddings are passed through a GRU layer. Overall, msc is the fast-
est supervised method, as the underlying Longformer processes the article
concatenation in a single — albeit complex — forward pass.

4.5 Conclusion

During the preparation of this thesis, we have sufficiently analyzed the state
of the art of multi-document summarization, focusing primarily on the ap-
plications of neural-network models, such as BERT and Longformer. We
have successfully prepared a summarization dataset from CNA incidents,
which we used for the training and evaluation of these models, all of which
were trained using the MetaCentrum grid service. Consequently, we have
compared and critically evaluated the quality of their summarization capab-
ilities in comparison to a set of simple summarization baseline approaches
we have implemented. The results we obtained have led us to perform ad-
ditional experiments in order to truly understand the reasons behind the
under /over-performance of models compared to our expectations. The con-
clusion of said experiments lead us to implement our summarization system
using the multi-sentence classifier based on CZERT-long [SPP*21], which
is inspired by BertSum [LL19] and represents sentences by reducing all sen-
tence token vectors into a single vector by averaging. Hence, we have fulfilled
all requirements for successfull completion of this thesis. Future work should
primarily focus on abstractive summarization methods using Transformer-
based architectures such as BART.
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5 Common abbreviations

abbreviation | meaning

ssc single-sentence classifier

ssc-ctx single-sentence classifier with context

ssc-ctz-md | single-sentence classifier with context and positional metadata
msc multi-sentence classifier

rnn-pretr GRU with CZERT embeddings

rnn-fntn GRU with finetuned ssc-ctx embeddings

cent centrality

uniq uniqueness

comb centrality and uniqueness combined

thr thresholding (if logit > 0 true, else false)

topk if logit is one of the largest k true, else false;
BERT Bidirectional Encoder Representations from Transformers
CNA/CTK | Czech News Agency / Ceska tiskova kanceld¥
CZERT Czech BERT

ROUGE Recall-Oriented Understudy for Gisting Evaluation
SDS single-document summarization

MDS multi-documents summarization

LSTM long-short term memory

GRU gated recurrent unit

RELU rectified linear unit

STS semantic textual similarity
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A Appendix

A.1 User manual

1. Make sure to have Python 3.9+ and pip installed on your system.
2. Navigate to Applications_and_libraries.

3. Change target_device.txt content to cuda if you wish to use GPU
for forward passes.

4. Run run.sh.

5. Open localhost:5000/static/index.html in your browser.

If the above approach does not work for you, try using the latest Py-
thon 3.9 and requirements_old.txt, which include specific versions of the
required libraries.
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Figure A.1: Sorted ROUGE-1 boxplots. Red color signalizes clustering, blue
color signalizes a supervised approach, and green color signalizes a baseline.
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Figure A.2: Sorted ROUGE-2 boxplots. Red color signalizes clustering, blue
color signalizes a supervised approach, and green color signalizes a baseline.

70



rouge-3

thr-ssc-ctx-nomd -

I
thr-ssc-ctx-md + 1 @ 1 Hl o
topk-ssc H= q H 4 H—0
topk-msc-mean-md - o 4 [ q do
topk-msc-mean-nomd o e} 1 H 1 H
topk-ssc-ctx-md - o 4 () q ]
topk-msc-md o HH 4 HH q L)

topk-initial -
20-initial q
topk-ssc-ctx-nomd -
glob-orcl-cent 4
topk-rnn-fntn -
loc-orcl-cent q
glob-orcl-comb
topk-cent 4
topk-uniq -
topk-comb -
glob-orcl-uniq 4
loc-orcl-comb +
thr-msc-mean-nomd -
topk-rnn-pretr q
topk-msc 4

thr-msc
topk-random -
loc-orcl-uniq 4
20-random
thr-msc-mean-md -
thr-rnn-pretr q
thr-ssc 4
thr-msc-md 4
20-cent

20-comb

20-uniq -
thr-rnn-fntn -

Q -

o]
-7

0.0

; OTZ 0?4 0?6 0?8
F1 (sorting key)

1.0

T T T T
0.4 0.6 0.8 1.0

Precision

T
0.0 0.2

014 0?6
Recall

T
0.2 0.8 1.0

Figure A.3: Sorted ROUGE-3 boxplots. Red color signalizes clustering, blue
color signalizes a supervised approach, and green color signalizes a baseline.
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Figure A.4: Sorted ROUGE-L boxplots. Red color signalizes clustering, blue
color signalizes a supervised approach, and green color signalizes a baseline.
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Figure A.5: Sorted BertScore boxplots. Red color signalizes clustering, blue
color signalizes a supervised approach, and green color signalizes a baseline.
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Figure A.6: A compilation of histograms describing the summarization data-
set. The X axis represents bucketized token lengths, the Y axis represents
the number of elements in individual buckets.
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(a) Average F1 with respect to centrality.
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(b) Average F1 with respect to uniqueness.
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(c) Average F1 with respect to the combination of centrality and uniqueness.

Figure A.7: The average F1 measure between ground-truth labels and la-
bels obtained from performing agglomerative hieararchical clustering with
distance cutoff d and centroid selection by centrality using our STS distance
matrices.. Other centroid selection approaches yielded a similar shape and
shared the same argmazx, see Section 3.3.6, paragraph Centroid selection for
further details. The X axis represents values of d, the Y axis shows the
average F'1 measure.
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Figure A.8: Visualization of example vectors v;, v and vs and the cosine

(STS) distances between them for the purpose of showing that cosine dis-

tance does not satisfy the triangle inequality.
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sentence group 2

sentence group 1

Figure A.9: Visualization of the problem with STS = 0 for variant b). The
only point on the unit hypersphere with a dot product equal to -1 with
respect to another point is its polar opposite. This results in the creation
of two groups of sentence embeddings on the opposite line ends which —
according to the model — would group equivalent sentences and claim that
all sentences in the opposing group are unrelated to any given sentence. This
clearly fails in the case where three or more unrelated sentences exist.
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Figure A.10: A module dependency diagram of our system without ex-
ternal dependencies. Notice how the src.czert interface is isolated from
src.czert__core modules by src.czert_runner. This is the direct result of our
design choices described in Section 3.6.1.
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Figure A.11: A full module dependency diagram of our system, including
external dependencies.
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