
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Acceptance of Payment
Cards on Android OS

Devices

Plzeň 2022 Bc. Stanislav Král

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2021/2022

ZADÁNÍ DIPLOMOVÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Bc. Stanislav KRÁL
Osobní číslo: A20N0091P
Studijní program: N3902 Inženýrská informatika
Studijní obor: Softwarové inženýrství
Téma práce: Akceptace platebních karet na zařízeních s OS Android
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Prostudujte informace o používaných čipech na platebních kartách a jejich zabezpečení s ohledem

na bezkontaktní transakce. Prostudujte standardy PCI CPOC pro akceptaci karetních transakcí a PCI
SPOC pro možnosti zadání PINů na běžných chytrých zařízeních obchodníků.

2. Proveďte analýzu možností akceptace karetních transakcí na vybraných zařízeních na platformě
Android. Uveďte rozdíly pro transakce prováděné fyzickými platebními kartami a virtuální kartami
včetně Google Pay a Apple Pay.

3. Na základě předchozích bodů implementujte pro platformu Android prototyp aplikace pro čtení
údajů z platební karty s využitím dostupných SDK asociace VISA.

4. Ověřte funkcionalitu aplikace na simulátoru karetních transakcí, výsledky vyhodnoťte a navrhněte
vhodné budoucí úpravy či rozšíření.

Rozsah diplomové práce: doporuč. 50 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování diplomové práce: tištěná/elektronická

Seznam doporučené literatury:

dodá vedoucí diplomové práce

Vedoucí diplomové práce: Ing. Martin Míček
Smart software s.r.o.

Konzultant diplomové práce: Ing. Ladislav Pešička
Katedra informatiky a výpočetní techniky

Datum zadání diplomové práce: 10. září 2021
Termín odevzdání diplomové práce: 19. května 2022

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 11. října 2021

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 19th May 2022

Bc. Stanislav Král

Acknowledgement

I would like to thank Ing. Martin Míček and Ing. Ladislav Pešička for
their valuable advice and guidance throughout this project. Additionally,
my thanks also go to my family and friends who supported me during my
studies.

Abstract
The main goal of this master’s thesis is to find out whether non-specialized
devices, such as mobile phones, could be used to accept payment cards.
Therefore, it covers the SPoC and CPoC standards and the way payment
transactions utilizing the EMV technology are processed. Additionally, the
differences between the Google Pay and Apple Pay mobile payment applica-
tions are described there. The commercial application Dotypay is extended
in such a way that it can be used on mobile phones and Nexgo devices run-
ning the Android OS to accept cards. Finally, using the industry-standard
UL Brand Test Tool product, it is verified that the extended application is
able to correctly process payment transactions.

Abstrakt
Hlavním cílem této diplomové práce je ověřit, zdali mohou být k akceptaci
platebních karet používána běžně dostupná zařízení, jako např. mobilní te-
lefony. Z tohoto důvodu se práce nejdříve zaměřuje na to, jakým způsobem
funguje placení kartami, které využívají technologii EMV, a poté popisuje
standardy SPoC a CPoC. Dále jsou zde také popsány rozdíly mezi mobilními
aplikacemi Google Pay a Apple Pay umožňující použití mobilních telefonů
namísto karet. V neposlední řadě je rozšířena komerční aplikace Dotypay
tak, že může být provozována k akceptaci karet na mobilních telefonech a
zařízeních Nexgo, které používají platformu Android. Pomocí specializova-
ného testovacího nástroje UL Brand Test Tool, který se v odvětví platebních
karet běžně používá, je pak ověřeno, že aplikace správně zpracovává platební
transakce.

Contents

1 Introduction 12

2 Payment Cards and Their Protocols 13
2.1 Payment Card Description 13

2.1.1 PAN Identifier . 15
2.1.2 Types of Payment Cards 15
2.1.3 The Magnetic Stripe 15

2.2 CVV Code . 17
2.2.1 Computation Algorithm 17
2.2.2 CVV1 . 17
2.2.3 CVV2 . 17
2.2.4 iCVV . 18
2.2.5 dCVV . 18

2.3 Card Presentation Methods 18
2.3.1 Use of Magnetic Stripe 18
2.3.2 Chip Transaction . 19
2.3.3 Contactless Transactions 19
2.3.4 Card Tokenization 19

2.4 Cardholder Verification Methods 20
2.4.1 Offline PIN . 21
2.4.2 Online PIN . 21
2.4.3 Signature . 21
2.4.4 Failed CVM . 22
2.4.5 No CVM . 22
2.4.6 Consumer Device Cardholder Verification Met-

hod . 22
2.4.7 Static Password . 22
2.4.8 One-time Password 23
2.4.9 Mobile Authentication 23

2.5 Entities Participating in Transaction Processing 23
2.6 Transaction Processing . 24
2.7 Transaction Types . 26

2.7.1 Purchase . 26
2.7.2 Pre-authorization and Completion 26
2.7.3 Refund . 26

7

2.7.4 Reversal . 27
2.7.5 Mail Order Telephone Order 27
2.7.6 Balance Inquiry . 27

2.8 Terminal Capabilities . 27
2.8.1 PIN Entry . 27
2.8.2 Key Entry . 28
2.8.3 Chip Reader . 28
2.8.4 Contactless Reader 28
2.8.5 Magnetic Stripe . 28
2.8.6 Contactless Magnetic Stripe 28
2.8.7 Card Capture . 28
2.8.8 Card Data Output 29
2.8.9 Terminal Output . 29

3 EMV Transactions 30
3.1 Hardware Architecture . 31

3.1.1 Answer to Reset . 31
3.2 Software Architecture . 31

3.2.1 Command APDU Structure 33
3.2.2 Response APDU Structure 33

3.3 EMV Transaction Flow . 34
3.3.1 BER-TLV Encoding 34
3.3.2 Data Object List (DOL) 35
3.3.3 Application Selection 37
3.3.4 Initiate Application Processing 37
3.3.5 Offline Card Authentication 39
3.3.6 Cardholder Verification 40
3.3.7 Terminal Risk Management 41
3.3.8 Terminal Action Analysis 43
3.3.9 Application Cryptogram Generation 44
3.3.10 Script Processing . 45

3.4 Key Hierarchy . 46
3.5 EMV Contactless . 47

3.5.1 Kernels . 47
3.5.2 Entry Point Processing 48
3.5.3 Kernel Outcome Processing 50

4 Payment Card Tokenization 53
4.1 Tokenization Architecture Overview 53
4.2 Apple Pay . 55

8

4.3 Google Wallet . 57
4.4 Google Pay . 58

5 Software-based PIN Entry on COTS 61
5.1 Core Requirements . 63

5.1.1 Protection of Sensitive Services 63
5.1.2 Random Number Generation 64
5.1.3 Acceptable Cryptography 64
5.1.4 Key Management . 65
5.1.5 Development . 65

5.2 PIN Cardholder Verification Method Application Requirements 66
5.2.1 Development . 66
5.2.2 Secure Provisioning 67
5.2.3 Tamper Checks . 67
5.2.4 PIN Entry . 67
5.2.5 PIN Encryption . 68
5.2.6 Audit Logs . 68

5.3 Back-end Systems – Monitoring/Attestation 69
5.3.1 Attestation Types And Components 69
5.3.2 COTS System Baseline 70
5.3.3 Attestation Mechanism 71
5.3.4 Attestation of SCRP (Type 1 Attestation) 71
5.3.5 Attestation of COTS (Type 2 Attestation) 71
5.3.6 Monitoring Environment Attestation of PIN CVMAp-

plication (Type 3 Attestation) 72
5.3.7 Basic Protection . 73
5.3.8 Operational Management 73

5.4 Solution Integration Requirements 73
5.4.1 Pairing of Disparate Components 73
5.4.2 Secure Channels . 73
5.4.3 PIN CVM Solution Requirements 73

5.5 Back-end Systems – Processing 74
5.6 Secure Card Reader (SCRP) 74

6 Contactless Payments on COTS 75
6.1 Security Requirements . 77
6.2 Limitations . 79
6.3 Contactless Kernels . 80

6.3.1 Visa . 80
6.3.2 Mastercard . 81

9

6.4 Successful Card Read Rate 81
6.5 Existing Implementations 81

6.5.1 Android OS Platform 81
6.5.2 iOS Platform . 82

7 Extending the Dotypay Application 83
7.1 Application Specification . 84
7.2 Application User Interface 85
7.3 Cryptographic Key Infrastructure and Exchange 86
7.4 Application Architecture . 88

7.4.1 Refactoring of the Application 90
7.4.2 Transaction Service Component 91
7.4.3 Card Reader Component 91
7.4.4 Transaction Processor Component 92
7.4.5 Acquirer Service Component 93

7.5 Modularization of the Application 93
7.6 Implementation for Nexgo Devices 94

7.6.1 Working With Cryptographic Keys 94
7.6.2 CardReader Interface Implementation 95

7.7 Implementation for COTS Devices 97
7.7.1 CardReader Interface Implementation Using Visa Tap

to Phone SDK . 97
7.8 Recommendations for Future Development 101

8 Testing the Validity of the Updated Solution 102
8.1 Transaction Authorization in a Test Environment 103
8.2 The UL Brand Test Tool . 104
8.3 Created Test Scenarios . 106
8.4 Test Results . 106

8.4.1 Nexgo Devices . 106
8.4.2 COTS Devices . 108

9 Conclusion 109

List of Acronyms 111

Bibliography

A Source Code Listing 1
A.1 Files Specific to Nexgo CardReader Implementation 1
A.2 Files Specific to COTS CardReader Implementation 2

10

B User Guide 3
B.1 Building the Application . 3

C Operating the Application 4

11

1 Introduction

Today, the option to pay for goods or services using payment cards is almost
taken for granted by customers. Payment cards make the checkout process
more convenient and quicker for both the customer and the merchant. In
some situations, the inability to pay a merchant with a card may eventually
discourage customers from visiting such a business, making them look for
other options in the area. To summarize this, payment cards play an im-
portant role in today’s economic system and society, and merchants that do
not allow their customers to pay with cards are at a disadvantage over those
who accept them.

However, some merchants may consider the initial cost of getting a card
terminal rather high and since for every transaction performed the merchant
has to pay a small fee, they eventually keep on accepting cash only.

Nowadays, a lot of people already own a mobile device. Enabling it to be
used instead of card terminals to accept payment cards could be a solution
to the problem as this would completely remove the initial cost related to
buying a card terminal and may even lead to smaller fees for transaction
processing. This could result in the increase of the number of merchants
that allow payment cards to be used in their stores. Additionally, a mobile
device could be also used for other purposes required to run a store, e.g., to
operate a point of sale cash register application.

This work aims to introduce the reader to the complex system that stands
behind the world of cashless card payments we use every day by covering the
most important standards and principles of this industry. From the descrip-
tion of a payment card to the explanation of card transaction processing,
the fundamentals of this topic are covered in the second chapter, while the
most widely used standard to facilitate payments is introduced in the third
chapter. In the fourth chapter, the reader is familiarized with technologies
used to allow Android and iOS devices to be tapped onto card readers to
authorize card transactions. Chapters 5 and 6 summarize two standards
that can make acceptance of cards available to more merchants by allowing
commercial mobile devices to be used as card terminals. Finally, the sev-
enth chapter describes a designed architecture of a card terminal application
and its implementation in a commercial application – Dotypay, that is also
described there. Last but not least, the results of testing the updated com-
mercial application on selected devices using a specialized tool for testing
card terminals are presented in the final chapter.

12

2 Payment Cards and Their
Protocols

This chapter covers the fundamentals of the card industry and is mostly
based on the book Acquiring Card Payments by Ilya Dubinsky [1].

2.1 Payment Card Description
The most important standards related to the description of payment cards
include standards ISO/IEC 7813, 7816 and 14443.

Dimensions, shape and design of cards are defined in the ISO 7813 stand-
ard, which also covers the location of magnetic stripes on the card as well
as the structure of the data stored on it. The ISO 7816 standard covers the
definition of a smart card (card with an integrated circuit chip embedded
into it) by specifying its physical characteristics such as dimensions of con-
tacts and their placement, data transfer protocols, or definition of commands
used to manage applications in the multi-application environment.

The definition of properties of contactless cards and their communic-
ation protocols is present in the ISO 14443 standard. The most widely
used implementations of this standard include technologies such as PayPass
(now Mastercard Contactless), Visa payWave (now Visa Contactless) or Ex-
pressPay.

Figures 2.1 and 2.2 contain illustrations of a payment card’s front and
back sides. The following elements are annotated in these figures:

1. PAN (Primary Account Number) – further described in 2.1.1.

2. Card’s date of expiration – the last day the card can be used.

3. Cardholder’s name – the name of the person to whom the card belongs.

4. IC (Integrated Circuit) – integrated circuit used in contact and con-
tactless transactions to exchange card data with a card terminal.

5. Card issuer logo/branding.

6. Card scheme logo/branding (card scheme entity further described in
2.5).

13

7. Visual indicator that the card supports contactless transactions.

8. Cardholder’s signature.

9. Last four digits of card’s PAN identifier.

10. CVV (Card Verification Value) code – further described in 2.2.

11. Magnetic stripe – contains card data, further described in 2.1.3.

STANISLAV KRÁL

02/22VALID
THRU

MONTH/YEAR

Issuer logo

Issuer logo

Scheme logo

1234 5678 9012 3456 1

2

3

4

5 5

6

7

Figure 2.1: Illustration of the front side of a payment card with annotations.

 Král 123 34568 9 10

11

Figure 2.2: Illustration of the back side of a payment card with annotations.

14

2.1.1 PAN Identifier
The main identifier of payment cards is the numeric PAN identifier, which
consists of between 8 to 19 decimal digits. The first 6 to 8 digits represent
the IIN identifier (Issuer Identification Number), which identifies the card’s
issuer. The IIN identifier is followed by the identifier of the cardholder which
consists of up to 12 digits. The last digit of the PAN identifier is used as a
check digit to ensure the integrity and validity of the identifier as a whole.

The IIN identifier, also known as BIN (Bank Identification Number),
relates to BIN tables that are used to determine additional information about
the card, such as its type, issuer or PAN identifier length. The BIN identifier
may help merchants to decide whether the brand of the card presented by a
customer is supported.

2.1.2 Types of Payment Cards
The most simple way of categorizing payment cards is to divide them into
groups based on whether they are issued to an individual or a company,
while the former group is more common.

However, more often are cards categorized based on the pattern of recon-
ciliation with the cardholder. Debit cards are such cards, that are tied to
a banking account with a limited balance, and each time a successful pay-
ment transaction is finished, the transaction amount is subtracted from the
account balance. Credit cards work almost identically to debit cards, except
the issuer pays for purchases made with credit cards and their cardholders
become indebted to him. The third most common group of payment cards
are prepaid cards that are not necessarily tied to a bank account but rather
to a prepaid balance managed by the issuer.

In the early times of payment cards, all cards were essentially charge
cards and worked similarly to credit cards. The issuer paid for all purchases
made by the cardholder, who had to settle the outstanding debt in full by
the end of the month, but as opposed to credit cards, the loan of money was
interest-free in this case.

2.1.3 The Magnetic Stripe
The magnetic stripe located on the backside of payment cards is used as
storage for data containing information about the card and its owner. The
stripe usually contains 3 tracks, but only the first 2 tracks, available only
for reading, are commonly used today.

15

Track 1

The content of the first track can contain up to 79 alphanumeric charac-
ters and holds the PAN identifier, cardholder’s name, card expiration date,
service code and discretionary data.

Track 2

As opposed to Track 1 the content of Track 2 may consist of numeric char-
acters only and is limited to 40 characters. It contains the PAN identifier,
card expiration date, service code and discretionary data.

Track 3

The third track was designed in a way that its content may be dynamically
changed to enable additional features and functions, such as setting a daily
limit to the spending of available funds.

However, Track 3 is not widely used today as integrated circuit chips
offer better support for the implementation of dynamic features.

Service Code

All supported card operations are specified by the service code that resides
on the magnetic stripe. It consists of three decimal numbers that have the
following meaning:

• the first number – restricts the card’s usage abroad,

• the second number – defines whether online authorizations are re-
quired,

• the third number – defines conditions that require authorization
using a PIN (Personal Identification Number) and whether the card
usage is limited only to cash withdrawal at an ATM.

For example, the service code 226 indicates that the card can be used
abroad, but its IC must be used during transaction processing. Additionally,
it specifies that transactions performed with this card must be authorized
online and preferably requiring a PIN from the cardholder.

16

2.2 CVV Code
To reduce the ability of attackers to create and use counterfeit cards, today’s
payment cards have CVV (Card Verification Values) codes assigned to
them.

These codes are also known as CSC (Card Security Code), CID (Card
Identification Number), CVC (Card Verification Code) orCVN (Card Veri-
fication Number), but this text will refer to them as CVV codes.

2.2.1 Computation Algorithm
The computation of a CVV code includes assembling an input string con-
taining the PAN identifier of the card, card’s date of expiration, and card’s
service code. This string is then encrypted multiple times using the 3-DES
encryption algorithm with the CVK1 (Card Verification Key) used as the
encryption key.

Multiple variants of this algorithm are used to secure payment card trans-
actions but often differ only in the way that the input string is created.

2.2.2 CVV1
The CVV1 code is a part of the discretionary data stored on Track 1 and
Track 2 and its main purpose is to prevent the creation of counterfeit cards
when an attacker gets hold of the card’s PAN identifier and its expiry date.
The attacker would have to have the CVK in possession in order to recreate
the CVV1. This code also provides protection against manipulation of the
card’s service code, which could allow the attacker to bypass the limitations
of the card’s usage. The protection is guaranteed by the fact that the service
code is present in the input string that is eventually transformed into a CVV1
code.

2.2.3 CVV2
In card-not-present scenarios2 the CVV2 code is used to verify that the
originator of the transaction is the owner of the card. The CVV2 is usually
located on the backside of the card and consists of 3 to 4 decimal digits.

The algorithm used to compute the CVV2 code is identical to the al-
gorithm used to compute the CVV1 code. However, a security code con-

1A key kept secret by the issuer of the card.
2Such scenarios, where the card is not read by the terminal, but its PAN and date of

expiration are used to perform payment transactions in an online environment.

17

sisting of three zeroes is used in the computation instead of the card’s true
security code.

2.2.4 iCVV
Due to backward compatibility with payment networks that use legacy pro-
tocols utilizing data only from the magnetic stripe, cards nowadays have the
iCVV code stored in the integrated circuit chip to be able to distinguish
transactions made using the magnetic stripe from transactions made using
the integrated circuit chip. Without the iCVV code, the attacker may be
able to use magnetic stripe data skimmed3 from a card to create a magnetic
stripe-only card and use it in networks with legacy protocols.

The iCVV code computation follows the same algorithm as the previously
mentioned codes but uses the number 999 as the security code.

2.2.5 dCVV
Similar to the previously mentioned CVV code computation algorithms, the
dCVV computation algorithm also uses the card’s PAN identifier, its expiry
date and its service code to create the input string that is later encrypted
using the 3-DES cipher. However, in the case of dCVV code, the input string
also contains a randomly generated number and a transaction counter. This
ensures that for each transaction a new CVV code is generated, reducing
the risk of fraud.

The dCVV code is usually used in contactless transactions.

2.3 Card Presentation Methods
During the processing of a payment transaction, the card might be presented
using several methods.

2.3.1 Use of Magnetic Stripe
One of the oldest card presentation methods is definitely the one using a
card’s magnetic stripe when the card is swiped through the magnetic stripe
card reader, during which one of its tracks is read to gather cardholder data.
Because it contains mostly static data, this method is vulnerable to various
attacks, such as skimming the card to perform fraudulent transactions or

3To skim a card means capturing the data stored on its magnetic stripe.

18

changing the card’s service code [2]. For security reasons, the use of this
card presentation method is now being abandoned worldwide.

2.3.2 Chip Transaction
Card presentation methods which include the insertion of a payment card
into a card terminal are considered secure by today’s standards since they
use the integrated circuit chip present on the card and utilize the EMV
technology4 for establishing the exchange of data between the card and the
terminal.

2.3.3 Contactless Transactions
Similarly, as with chip transactions, where the card is inserted into the card
reader, the contactless card presentation method utilizes the integrated cir-
cuit chip and the EMV technology. The main difference from chip transac-
tions is that the card is not inserted into the card reader, but rather attached
to the contactless card reader of the terminal. During the attachment to the
reader, the integrated circuit chip is powered up using the electromagnetic
field of the reader and establishes an EMV dialog with the terminal.

One of the things the method must account for is the fact that the card
is attached to the reader only for a limited period of time, and before the
terminal receives a message from the back-end processing system indicat-
ing whether the transaction has been successfully authorized, the card will
probably not be attached to the reader anymore.

2.3.4 Card Tokenization
A special token that can be used instead of the payment card is presented
to the card terminal using a mobile device such as a mobile phone or a
smartwatch and the payment network translates it to the card’s original
identifier before the transaction is authorized.

Card tokenization on mobile phones introduces new forms of cardholder
verification methods that can utilize their authentication capabilities such
as facial recognition or authentication using fingerprints.

4A technology following a set of standards used to process card transactions, described
in detail in the chapter 3.

19

2.4 Cardholder Verification Methods
When a payment card is used to perform a payment transaction, a verifica-
tion might be required to ensure whether the card has not been stolen and
the person who presented it is indeed the legitimate cardholder. In other
words, CVM (Cardholder Verification Method) is a procedure that allows
for verification that the person at the point of sale is the person to whom
the card was issued.

CVM methods differ based on whether the transaction is made in a
card-present or card-not-present environment. The former type covers all
scenarios in which a card has been presented by its cardholder and read
using a payment terminal, as opposed to the latter which covers scenarios in
which the card’s PAN identifier, expiry date and other required attributes
have been manually (e.g., using an online form) supplied to the merchant
without presenting the physical card.

Card-present CVM methods include Offline PIN, Online PIN, Signa-
ture, Consumer Device Cardholder Verification Method, Failed CVM and
No CVM.

Card-not-present CVM methods include Static password, One-time pass-
word, Address Verification Service and Mobile authentication.

The CVM limit is the transaction amount above which all card transac-
tions must include some sort of CVM and it is often specific to the country
the transaction is being performed in. During contactless transactions this
most often includes the Online PIN CVM (described in 2.4.2). Table 2.1
shows CVM limits in selected countries.

Country CVM Limit
Australia A$200,00
Croatia 350,00 HRK
Czech Republic 500,00 CZK
Germany € 50,00
Poland 100,00 PLN
United Kingdom £100
USA $100

Table 2.1: CVM limits in selected countries as of 2021 [3].

During the COVID-19 pandemic, some countries have decided to increase
the CVM limit in order to promote contactless transactions and reduce the
amount of cardholder’s physical interaction with the card terminal [4].

20

2.4.1 Offline PIN
In order to verify the identity of the cardholder, a secret PIN, known only
to the cardholder and the card’s issuer, has to be entered using a pin-pad of
a terminal. By communicating with the card, the terminal verifies whether
the entered PIN is valid.

As the name of the method implies, the entered PIN is verified without
the presence of the card’s issuer and does not require a connection to the
internet. Local communication between the card’s IC and the terminal is
established during the Offline PIN CVM.

After a PIN is entered using the terminal’s PIN pad, it is transferred to
the card for verification either encrypted or in plain text. Before verifying the
PIN, the card’s IC also checks whether the limit of failed PIN attempts hasn’t
been reached. To prevent the submission of an incorrect PIN (e.g., when a
cardholder has been prompted for it but realized he does not remember it)
a cardholder can abort the verification method and the counter of invalid
PIN entry attempts on the card is not incremented.

2.4.2 Online PIN
Similar to the Offline PIN method, the Online PIN method depends on
a secret PIN to verify the identity of the cardholder. However, instead
of relying on the card’s IC, this method requires that the PIN, alongside
additional transaction information, is securely sent to the card’s issuer for
verification.

The entered PIN must be packaged into an encrypted PIN block using the
3-DES cipher before it is sent to the issuer to ensure it is not eavesdropped
on by an attacker.

Since this method does not rely on EMV technology it can be used with
magnetic stripe cards too.

2.4.3 Signature
It is a verification method that is based on a comparison of the cardholder’s
signature on the card with a signature obtained from the customer at the
point of sale.

The merchant asks the customer to sign for the payment (typically using
a touchscreen device or a paper receipt) and then compares it with the
signature on the card itself. Additionally, the merchant is responsible for
keeping a physical or digital copy of the signature together with the receipt
to be able to use it in case of a dispute.

21

This method is not considered secure, since the signature is already
present on the back of the card and is very easy to forge. Because of that,
it is most often used in combination with the Offline PIN CVM method.

2.4.4 Failed CVM
Used in exceptional scenarios, this CVM method indicates that the card
forces a CVM failure in the terminal, which may result in the abortion of
the transaction or an online connection to the card’s issuer for further details.

2.4.5 No CVM
This method immediately accepts the transaction and is used in places where
PIN or other CVM methods may lead to unreasonable congestion or traffic
build-up and where the amounts of individual transactions are relatively
small. At the cost of lower security, this method offers faster customer
checkouts and is usually used in unattended terminals (e.g., in public transit
or vending machines).

2.4.6 Consumer Device Cardholder Verification Met-
hod

With the growing popularity of mobile phones being used instead of cards to
pay for goods in stores, it was required to introduce a new CVMmethod con-
venient for that presentation method. CDCVM (Consumer Device Card-
holder Verification Method) allows customers using their own devices, such
as mobile phones, to authenticate themselves via biometrics or passwords for
secure cardholder verification. This means that customers can authenticate
themselves on their mobile devices instead of card terminals, effectively redu-
cing the possible attack surface that might be used, for example, to capture
the cardholder’s PIN.

2.4.7 Static Password
When finalizing an online payment the customer has to enter a password
that he has previously defined on the issuer’s bank website to prove his
identity.

22

2.4.8 One-time Password
Similar to the Static password CVM, the One-time password CVM requires
the customer to enter a password when finalizing an online payment. How-
ever, a new password is generated by the issuer for each transaction and is
delivered to the customer via an independently verified channel, such as via
an SMS sent to the cardholder’s mobile phone.

This method offers better security than the Static password CVMmethod,
as passwords are generated for each individual transaction and a potential
attacker is unable to perform multiple fraudulent transactions when the
cardholder’s password has been leaked.

2.4.9 Mobile Authentication
To provide greater security than other card-not-present CVMmethods, some
issuers allow for a CVM using a custom mobile application developed by the
issuer for cardholder verification. Instead of relying on the protocol behind
SMS messages, this method may deliver a one-time password to the mobile
application on the cardholder’s mobile phone using the internet network.

However, more often than delivering one-time passwords, the issuer bank
delivers a payment request to the application installed on the cardholder’s
mobile phone. For the CVM to be successfully completed the payment re-
quest has to be manually confirmed by the cardholder in the application.
The request can only be confirmed after a successful cardholder authen-
tication using a previously defined PIN, password, or biometrics such as
fingerprint or facial recognition.

2.5 Entities Participating in Transaction Pro-
cessing

Before describing details of transaction processing, it is required to introduce
its main actors.

A card scheme, also known as a card network, stands between issuers
and acquirers and transfers card transaction information based on a set of
security procedures and rules. Today, Visa, Mastercard and UnionPay are
considered the three of the largest card schemes [5].

An issuer (sometimes referred to as issuer-bank) is responsible for rela-
tionships with cardholders, as it issues them cards according to card scheme
brand guidelines. It keeps track of the cardholder’s account balance, provides
credit or prevents card fraud. Additionally, based on requests from card

23

schemes, it checks whether the cardholder’s account has sufficient funds to
authorize a card payment transaction.

An acquirer is an entity that processes card transactions originating from
merchants, allowing them to accept supported payment cards. To process
card transactions, it has to forward the transaction to the correct card
scheme. Eventually, after a card transaction has been cleared and settled,
the acquirer is responsible for depositing the transaction amount (minus
applicable fees) to the merchant’s account.

2.6 Transaction Processing
After a card has been successfully presented to the card terminal and the
cardholder’s identity was verified, the transaction data leaves the terminal
and is transferred to an acquirer where it is routed based on the BIN identifier
of the card to the correct card scheme [6].

The card scheme then processes the transaction data and requests the
card’s issuer for authorization of the payment transaction, i.e., to check
whether the cardholder’s account holds sufficient funds to pay for the trans-
action. If the authorization was successful, the cardholder can see the pay-
ment transaction in their bank account with funds equal to the amount of
the transaction unavailable for spending for the next few days or until it
is claimed by the merchant. The result of the authorization is then sent
back to the acquirer, who notifies the merchant. If the payment has been
authorized, then it is usually considered that the cardholder has paid for the
goods and may leave the point of sale.

However, up until this point, the funds have not been transferred to the
merchant’s bank account. The merchant has to assemble a list of authorized
transactions (also called a clearing file) and send it to the acquirer, who
forwards it to the card scheme for clearing5. This usually happens once a
day, but card schemes like Mastercard allow for the submission of clearing
files up to 5 times a day. The card scheme then communicates with the
issuer and a fund transfer to make a settlement between involved parties is
initiated. Both issuer and card scheme do perform analysis of all submitted
transactions and determine their validity to prevent fraudulent transactions.
It may take several business days before the transaction payment is received
by the merchant. A sequence diagram of the aforementioned process can be
found in Figure 2.3.

5The process of settling financial transactions between two banks.

24

C
ar

dh
ol

de
r

le
av

es
th

e
po

in
t o

f s
al

e

M
er

ch
an

t

di
sp

la
ys

 re
su

lt
on

 th
e

te
rm

in
al

pr
es

en
ts

 h
is

 c
ar

d

C
ar

d
Sc

he
m

e

re
qu

es
ts

 to
 ro

ut
e

th
e

tra
ns

ac
tio

n
to

 th
e

is
su

er

Is
su

er

au
th

or
iz

es
th

e
tra

ns
ac

tio
n

ro
ut

es
 th

e
tra

ns
ac

tio
n

to
 th

e
is

su
er

re
tu

rn
s

au
th

or
iz

at
io

n
re

su
lt

Ac
qu

ire
r

se
nd

s
tra

ns
ac

tio
n

da
ta

 a
lo

ng
si

de
 w

ith
 c

ar
d

da
ta

no
tif

ie
s

ab
ou

t
th

e
au

th
or

iz
at

io
n

re
su

lt

no
tif

ie
s

ab
ou

t
th

e
au

th
or

iz
at

io
n

re
su

lt

go
es

 to

th
e

ch
ec

ko
ut

Figure 2.3: A sequence diagram visualizing the authorization of a transac-
tion.

25

Merchants are often connected to Payment Service Providers (PSPs)
instead of acquirers because merchants wish to accept as many card brands
as possible and support various payment methods, but due to technical
difficulties, it is often unfeasible for merchants to achieve this on their own.

2.7 Transaction Types

2.7.1 Purchase
Purchase is the most frequently used type of card transaction. It is initiated
by a merchant and finalized by a customer so that he can pay for goods using
his payment card. Once a transaction is authorized, the customer may leave
the POS (Point-of-Sale) with the goods they have just bought.

2.7.2 Pre-authorization and Completion
In cases where services are delivered at a later date or when the final amount
to be authorized is unknown at the time of authorization pre-authorization
type transactions are used. It is similar to a classic purchase transaction,
but instead of being sent by the merchant to the acquirer for immediate
clearing, it is kept until the merchant is able to determine the final amount
to be paid by the customer. Pre-authorization is typically used in places
where merchants or service providers take an advance, such as in car rental
services, gas pumps or hotels.

Completion does not require the card to be present at the terminal and
takes place after the final amount to be paid by the customer is determined.
The customer may only be charged the amount originally authorized at a
maximum during that transaction.

2.7.3 Refund
A customer can have his funds returned to his account after a purchase using
a refund transaction. Refunds usually happen when a customer returns
bought products, services are canceled or price adjustments are made.

To limit fraud and money-laundering risks, card schemes usually set a
limit to the maximum amount of refund transactions, often the full or partial
amount of the original transaction.

26

2.7.4 Reversal
In cases where a transaction was accidentally processed more than once, a
merchant requested the wrong amount when submitting a transaction, or
a product purchased is out of stock, it can be canceled using a reversal
transaction. All purchase, pre-authorization and refund transactions can
be canceled within a certain time window (typically within 24 hours of a
transaction’s authorization [7]) set by card schemes and acquirers, and, when
canceled, a transaction does not appear in the cardholder’s bank account as
opposed to a refund transaction made after a purchase transaction.

2.7.5 Mail Order Telephone Order
MOTO (Mail Order Telephone Order) is a card-not-present environment
transaction type, during which card details (PAN identifier, expiry date and
CVV code) are given over the phone or through the mail. The cardholder’s
card data is then used to perform a purchase transaction.

Today, this transaction type is being replaced by online payment gate-
ways that allow filling in the card details into an online form.

2.7.6 Balance Inquiry
This transaction type is used to request the available balance on the card-
holder’s account. During balance inquiry transactions no funds are moved
and are typically performed to prevent transaction declines due to insuffi-
cient funds.

2.8 Terminal Capabilities
Since card terminals differ in capabilities and supported features, the card
has to discover the terminal’s capabilities and features at the start of each
transaction to be able to define the flow of the transaction to be made. The
card can discover the capabilities of a terminal by making a request to the
application hosted in the terminal. The response to the request contains a
list of supported features based on which the card proceeds to take further
actions.

2.8.1 PIN Entry
PIN Entry capability indicates that the terminal supports the secure en-
trance of a PIN. Since a terminal may have an external PED (PIN entry

27

device) connected to it, the PIN Entry capability may change in time as it
can become unavailable in cases where the PED is disconnected.

2.8.2 Key Entry
Whether the terminal supports the ability of entering a PAN identifier and
expiry date manually is indicated by the presence of the Key Entry cap-
ability. Since both PAN identifier and expiry date consist only of numeric
characters, one may expect that Key Entry capability may indicate the pres-
ence of the PIN Entry capability. However, because PIN entry requires strict
security requirements, this is not the case.

2.8.3 Chip Reader
To indicate that a terminal supports data interchange with ICCs, the Chip
Reader capability is used. Additionally, it also indicates the support of EMV
transactions.

2.8.4 Contactless Reader
The ability to exchange card data with the terminal using contactless data
transfer technologies is denoted by the Contactless Reader capability.

2.8.5 Magnetic Stripe
Whether the terminal can read card data from a magnetic stripe is indicated
by the Magnetic Stripe capability.

2.8.6 Contactless Magnetic Stripe
Contactless Magnetic Stripe capability is the ability to support contactless
transactions using legacy communication protocols that do not utilize EMV
technology.

2.8.7 Card Capture
Support for physical retention of a card that was inserted into a terminal is
indicated by the Card Capture capability. Most commonly, this capability
is used in ATMs, where, in case of a detected fraud, the card may not be
returned to the terminal’s user.

28

2.8.8 Card Data Output
The ability of the terminal to write data to the card’s IC chip is indicated
by the presence of the Card Data Output capability. This feature could
be leveraged to update the card’s internal counters such as the transaction
counter or to initialize an EMV process.

2.8.9 Terminal Output
Support for displaying data to the customer either by displaying it on the
terminal’s display or by printing it is denoted by the Terminal Output cap-
ability.

29

3 EMV Transactions

In the time when magnetic stripe cards were widely used the size and cost of
card skimming devices used to make copies of cards grew smaller, a need for
more secure payment cards arose. It was required to create a new way
that terminals and cards communicate with each other that allowed for
safer offline transactions as well as options to host multiple card scheme
applications in cards.

In the 1990s began development of a new standard related to card pay-
ments in which Europay, Mastercard and Visa companies participated. The
standard was based on a standard for smart payment cards and payment
terminals and aimed to provide a solution for previously mentioned problems
by utilizing ICCs. Usage of ICCs allowed for maintaining various internal
counters based on which offline transactions can be authorized or for a more
sophisticated dialog between the card and a terminal. Eventually, this new
standard was named EMV after the companies that participated in the ini-
tial development.

To further combat fraud the set of EMV standards also supports remote
execution of code. This allows issuers to blacklist stolen cards and remotely
block them for all transactions (including offline transactions) when they are
presented at an online terminal.

Because a dialog between the ICC and a terminal has to be established
to perform card transactions, EMV cards are considered much harder to be
faked as opposed to magnetic stripe cards, which are only read from but do
not actively engage in the exchange of data.

As of Q2 2021, 88.55% of card transactions utilize the EMV technology
[8].

This chapter covers the most important EMV standards that were used
to implement the payment card system of today’s world. EMV Book 1 covers
both the hardware and the software architecture of payment cards from a
high-level overview [9]. The second EMV book focuses on security features
of integrated circuit cards and terminals [10], while the third book focuses
on card application specification, including data elements and commands
that a terminal and a card exchange between each other [11]. Additional
requirements that support the acceptance of integrated circuit cards are
defined in the fourth book [12]. Last but not least, a design for contactless
payments is defined in the EMV Book A [13].

30

3.1 Hardware Architecture
EMV cards are essentially ICCs, which makes them smart cards compatible
with the ISO 7816 standard. These cards are powered externally, typically
by a payment terminal when inserted into or tapped onto.

As defined in the ISO 7816 standard, the chip contains 8 external con-
tacts numbered from C1 to C8, but only 5 of them are actively used today.
Contacts C4 and C8 are reserved for future use, and the C6 contact is marked
as deprecated [14].

The functioning of ICCs is also supported by ROM, EEPROM and RAM
memories that are all present on them.

A contactless card is sometimes referred to as a PICC (Proximity Integ-
rated Circuit Card) and is powered wirelessly by electricity inducted in the
card’s antenna by the electromagnetic field of the terminal’s contactless card
reader. All devices capable of NFC (Near Field Communication) technology
can be used as payment cards because contactless payment cards commu-
nicate with terminals at RFID (Radio Frequency Identification) frequency,
which NFC technology supports.

3.1.1 Answer to Reset
After the integrated circuit has been powered up by the terminal a signal on
the card’s RST contact is sent, causing any previously persisted state to be
erased [9]. When it’s reset, it transmits the ATR (Answer-to-Reset) message
to the terminal to indicate that the card is ready to exchange commands.
The ATR message also contains a description of supported communication
methods and protocols the terminal may utilize.

3.2 Software Architecture
A smart card hosts an operating system, that resides in its ROMmemory. Its
file system is hierarchically organized and consists of three file types: master
files ("MF"), dedicated files ("DF"), and elementary files ("EF") [15, 16].

The root of the file system is a master file, where headers of dedicated and
elementary files are stored (see fig. 3.1 for an example filesystem hierarchy).

Directories in the file system are represented by dedicated files whereas
data files are represented by elementary files.

In EMV cards dedicated files in the root directory of the file system rep-
resent card scheme applications. Application dedicated files are identified
using a FID (Fixed File Identifier) and an AID (Application Identifier)

31

MF

EF EF DF

EF DF EF

EF

Figure 3.1: A diagram visualizing the ICC filesystem file hierarchy.

that consists of 2 parts (see table 3.1 for example AIDs). The first part is
a RID (Registered Application Provider Identifier) and is assigned to the
application by an overlooking authority, while the second part is a PAIE
(Proprietary Application Identifier Extension), also known as PIX, which is
used by application providers to uniquely identify their applications. Obvi-
ously, one card may contain multiple applications.

AID Vendor Product
A000000003101001 Visa International Visa Credit
A000000003101002 Visa International Visa Debit

A0000000041010 Mastercard International MasterCard Cred-
it/Debit (Global)

A0000005241010 RuPay RuPay

Table 3.1: Example of application identifiers with their vendor and product
names [17].

Elementary files are referenced using either an FID or a SFI (Short File
Identifier) and can be categorized based on their usage. Internal files contain
data that are specific to the application and working files contain data to be
accessed by the terminal during communication with it.

The communication unit used during the communication between a smart
card and a smart card reader is called anAPDU (Application Protocol Data
Unit). APDUs can be categorized based on whether they originate from a

32

card reader or a card. The former is called a command and the latter is
called a response. While a command APDU must contain a 4-byte header
and data of length up to 65 535 bytes, a response APDU contains two man-
datory status bytes and up to 65 535 bytes of data.

3.2.1 Command APDU Structure
Bytes of the command APDU have the following meaning:

• CLA – indicates the class of the messsage,

• INS – specifies the instruction to be executed,

• P1 – the first parameter of the instruction to be executed,

• P2 – the second parameter of the instruction to be executed,

• LC – number of bytes the command’s data consist of,

• DATA – commands’s data,

• LE – expected number of data bytes in the response APDU.

Inter-industry commands have their CLA byte’s most significant nibble
set to 0, while commands proprietary to the EMV standard have their most
significant nibble set to 8. Any other commands are proprietary to card
schemes or issuers and aren’t covered by the EMV standard. The least
significant bits of the CLA byte indicate what communication protocols are
used.

3.2.2 Response APDU Structure
Bytes of the response APDU have the following meaning:

• DATA – command’s data,

• SW1 – the first status byte of command’s processing,

• SW2 – the second status byte of command’s processing.

When a command has been successfully processed the first status byte
(SW1) is set to 90. A warning is indicated by the first status byte being set to
62 or 63. The presence of any error that has occurred during the processing
of a command is indicated by the value 69 or 6A in the SW1 byte. Other
SW1 values are not described by the EMV standard. The value of SW2
provides additional information related to the command’s processing.

33

3.3 EMV Transaction Flow
Throughout a card transaction, the card and the terminal exchange data
using APDUs and the transaction flow consists of several steps.

High-level overview of the currently processed transaction’s state can be
observed by inspecting the value of the TSI (Transaction Status Inform-
ation) register that contains two bytes, and its first 6 bits indicate which
stages of the transaction have been finished:

• bit 8 – offline data authentication stage finished,

• bit 7 – cardholder verification stage finished,

• bit 6 – card risk management stage finished,

• bit 5 – issuer authentication stage finished,

• bit 4 – terminal risk management stage finished,

• bit 3 – issuer script processing stage finished.

The TVR (Terminal Verification Result) register consists of 5 bytes set
by a terminal reading a card and contains additional information about the
processed transaction, such as whether the PIN try limit has been exceeded
or whether an online PIN has been entered.

3.3.1 BER-TLV Encoding
The smallest data unit of an ICC card scheme application is a data element,
that is identified by a name, a description, format and coding. Individual
data elements are coded in the BER-TLV (Basic-Encoding-Rules – Tag-
Length-Value) encoding.

The ASN.1 (Abstract Syntax Notation One) standard defines that the
data elements of the TLV encoding are encoded by the tag identifier of the
element, element’s value length and finally the element’s value itself.

The tag identifier occupies at least 1 byte and is not constrained to any
length. The first two bits of the tag identifier represent the tag’s class (see
table 3.2).
The tag class is followed by the P/C bit indicating whether the tag is primitive
or consists of additional TLV sub-elements. The 5 other bits of the first byte
are used to hold the tag number. In cases, where the tag number cannot fit
into 5 bits, these 5 bits are set to 1 and other tag bytes follow. The first bit

34

Value Class
0 Tag native for ASN.1
1 Tag valid for a specific application
2 Tag dependent on a specific context
3 Tag defined in private specifications

Table 3.2: Tag classes as defined in the ASN.1 standard.

in the following bytes always indicates whether another tag byte follows the
current tag byte and the other 7 bits contain the tag number.

In cases where the element’s value length is smaller than 128, the length
is encoded in a byte that has its first bit set to 0 and the remaining bits set
to the length itself. To cover cases in which the length is equal to or larger
than 128, additional length bytes have to be used. The first bit of the first
byte is set to 1 and the other 7 bits store the number of bytes the length
consists of. After that, bytes containing the length follow.

Length data is followed by the element’s data. The last data byte might
be followed by an end-of-content marker, but that is not the case for EMV
transactions as end-of-content markers are not used there.

All TLV data elements used in the EMV transaction processing are listed
in the EMV Book 3, Annex A [11].

See tables 3.3 and 3.4 for selected TLV tags used in the EMV standard.

Tag Name Description Length

5A
Application Primary Ac-
count Number (PAN)

Contains the identifier of the
account linked to the applica-
tion

up to 10
bytes

9F08 Application Version Number Version of the payment ap-
plication 2

9F17 PIN Try Counter The number of remaining PIN
attempts 1

Table 3.3: Example TLV data elements sourcing from a card.

3.3.2 Data Object List (DOL)
To reduce the amount of processing required to be done by the ICC in cases
when multiple data elements are requested from the terminal, these data
elements are not TLV encoded but rather sent to the card as a single field
where all requested data elements are concatenated.

35

Tag Name Description Length

9F01 Acquirer Identifier Uniquely identifies an ac-
quirer 6

9F16 Merchant Identifier

Uniquely identifies a mer-
chant when combined with
the Acquirer Identifier data
element

15

9F02
Amount, Authorised (Nu-
meric)

The amount that has been au-
thorized during the transac-
tion.

6

Table 3.4: Example TLV data elements sourcing from a terminal.

The ICC defines a DOL that specifies the content and the format of
the requested data. A DOL consists of concatenated entries, where each of
them contains a tag identifying the requested data element and the number
of bytes the requested data is expected to be consisted of. The tag identifier
may consist of up to two bytes and the length must occupy exactly one byte.

Following DOLs are used in the current version of the EMV specification:

• Processing Options Data Object List (PDOL) – data residing
on the terminal requested by the ICC during the processing of the GET
PROCESSING OPTIONS command, such as the value of the tag 9F66
(Terminal Transaction Qualifiers),

• Card Risk Management Data Object Lists (CDOL1 and CDOL2)
– used during the processing of the GENERATE AC command to compose
the input vector for the application cryptogram (described in 3.3.9),

• Transaction Certificate Data Object List (TDOL) – provides a
list of data elements used when generating the hash value of transaction
data,

• Dynamic Data Authentication Data Object List (DDOL) –
used during the offline card authentication where dynamically gener-
ated data from the terminal are used (at minimum, contains the tag
9F37 – Unpredictable Number).

The EMV standard also specifies rules that the terminal must follow in
specific conditions such as when the length specified in a DOL entry is less
than the length of the actual data object in the terminal or when an entry
in the DOL refers to an unknown data object.

36

3.3.3 Application Selection
Since the card may host more than just one payment application, it is re-
quired that a mechanism that determines which application should be selec-
ted is in place. There are two ways the terminal can enumerate applications
present on the ICC.

The first and the most straightforward way to read the list of available
applications is to parse a specialized dedicated file 1PAY.SYS.DDF01, which
contains a list of applications hosted on the card. The file can be read using
a combination of SELECT and READ RECORD commands, however, the EMV
standard does not require that this file must be present on the ICC.

In cases, where the 1PAY.SYS.DDF01 file is not present on the ICC, the
terminal has to query the ICC multiple times using the SELECT command
for the application the terminal knows and supports. This process of looking
up available applications by using a list of AIDs of applications supported
by the terminal is called direct application selection and can be quite time-
consuming if the terminal contains a lot of entries. To optimize this process
the terminal can also utilize a partial name matching (querying using AID’s
prefix) for looking up supported applications.

The list of applications that both the terminal and the card supports is
called a candidate list. When the candidate list is assembled at the start of
an EMV transaction and the list contains more than one application, the
terminal may choose a payment application automatically based on internal
priorities and rules or prompt the cardholder to select an application. Once
it is determined which application will be used, the terminal confirms the se-
lection by sending the SELECT command with the selected application’s AID
to the ICC. The terminal then responds with FCI (File Control Informa-
tion) data elements of the selected application in the command response and
the initial processing of a transaction may begin.

The FCI template may contain data elements such as Language Prefer-
ence (preferred language to be used in the terminal), Application Label or a
PDOL (described in 3.3.2).

3.3.4 Initiate Application Processing
After the application has been selected by the terminal it then proceeds to
perform the Initiate Application Processing function, which informs the ICC
about a new ongoing transaction and provides it with all information related
to it. Additionally, the terminal receives an Application Interchange
Profile (AIP) from the ICC and the list of ICC files to be used in the
transaction processing.

37

Before the function is performed, the TVR and TSI bits must be set
to zero. Then the terminal issues the GET PROCESSING OPTIONS command
providing all data required by the ICC previously specified in the PDOL data
element in parameters. If the application’s FCI template did not contain
the PDOL data element, 8300 data field is sent as a parameter instead and
when successfully processed, the ICC then responds with an Application
Interchange Profile and an Application File Locator.

Application Interchange Profile

To provide the terminal with the specification of features supported by the
selected application, the AIP consists of two bytes where individual bits in-
dicate whether a particular feature is supported. Support of the following
features is currently described there: SDA, DDA, CDA, cardholder verifica-
tion, terminal risk management and issuer authentication.

Currently, only the meaning of the first byte is described in the standard
and the second byte is marked as reserved for future use.

Application File Locator

To describe the data elements to be read by the terminal from the card
the AFL (Application File Locator) is returned as a response to the GET
PROCESSING command. It contains a list of entries that each consist of 4
bytes that have the following meaning (when read from left to right):

• Byte 1 – SFI of the application’sAEF1 (Application Elementary File)
to be read,

• Byte 2 – the first AEF record to be read during transaction processing,

• Byte 3 – the last AEF record to be read during transaction processing,

• Byte 4 – the last AEF record to be read when composing the input
vector for offline data authentication.

Entries defined in the AFL are used right after they are parsed in order to
read data from the ICC necessary for further processing of the transaction.

1Elementary file specific to an application.

38

3.3.5 Offline Card Authentication
Today’s terminals support offline chip card authentication using asymmetric
cryptography and hash functions. A chain of trust between participating
entities must be well established and terminals have to be preloaded with
public keys of card schemes and card issuers.

Offline card authentication is most often used in cases where the ter-
minal has temporarily lost access to the internet and can’t perform online
authentication.

During offline card authentication the terminal and the card agree on
one of the following authentication types that they both support [18]:

• Static data authentication (SDA) – The issuer of the card signs
static authentication data using its private key and stores it on the
card. During offline card authentication, the terminal decrypts the
signed value using the issuer’s public key and verifies whether it was
signed by the issuer. It must be noted that this kind of authentication
can be vulnerable to replay attacks because the attacker could eaves-
drop on the signed static authentication value and broadcast it to the
terminal during an attack.

• Dynamic data authentication (DDA) – In contrast to SDA, this
method does not depend on static data value generated by the issuer
at the time the card was created, but rather for each authentication re-
quest Dynamic Data Authentication DOL and an Unpredictable Num-
ber (tag 9F37) are used to assemble an input vector that is later signed
by ICC’s private key. The terminal then verifies the cryptogram using
ICC’s public key. This method offers greater security than the SDA
method since it is not vulnerable to replay attacks.

• Combined data authentication (CDA) – Instead of performing
multiple data exchanges between the card and the terminal that might
become a performance bottleneck during card authentication, the CDA
method utilizes data already provided to the card by the terminal
during the Generate Application Cryptogram stage to assemble the
input vector. Otherwise, the flow of CDA is similar to the flow of the
DDA method.

Before any of the aforementioned authentication methods take place both
ICC’s and the issuer’s public key have to be recovered.

39

Public Key Recovery

During offline authorization, the terminal has to recover the card’s public
key and verify its validity [10]. It’s done via a retrieval of a key certificate
from the card that contains a part of the card’s public key that is encrypted
by the issuer’s private key to which the terminal has a matching public key
(publicly available). Additionally, the key certificate also contains the expiry
date, the owning entity (PAN or BIN) and some additional data. The rest
of the card’s public key (key remainder) is received by the terminal in an
unencrypted form. If the terminal successfully decrypts the key certificate
and verifies its validity it extracts the part of the public key and its hash
value. After that, it combines the key remainder with the now decrypted
part of the public key, computes its hash value using the specified hash
function and checks whether it matches the hash value present in the key
certificate. If it matches, then the card’s public key has been successfully
extracted.

3.3.6 Cardholder Verification
To help the terminal decide which cardholder verification method should be
used for a particular transaction, the card application contains a Cardholder
Verification Method List (CVM List) in the data element with the 9F42 tag
identifier [11].

The CVM list consists of cardholder verification rules (CVRs) that are
represented as 2-byte values. In addition to CVRs, the list also contains
two amount fields that are referred to as "X" and "Y" values. These values
contain amounts in the card application’s currency (Application Currency
Code, tag 9F42) and are referenced by CVRs to define conditions under
which the rules apply.

A CVM rule consists of a CVM Code byte and a CVM Condition Code
byte. The first bit of the CVM Code byte is reserved for future use and the
7th bit indicates whether the terminal should proceed to the next cardholder
verification method when the current method fails. Other bits identify one
of the following methods to be used:

• Failed CVM Processing (000000) – in cases where this method
is used and evaluated the cardholder verification is immediately con-
sidered as failed. It is often used to terminate the CVM list to end the
cardholder verification when no other matching rule was previously
found;

40

• Cleartext Offline PIN (000001) – the cardholder should be promp-
ted for the card’s PIN that will later be sent to the card in clear-text
for offline validation;

• Online PIN (000010) – the cardholder should be prompted for the
card’s PIN that will later be sent to the issuer in the PIN Block format
for validation;

• Cleartext Offline PIN and Signature (000011) – same as the
Cleartext Offline PIN method, but additionally requires the card-
holder’s signature to be verified;

• Enciphered Offline PIN (000100) – same as the Cleartext Offline
PIN method, but the PIN entered by the cardholder is enciphered
before being sent to the card;

• Enciphered Offline PIN and Signature (000101) – identical to
the Cleartext Offline PIN and Signature method, but the PIN entered
by the cardholder is enciphered before being sent to the card;

• Signature (011110) – cardholder’s signature has to be verified by the
merchant as described in 2.4.3;

• No CVM (011111) – cardholder verification method is not required.

Content of the CVM Condition byte defines under which conditions CVM
rules apply and refers to previously mentioned "X" and "Y" values (see table
3.5 for possible CVM Condition Code byte values).

During cardholder verification the terminal requests the CVM list from
the card’s ICC and starts to evaluate the CVM rules, taking the terminal’s
capabilities and application’s currency into consideration. If CVM is unsuc-
cessful, the terminal aborts the processing of the transaction.

3.3.7 Terminal Risk Management
Although the connection to the internet is generally more available and
stable than it was back in the days when EMV technology was incepted,
terminals still need to be able to perform offline card authorizations and
make decisions about transaction’s validity without first consulting it with
the card’s issuer.

The EMV standard defines a set of checks referred to as Terminal Risk
Management that evaluate the TVR register. Based on the terminal risk
management outcome it is determined whether the terminal should force an

41

Value Description
0x00 The CVM rule must always be applied.

0x01
The CVM rule must be applied when the transaction takes
place at an ATM (unattended cash transaction type).

0x02
The CVM rule must be applied in cases where the trans-
action is not one of the following types: unattended cash,
manual cash and a purchase with a cashback.

0x03
It is acceptable to skip the CVM rule when it is not sup-
ported by the terminal.

0x04
The CVM rule must be applied when the transaction is of
the manual cash type.

0x05
The CVM rule must be applied when the transaction is of
the purchase with cashback type.

0x06 /
0x07 /
0x08 /
0x09

The CVM rule is applicible when the transaction’s amount
is under/over than the "X"/"Y" value of the application
currency.

0x0A -
0x7F

Reserved for future use.

0x80 -
0xFF

Reserved for proprietary use.

Table 3.5: Description of possible CVM Code byte values.

online authorization of a particular transaction or settle with an offline au-
thorization. Three major types of checks are defined: Floor Limit, Random
Transaction Selection and Velocity Checking.

Floor Limit

The floor limit represents the amount of money above which it is required
that a card transaction is authorized online by the card’s issuer. Specific
floor limit values are set by acquirers and based on rules defined by card
schemes that may differ between various currencies.

To prevent fraudulent transactions that authorize amounts just under
the floor limit to circumvent the threshold, the terminal may log authorized
transactions to a special log file, and each time before a new transaction
authorization it is checked whether the sum of recent transactions performed
by a particular card does not exceed the floor limit. Such transactions, which
are knowingly made to circumvent the threshold, are in the card industry

42

referred to as split sales.
Some acquirers may also choose to set the floor limit to zero in order to

disable offline authorizations and rely solely on online authorizations.

Random Transaction Selection

Random transaction selection forces a percentage of all transactions not
exceeding the floor limit to be authorized online. Each transaction has a
probability to be flagged as a transaction requiring an online authorization.
The properties of the probability distribution used in a terminal are defined
by the acquirer and are usually configured in such a way, that the probab-
ility of a transaction requiring an online authorization is increasing as the
transaction amount gets closer to the floor limit.

Velocity Checking

A great number of consecutive offline transactions may raise a suspicion that
the card is being misused for performing fraudulent transactions. Issuers
attempt to combat this behavior by implementing a soft and a hard limit to
the number of consecutive offline transactions.

The soft and the hard limits are present in the Lower Consecutive Off-
line Limit (tag 9F14) and Upper Consecutive Offline limit (tag 9F23) data
objects. During transaction processing the terminal reads theATC (Applic-
ation Transaction Counter) value of the last transaction that was authorized
online from the card by requesting the Last Online Application Transaction
Counter (ATC) Register data object (tag 9F13). This value is subtrac-
ted from the card’s ATC counter (fetched from the Application Transaction
Counter, tag 9F36) and the result of the subtraction is compared to the
soft and the hard limit. If it exceeds the soft limit but does not exceed
the hard limit, the terminal attempts to authorize the transaction online,
however, if the connection to the issuer is unavailable, the terminal attempts
to authorize the transaction offline. If the difference exceeds the hard limit,
the terminal forces online authorization that must be available and succeed,
otherwise, the transaction is declined and aborted by the terminal. In other
cases, where the difference is smaller than the soft limit, the transaction is
allowed to be authorized offline.

3.3.8 Terminal Action Analysis
After terminal risk management has been completed, the first decision on
whether the transaction should be declined offline, authorized offline or sent

43

to the issuer to perform online authorization is made. It is based on optional
Issuer Action Code and Terminal Action Code data elements. As the names
imply the former data elements may reside in the ICC (specified by the
issuer), while the latter data elements may reside in the terminal (specified
by the acquirer). They are further categorized based on conditions under
which they apply.

Offline action codes define when a transaction should be declined and
Online codes define when an attempt to authorize a transaction online must
be made. To cover cases where an online authorization was attempted but
could not be completed (for instance, when the internet connection becomes
unavailable), Default codes can also be defined and specify conditions under
which a transaction must be declined when an online authorization was not
completed.

Bytes of action codes directly refer to the TVR register and the OR
function is used to combine issuer and terminal action codes. Combined
bytes of action codes are then compared to the TVR register using the AND
function. If the result contains at least one bit set to 1, then the rule for the
given code should be applied.

Action codes are evaluated in the following order: offline, online and
default.

If offline codes are not set, then the codes with all bits set to 0 are used.
If online codes are not set, then the codes with all bits set to 1 are used (the
same applies to default codes).

For example, the 7th bit (b2,7 bit) of the second TVR byte indicates
whether the selected application is expired. When the b2,7 bit of the online
terminal action code is set to 1, it means that if the application is expired
the terminal must attempt to authorize the transaction online. If the b2,7

bit of the default terminal action code is set to 1, then the terminal must
not attempt to authorize the transaction offline if the online authorization
was not finished successfully and the selected application is expired. These
two checks would have been skipped if the b2,7 bit of the offline terminal
action code was set to 1 and the selected application was expired because
the transaction would be declined offline.

3.3.9 Application Cryptogram Generation
The last step of the EMV transaction flow is the generation of an applic-
ation cryptogram, that is performed by the ICC when requested by the
terminal. The terminal asks the card to generate an application cryptogram
by issuing the GENERATE AC command. Response to the command includes

44

the generated cryptogram as well as other authorization data, and together
with transaction data these fields are verified and later used by issuer banks
during clearing.

An application cryptogram is computed by gathering input data specified
by CDOL1 and CDOL2 data objects that reside on the terminal. This
data is then encrypted using a session-specific key derived from one of the
terminal’s master keys. Aside from a few exceptions and a random number
(Unpredictable Number, tag 9F37) the EMV standard does not mandate a
particular list of fields to be used in the generation of the cryptogram but
recommends using the transaction amount, transaction date, transaction
type and the value of the transaction counter.

There are 3 types of application cryptograms that can be issued by the
ICC when requested by the terminal:

• TC (Transaction Certificate) – generated when a transaction has been
authorized offline,

• ARQC (Authorization Request Cryptogram) – generated to be used
during online authorization,

• AAC (Application Authentication Cryptogram) – generated when a
transaction has been declined.

During online authorization, the terminal asks the ICC to generate an
ARQC that is then sent to the issuer by the terminal for verification. After
the issuer decrypts the cryptogram using keys assigned to that particular
card and verifies its validity, it generates anARPC (Authorization Response
Cryptogram) that is sent back to the terminal. The terminal authenticates
the issuer by sending the ARPC in another GAC command or by issuing an
EXTERNAL AUTHENTICATE command to the ICC if available.

Once the issuer’s response has been validated or a transaction has been
successfully authorized offline, it is considered finished.

3.3.10 Script Processing
The issuer may choose to include a script in the response to the ARQC
to be remotely executed on the ICC. For example, this allows issuers to
remotely block cards so they cannot be used in offline authorization when it
is suspected that the card might have been stolen or misused for performing
fraudulent transactions.

45

3.4 Key Hierarchy
A chain of trust between card schemes, issuers, terminals and cards is es-
tablished to allow individual entities participating in the card transaction
processing to verify the authenticity of each other’s messages and signatures.

At the top of the key hierarchy (see fig. 3.2) stand card schemes as root
certificate authorities that generate their own key pairs and accept public
keys of issuers for signing. When an issuer creates a new card, the card’s
public key is signed by the issuer’s private key. Cards usually contain more
than one key pair that has to be signed, because they use different keys for
different actions such as PIN encipherment and personalized data signature.
In the key hierarchy used in EMV transaction processing issuer banks and
acquirers are usually referred to as L1 nodes while cards and terminals are
referred to as L2 nodes.

Card Scheme

AcquirerIssuer

Card Card Terminal

Root CA

L2 nodes

L1 nodes

Figure 3.2: A diagram visualizes the chain of trust established between
entities involved in the processing of card transactions.

Cryptographic keys play a critical role in the security of card transaction
processing and must be handled with extreme caution. For example, in some
cases, it is required that process of dual-control (a process that involves two
or more entities, usually persons, equally responsible for the physical protec-
tion of sensitive functions or information) is used when a terminal is being
manually loaded with key-pairs containing keys such as TMK (Terminal
Master Key), TEK (Traffic Encryption Key) or KEK (Key Encryption
Key).

46

3.5 EMV Contactless
Contactless payment transactions covered by the EMV Contactless standard
offer additional convenience to customers when presenting cards or other
payment instruments to the merchant at the point of sale. Technologies such
as RFID and NFC allow for an exchange of data between devices in close
proximity using unlicensed global radio frequencies. In other words, instead
of plastic cards, mobile phones or other smart gadgets such as smartwatches
can be used. In addition to the convenience of not having to insert a card into
a payment terminal, contactless transactions may also provide some security
benefits. For example, a cardholder verification during the processing of a
transaction can utilize the capabilities of mobile phones to perform biometric
authentication of the user. This includes facial recognition or authentication
of the cardholder using the device’s fingerprint reader.

In contrast to chip transactions, the card is tapped to the terminal’s
reader for a short period of time and it for example cannot be guaranteed
that it will still be tapped to it when the terminal receives a response from
the issuer during online authorization. This also means that in the case of a
PIN CVM the card is not available to the terminal after the PIN has been
entered by the cardholder, resulting in the prohibition of the offline PIN
verification method. The EMV standard only allows the Online PIN CVM
for contactless transactions.

However, in most cases, a contactless transaction flow is to a great degree
similar to a chip one. The only major difference is in the presentation method
and the limited time the card is available to the terminal.

To provide support for environments that do not fully support EMV
transactions, the "Magstripe" mode is defined by the EMV Contactless
standard. This mode mandates that all transactions are authorized online
and that all necessary data for the authorization of a transaction is gathered
from the card using an EMV dialogue. This data should be then embedded
into the discretionary data part of the Track 2 data before being sent in a
legacy format to the issuer.

3.5.1 Kernels
In the EMV Contactless standard, a kernel is the software in the POS sys-
tem that is used for processing contactless transactions [13]. The stand-
ard introduces specification of several kernels to be used in contactless card
transactions (see table 3.6). Terminal manufactures and solution providers
then use the standard to create kernel implementations.

47

Kernel Supported Card
Schemes

Kernel 1 JCB, Visa (fallback)
Kernel 2 MasterCard
Kernel 3 Visa
Kernel 4 American Express
Kernel 5 JCB
Kernel 6 Discover
Kernel 7 UnionPay

Table 3.6: List of kernels and supported card schemes [19].

A kernel may reside in a card terminal, a kiosk or a mobile phone and
usually provides a simplified interface to process an EMV transaction. It
contains a set of functions that allow for establishing an efficient data ex-
change with the payment card. A kernel eventually communicates with the
application present on the card in a similar way as described in 3.2.

The transaction flow when using a kernel is similar to the flow of a classic
EMV chip transaction, but the way payment applications are selected differs
since the POS system (terminal) has to select a combination of a kernel and
a payment application. One kernel may support multiple applications.

Kernels may use proprietary commands and tags to communicate with
supported card applications to deliver the best cardholder experience. For
example, the Kernel 2 (Mastercard) supports both Contactless Magstripe
and EMV transactions with some methods to recover from premature re-
moval of the card from the reader’s vicinity. The Kernel 3 (Visa) uses a single
GET PROCESSING OPTIONS command during the transaction processing and
receives an application cryptogram in the answer as opposed to a standard
contact EMV transaction where it is required to issue multiple commands
to receive the cryptogram. In addition to that, the Kernel 3 supports that
a card is tapped for the second time during which any issuer scripts to be
processed by the ICC are transferred.

3.5.2 Entry Point Processing
At the start of each contactless transaction, the Entry Point processing that
consists of five main functional sections is initiated.

The Pre-processing step is present in variable-value transactions and in-
cludes an analysis of the transaction data. For example, it allows the ter-
minal to predetermine which AIDs are available to the current transaction.

48

This step is skipped in environments where the transaction amount is pre-
defined and does not require merchant interaction.

During the Protocol Activation step, card discovery is started by initiat-
ing the polling of the electromagnetic field in front of the contactless card
reader. When multiple cards are present in the polled magnetic field, these
collisions are detected and the transaction processing may continue only
when a link with a single card has been successfully established. This step
is comparable to the Anwer-to-Reset interaction of contact chip transaction
processing.

Same as in the contact chip transaction processing an application resid-
ing on the ICC must be selected. In addition to the application, a kernel
must also be selected. The result of the Combination Selection step is a
combination of a kernel and a card application which is to be used dur-
ing the authorization of the transaction. Furthermore, a PPSE (Proximity
Payment System Environment) file must be present in the ICC’s file system
under the name of 2.PAY.SYS.DDF01. This file is used to define the list
of supported applications, their priorities and associated kernels. As op-
posed to chip card processing, where a PPSE file (1.PAY.SYS.DDF01) is not
mandatory and direct application selection can be used, here a PPSE file is
required to allow for quick application selection since the duration during
which the card is tapped to the reader is limited.

Once the combination of a kernel and an application is selected, the next
step is the Kernel Activation step, during which the selected kernel is activ-
ated and initiates communication with the card to continue the processing
of the transaction. The result is then processed in the Kernel Outcome
Processing step that is described in the section 3.5.3.

The Entry Point processing may be initiated in any of the first four
described steps and the standard describes four starting points:

• Start A – enters the transaction processing flow at the Pre-Processing
step. It is the most commonly used starting point as it is used in
standard payment transactions where the merchant sets the transac-
tion amount based on the value of goods the customer wants to buy;

• Start B – bypasses the Pre-Processing step and enters the transaction
processing flow at the Protocol Activation step. This starting point is
used in transactions with fixed amounts or when a card needs to be
tapped again to the reader;

• Start C – starts at the Combination Selected step and is usually used
in scenarios where the selected combination of a kernel and an applic-

49

ation was not able to process the transaction. Another combination
with the highest priority, if not attempted previously, is selected for
the next attempt to process the transaction. Eventually, this start
might be used several times during the transaction processing until all
suitable combinations have been attempted;

• Start D – starts at the Kernel Activation step in scenarios where the
kernel was previously activated but was restarted during the processing
of the transaction, for example, during an online authorization.

3.5.3 Kernel Outcome Processing
The processing of a transaction done by the kernel may result in one of
the seven outcomes defined by the EMV Contactless standard. Based on
the kernel’s outcome further actions are made that may result in the final
decision on whether the transaction has been accepted or declined.

Select Next

The Select Next outcome indicates that the selected combination of a kernel
and an application is not suitable for the processing of the transaction. It
instructs that the terminal should try to use another combination. Suppose
all combinations have been attempted, none of the attempts were successful
and the last kernel returns this outcome. In this case, the Entry Point returns
the End Application outcome to the POS and concludes the transaction.

Try Again

When the selected kernel requires the card to be presented again to the
reader the Try Again outcome is returned. This outcome can be a result
of "tearing" that happens when the cardholder’s card is removed from the
card reader’s vicinity before the required interaction between the terminal
and the card is finished [20]. Another scenario when this outcome can occur
is when a mobile phone is used to present a card to the terminal and the
kernel requires an action to be performed on the phone before presenting it
to the terminal again.

Approved

The Approved outcome indicates that the transaction has been approved
and the terminal forwards it to the POS. This outcome is returned when the
kernel has successfully authorized a transaction offline or when a response

50

to an online authorization request from the issuer has been authorized by
the kernel.

Declined

When a transaction has been declined the Declined outcome is returned by
the kernel and is forwarded to the POS. Similar to the Approved outcome,
this outcome is returned during offline authorization or authorization of the
issuer’s response.

Online Request

By returning the Online Request outcome the kernel informs that the online
authorization is required to determine the approved or declined status. The
kernel can also indicate whether it requires to be restarted when the response
to the online authorization request is received. This outcome is forwarded
to the POS.

Request Online PIN

The Request Online PIN outcome is returned by the kernel and forwarded
to the POS when the issuer requests the cardholder’s PIN to authorize the
transaction.

Try Another Interface

The Try Another Interface outcome is returned by the kernel in the following
scenarios:

• the kernel indicates based on the terminal configuration data that an-
other terminal interface (e.g., contact chip or magnetic-stripe) should
be used to process the transaction since it was not able to complete
the transaction with the selected contactless card application,

• no compatible contactless card application was found,

• it was required by the issuer in the response to the online request that
another interface should be used to process the transaction.

End Application

The kernel returns the End Application outcome in the following scenarios:

51

• transaction processing has been completed and the kernel requires no
further actions,

• the kernel requires a restart after the card has been removed,

• the kernel experienced an unrecoverable application error that will
not be resolved if the transaction is attempted again with the same
application,

• no compatible contactless card application was found and the card-
holder should present another card.

52

4 Payment Card Tokenization

Card tokenization is most often used to increase the cardholder’s privacy
and security of his credentials by hiding sensitive card data, such as the
card’s identifier and its date of expiration, from other transaction processing
entities, reducing the attack surface and allowing the use of other devices
instead of the card.

Furthermore, it improves the comfort of using contactless payments by
allowing mobile devices such as mobile phones or smartwatches to be used
as payment instruments. Rather than carrying multiple cards in a wallet or
a pocket, the cardholder can have these cards loaded into his digital wallet
and simply select the card to be used at the point-of-sale using the digital
wallet’s user interface.

It is most often used in technologies such as Google Pay [21] or Apple Pay
[22] that allow consumer mobile phones running on the iOS or the Android
system to securely store payment card tokens, making it possible to use
them as contactless payment cards. Both of these technologies use the NFC
technology to transmit card tokens to contactless card readers.

4.1 Tokenization Architecture Overview
The EMV Co. card tokenization guidelines introduce the TSP (Token Ser-
vice Provider) entity that participates in the card tokenization process by
being responsible for generating and managing tokens that are created based
on cardholder data [23]. TSPs are also responsible for storing sensitive card-
holder data in a secure manner. To tokenize the card the TSP must also
communicate with the card’s issuer and authorize the tokenization request.
Both Visa and Mastercard offer tokenization services.

Entities that submit card tokenization requests to TSPs are in the EMV
Co. card tokenization guidelines called token requestors. In the world of
mobile payments, these are usually Google and Apple companies that each
offer their own digital wallet product in the form of a mobile application
that allows cardholders to load their cards into their mobile phones.

See Figure 4.1 for a high-level overview of the card tokenization process.
When the cardholder decides to tokenize his card, he opens the digital

wallet application (e.g., Google Pay or Apple Wallet) and submits his card
data into it. This most often includes the card’s PAN, its date of expiration
and the name of the cardholder.

53

submits card data [1]

Cardholder

Mobile Device

Digital Wallet
(e.g., Google Pay, Apple

Wallet)

tokenization
request [3]

card token [9]

Digital Wallet
Back-end Systems
(token requestor)

tokenization
and authorization

request [4]

card token [8]
TSP

request
approval [7]

Card
Issuer

asks the cardholder
to authorize the request [5]

authorizes the request [6]

card data [2]

PAN
cardholder
name
expiry date

Figure 4.1: Process of card tokenization involving various entities.

The card data is then processed on the back-end systems of the digital
wallet provider in order to create a tokenization request that is sent to a
TSP, who performs initial processing and based on the PAN decides which
issuer should he ask for tokenization request authorization [24].

The issuer of the card requires that the request is authorized by the
cardholder. This is usually done by sending an SMS with an authorization
code to the cardholder or requiring him to confirm the request in the issuer
bank’s web interface. Once the TSP receives the authorization response
(that might include additional data required to tokenize the card, such as
token-specific cryptographic keys) the card is tokenized and the token is sent
back to the back-end systems of the digital wallet in order to be loaded into
the cardholder’s mobile phone.

Because it is required that the token can be used in traditional payment
networks its format is identical to the format of a PAN, however, to be
able to distinguish between real and tokenized cards, tokens are assigned
identifiers from special BIN ranges.

Additionally, to participate in EMV transactions, digital wallets have
to be EMV compliant and support the generation of ARQC cryptograms
during transaction authorization. To do so the wallet must be in possession
of the cryptographic key specific to the generated token. Because of that,
in addition to the generated token the TSP sends the encryption key that is
tied to it. This key is then used during the generation of ARQC cryptograms
to encrypt the data specified in the CDOL tag (as described in 3.3.2).

54

4.2 Apple Pay
Apple Pay was first announced in September 2014 and provided support
for NFC payments on the mobile devices iPhone 6 and iPhone 6 Plus [25].
Initially, iPhone users had to add their payment card to their iTunes Store
account to be able to use the phone to pay for goods at merchants that had
contactless card terminals. Later during the lifetime of the product, cards
to be tokenized had to be submitted using the Apple Wallet application.
In the Apple Pay release press, Apple claimed that at that time Apple Pay
was supported by the three major payment networks: American Express,
MasterCard and Visa, and by the most popular banks including Bank of
America, Capital One Bank, Chase, Citi and Wells Fargo, that represented
up to 83 percent of all credit card purchase volume in the US. Apple Pay
was released later that year in October as a part of the free iOS 8 system
update.

Not a lot of technical details on how does Apple Pay work is publically
available, however, the following text is based on the brief description of
Apple Pay that can be found on the official Apple Support website [22].

When a cardholder adds his card to the Apple Wallet application to
enable the Apple Pay feature on his device, the information entered is sent
to Apple servers where the card’s payment network is determined. On Apple
servers, the card data is encrypted by a secret key based on the card’s
payment network and is used to create a request to the cardholder’s bank
via a TSP to generate a Device Account Number that is linked to the card
being tokenized. The generated Device Account Number is then encrypted
by a key inaccessible to Apple and delivered to the device, where it is stored
in a protected component called Secure Element.

Secure Element is a tamper-resistant secure microcontroller capable of
hosting applications and their data that is isolated from the device’s op-
erating system [26]. Different form factors of a Secure Element exist and
may include embedded and integrated microcontrollers, SIM cards, microSD
cards or smart cards. It is most often used to store high-value sensitive data
such as passwords, cryptographic keys or card data. On iPhones, applic-
ations hosted on a Secure Element have direct access to the device’s NFC
controller.

When Apple Pay is used in stores to pay for goods and a device is tapped
to a card terminal, the encrypted Device Account Number is transmitted
directly from the device’s Secure Element bypassing the device’s operating
system (see fig. 4.2).

Alongside the Device Account Number, a one-time transaction-specific

55

iPhone device

iOS system

NFC
interface

and
controller

Secure Element

 Device Account Number

Apple Pay Applet

User Authentication (biometric, PIN)

Secure Enclave

Dedicated
Bus

Unlocks the device to authorize the transaction

User

Point-of-Sale

Card
Terminal

Initiates
Transaction

Merchant

APDU protocol
(ISO 14443)

Figure 4.2: A diagram visualizing Apple Pay card emulation architecture.

security code (that is based on transaction data and the transaction counter)
and an application cryptogram are sent to the card terminal, where it is
forwarded to the payment network based on the BIN identifier. The payment
network uses a TSP to translate the Device Account Number back into the
real PAN identifier that is then used to process the transaction as if it was
a standard card transaction.

Because the Device Account Number is stored in a Secure Element loc-
ated inside a mobile device, it can be used to present the tokenized card
even when the device is not connected to the internet. Additionally, since
Apple claims that cardholder’s data is not saved in any way when being
forwarded to the cardholder’s bank, card details cannot be leaked even if
Apple’s back-end systems were compromised as they are present only in the
device’s protected storage.

It should be noted, that while Apple Pay can make contactless payments
more convenient, it can also introduce new vulnerabilities to them. One
example of such vulnerability is one that was discovered after Apple added a
new "Express Transit/Travel" feature to Apple Pay. This new feature allowed

56

to use Apple Pay in public transport in selected cities without requiring to
unlock the iPhone, bypassing user authentication. This feature is available in
London (TfL), New York City, Portland, Chicago, Los Angeles, Washington,
Beijing, Shanghai, Hong Kong and Japan) [27], and a group of researchers
from the University of Birmingham discovered that a non-standard sequence
of bytes is being sent in Transport For London ticket-gate terminals, which
allows performing contactless transactions without user authentication [28].
This group of researchers was then able to exploit this sequence in a relay
attack to perform transactions with standard card terminals without any
user interaction. Additionally, it enabled to authorize transactions over the
CVM limit without having to unlock the device.

4.3 Google Wallet
In 2011 Google announced its first mobile payments service – the Google
Wallet [29], a result of the partnership with companies MasterCard, Citi,
First Data and Sprint, enabling NFC capable mobile phones to emulate
payment cards that could be used instead of traditional cards (see fig. 4.3
for a screenshot of the Google Wallet mobile application). In addition to
mobile payments, the application offered access to special sale offers, loyalty
rewards, promotions and discounts.

In a similar way Apple Pay emulates payment cards, Google Wallet also
used a Secure Element component to enable mobile devices to be used as
payment cards. When a device with Google Wallet enabled was presented
to the card terminal, the payment application located in the device’s Secure
Element transmitted all the required card data to it and if necessary, the
application prompted for the 4-digit PIN (that was set by the user during the
initialization of the application) before allowing to use the card emulation
feature.

It should be noted that the usage of a Secure Element does not implicitly
mean that the solution was secure in all aspects. A great example of this is
a PIN exposure vulnerability that was discovered soon after Google Wallet
was released [30]. The hash of the application’s PIN, which was required
to open the application and authorize transactions, was not stored in the
device’s Secure Element component, but rather in the Android OS file sys-
tem, precisely in the folder specific to the Google Wallet application. This
is a major issue as Android applications may access data of other applica-
tions on rooted devices without any limitations and since the application’s
PIN consisted only of 4 digits, the hash of the PIN would be enough for the

57

attacker to be able to reveal the original PIN using a brute force attack,
trying out all possible combinations of the PIN.

Even though using a Secure Element may introduce benefits related to
the overall security and privacy of the solution, its usage was one of the main
downfalls of Google Wallet as only a limited subset of Android devices was
equipped with it. Additionally, Google was unable to force device manufac-
turers to include a Secure Element component on their devices, and so the
product was not widely adopted by the public.

Google Wallet was eventually replaced in 2015 by Google’s other mobile
payments service – Android Pay [31].

Figure 4.3: Screenshot of the Google Wallet application.

4.4 Google Pay
Google Pay (formerly Android Pay) can be described as a digital wallet
platform that enables users to make contactless payments with Android
mobile devices, such as phones, tablets or watches. It also provides online
payment features, that make checkouts in online stores easier and more
secure [21].

In some aspects Google Pay works similarly to Google Wallet, however,
it does not require a dedicated PIN to be entered to unlock the application.
Instead, it relies on the system authentication services used by users to

58

unlock their devices.
To enable mobile devices to be used as payment cards it uses the process

of card tokenization. Users simply put their card credentials into the Google
Pay application and after authorization, the card is tokenized and a token
is stored in the application, being available to be used in stores to pay for
goods.

Google does not share many details regarding the implementation of its
mobile payment solution, and the following text is mostly based on the brief
description from the Google Pay support website [32].

For transactions under the CVM limit no user authentication is required,
however, the device’s screen must be powered on1. During authorizations of
transactions above the CVM limit it is required to unlock the device (e.g.,
using the device’s PIN, unlock pattern or biometrics) to perform CDCVM.
In some cases, typically when multiple transactions in a short period of time
are performed, the Google Pay application may require CDCVM even when
the device is unlocked.

When compared to products like Apple Pay or Google Wallet there is a
great difference in the way cards are emulated. As opposed to the aforemen-
tioned digital wallet solutions, Google Pay does not use a Secure Element to
emulate payment cards [24]. Instead, it uses the HCE (Host Card Emula-
tion) software architecture to transmit card data via NFC [33]. This means
that card emulation is being done in an application running in the host op-
erating system, rather than in a separate secure component (see fig. 4.4).
Running in the host operating system introduces a great attack surface that
attackers may theoretically exploit to steal cardholder data or perform fraud-
ulent transactions. The NFC interface of a device may also be accessible to
other applications running in the system when a device is presented to a
card terminal.

One of the reasons why Google may have decided to ditch the dependency
on a Secure Element component to emulate cards in favor of HCE is that
when using HCE the solution does not mandate that a device is equipped
with a special hardware component, allowing it to operate the solution on a
wide variety of devices [34].

To mitigate some of the security risks that result from the absence of a
Secure Component in the solution, Google Pay takes a different approach
to the management of card tokens. During card tokenization the card token
alongside the token-specific cryptographic keys is stored in Google cloud

1After 3 consequent transactions without CDCVM a CDCVM is required even for
transactions under the CVM limit.

59

servers2. The mobile application then receives several one-time tokens de-
rived from the main card token that is stored in the cloud. Each of these
tokens can only be used once to perform a payment transaction, and after
a token is used it is disposed.

Mobile device

Android OS

User Authentication (biometric, PIN)

In case of a CDCVM the user unlocks the device
to authorize the transaction

User

Point-of-Sale

Card
Terminal

Initiates
Transaction

Merchant

APDU protocol
(ISO 14443)

Exchange
of derived

tokens

Google Pay

Other Applications

derived tokens

NFC
interface

and
controller

Google Pay BE servers

main token and its
cryptographic key

Figure 4.4: A diagram visualizing Google Pay card emulation architecture.

As a consequence of this, Google Pay can be used only for a limited
number of transactions when the device is offline. Once the device runs out
of card tokens, no more payment transactions can be performed and the
device must go online in order to receive additional tokens from the Google
Pay servers.

During testing, the author of this master’s thesis was unable to run out
of available tokens on his device and he managed to perform 25 consequent
transactions when his test device was offline. This may imply that number of
tokens fetched from the Google Pay back-end servers may be specific to the
environment of the cardholder, including his bank issuer, spending habits or
the country he is currently located in.

2This is often referred to as cloud-based Secure Element.

60

5 Software-based PIN Entry
on COTS

Software-based PIN Entry on COTS (Commercial off-the-shelf) solutions
allow to perform EMV contactless and contact transactions using merchant’s
consumer devices to enter a PIN using a secure PIN application, a PCI
SSC1 (Payment Card Industry Security Standards Council) verified secure
card reader, and a back-end for transaction processing and monitoring the
COTS device for fraudulent behavior and it’s integrity. This chapter covers
the SPoC (Software-based PIN Entry on COTS) standard published by PCI
SSC [35].

The main advantage of SPoC solutions is the reduction of the initial
cost when a merchant applies for a card terminal, which may lead to an
increasement of merchants that accept payment cards. Previously, only
specialized and certified devices were allowed to capture a customer’s PIN.
This changes with the introduction of SPoC solutions, that make PIN entry
on commercial devices possible (see fig. 5.1).

COTS

- PIN Entry
- Attestation Component
- Software Protection Mechanisms

PIN CVM APPLICATION

Operating System

Firmware

Hardware

SCRP

Card Reader

Firmware

Hardware

Back-end Systems

Processing

Monitoring

Attestation

PIN

Figure 5.1: A diagram visualizing a SPoC solution.

An SCRP (Secure Card Reader for PIN) device provides the system
with the ability to read protected cardholder data sourced from the payment

1An established entity that oversees policies and technologies used to process card
transactions (https://www.pcisecuritystandards.org/about_us/).

61

https://www.pcisecuritystandards.org/about_us/

instrument (card). It also decrypts and encrypts PIN data received from the
PIN CVM application and translates it into a required PIN-block format
when needed during online PIN verification. The SCRP used in a SPoC
solution must be PCI certified and listed on the PCI SSC website2.

To allow a PIN entry a PIN CVM application resides on the COTS
device, providing a secure UI for PIN entry. It encrypts the PIN entered and
delivers it to the SCRP for further processing. To maintain its own integrity
against attacks it contains various software protection mechanisms and peri-
odically passes attestation3 health-check data to the monitoring component.

The standard defines back-end as the component that performs following
functions for the solution:

• attestation – processing of health-check data from the PIN CVM
application,

• monitoring – system monitoring, alert processing, and mitigation of
suspected threats and attacks against the system,

• and processing – processing of encrypted cardholder details and PIN
data from the SCRP to perform a payment transaction.

The COTS may be any device that is capable of hosting the PIN CVM
application. It is operated by the merchant and is handed over to the cus-
tomer when a PIN entry is required for the transaction to be processed. The
standard does not require the device to be PCI certified.

The flow of a PIN transaction can be summarized in the following steps:

1. The PIN CVM application and the SCRP in the SPoC system are
securely initialized with all required keys.

2. PIN CVM application establishes a secure connection channel with the
back-end monitoring system.

3. Security status of the whole system is evaluated by the back-end mon-
itoring system using the attestation component.

4. An EMV card is presented to the SCRP.
2https://www.pcisecuritystandards.org/assessors_and_solutions/pin_trans

action_devices
3A process of determining the current security state of a prover (an entity that proves

its security status) based on measurements defined by a verifier (an entity that verifies
the security status of another entity).

62

https://www.pcisecuritystandards.org/assessors_and_solutions/pin_transaction_devices
https://www.pcisecuritystandards.org/assessors_and_solutions/pin_transaction_devices

5. A PIN entry screen is rendered on the COTS platform by the PIN
CVM application and after a PIN is entered it is enciphered and sent
to SCRP.

6. Cardholder’s data is enciphered by SCRP using preloaded keys and
sent to the back-end.

7. The payment transaction is processed by the back-end.

The SPoC standard splits requirements into modules and submodules,
each covering an area of the solution that is vulnerable to attacks. The
following text summarizes each module.

5.1 Core Requirements
Since the system relies on publicly available devices (such as the merchant’s
mobile phone) for PIN entry, it must be taken into consideration that an
attacker trying to steal cardholder and PIN data could have full access to the
software on the unknown and untrusted platform. As opposed to special-
ized PED (PIN Entry Device) hardware that has all necessary protections
implemented within the device itself, no assumptions about the COTS’ in-
tegrity and security can be made, and therefore the PIN application and the
system as a whole must proceed with extreme caution when capturing and
processing sensitive data.

To ensure the protection of cardholder’s PIN and data and to support
secure mobile payment-acceptance transactions all solution security require-
ments must work together in concert.

All solution providers are responsible for making sure that all compon-
ents of their solutions meet all core security requirements. Without it, the
prevention of theft of data or data manipulation is not guaranteed and the
solution won’t be certified for usage in the production environment.

5.1.1 Protection of Sensitive Services
Functions affecting processes that support the sensitive data (cryptographic
keys, PINs and cardholder data) are called Sensitive services, and their
identification, integrity and availability are required. These services must
not in any way reveal or modify sensitive data when used.

All sensitive services used by components present in the solution must be
properly documented and the documentation has to be updated at least an-

63

nually. Furthermore, documentation is mandatory for all critical processes,
such as key loading and signing of software component binaries.

A dual-control process must be present in the act of generating crypto-
graphic keys used for digital signatures.

5.1.2 Random Number Generation
Since the generation of random numbers, that are unpredictable and un-
known to others, plays an essential role in the system’s security (and in
cryptography in general), all random numbers, when required, must be gen-
erated using a process utilizing sufficient entropy to reduce the risk of replay
attacks. Because of that, each dependency on random number generation
must be properly documented.

For security purposes, all random numbers generated on the COTS device
must be seeded from a value that has been generated from an RNG (Ran-
dom Number Generator) on a PCI-certified SCRP device. This is not re-
quired in cases when the native RNG of the COTS’ OS cannot be seeded
during establishment of secure communication protocols.

This requirement is caused by the fact that sufficient entropy in COTS
devices is not guaranteed, and because of that, the seed has to be taken
from a secure and trusted source, such as an SCRP that has undergone an
evaluation and passed a PCI certification.

Furthermore, the module also requires that all random numbers gener-
ated on the back-end used for security purposes must be seeded from an
RNG that conforms to the FIPS 140-2 Level 3 or from a PCI-approved
HSM (Hardware Security Module).

5.1.3 Acceptable Cryptography
The use of any cryptographic algorithms must be well thought out and
solution providers should not implement their own proprietary cryptographic
algorithms, but rather use such algorithms, that conform to global industry-
standards and are considered secure.

For the solution’s security assurance to be evaluable a documentation
listing all cryptographic processes and operations used must exist. This
applies to cryptographic algorithms used, key identification and hierarchy,
key generation and key agreement processes.

The minimum length of keys used is specified as well as the requirement
to use a unique key per every session to protect the system against replay
attacks when components in the system communicate.

64

To limit the consequences of a potential compromise of a key it is required
that no key used in the system may serve more than one purpose. Each key
and its usage description must be present in the documentation.

Any signatures and fingerprints of keys used should not be created in
a way that it reveals any details about them, reducing the threat of key
compromise. Specifically, it specifies that KCV (Key Check Value) values
should be limited to five bytes or less.

A mechanism to monitor and identify expired keys must be implemented
as none of the keys used mustn’t be expired since that could be an indication
of a security breach.

5.1.4 Key Management
As the security and integrity of keys used in cryptographic processes are
critical to the system, it is required to approach key management with great
care, as the compromise of keys used could lead to invalidation of the sys-
tem’s integrity and credibility. This means that solution’s approach to key
integrity, security, and lifecycle management is essential and must be docu-
mented to be evaluable by a third party.

The solution must be very delicate whenever private or secret keys are
manipulated with. Such keys must be stored only in approved forms such
as the following:

• encrypted using a key of equal or greater length,

• stored within a SCD (Secure Cryptography Device),

• or managed as two full-length components or more.

Mechanisms of key revocation and guidelines on actions to be taken
whenever a security threat or incident is suspected are mandatory.

Additionally, it is also required that audit logs must be kept for all activ-
ities related to key management.

5.1.5 Development
The standard also imposes broad development process requirements, such as
enforcement of code reviews, penetration tests and proper developer training
to ensure all secure development practices are followed.

65

5.2 PIN Cardholder Verification Method Ap-
plication Requirements

The second module defines requirements that apply to the PIN CVM ap-
plication and cover its fundamental aspects.

5.2.1 Development
Each instance of the PIN CVM application must be uniquely identifiable by
the back-end systems and it is prohibited to communicate with unknown or
untrusted SCRPs.

To protect the cardholder’s data, any form of screen capture must be
prevented whenever the application is in front. This also applies to cases
when the application is minimalized and its preview is shown in the task
manager.

In addition to PIN Entry features and components, the PIN CVMApplic-
ation also contains features that are not directly related to security services
and PIN entry such as a general merchant UI. To be able to make updates to
such features without affecting security code, these parts must be logically
separated so they can be independently changed.

Since protection against tampering, reverse-engineering and fault injec-
tion is mandatory, all measurements implemented to prevent such attacks
in the application must be documented.

Both the data-flow diagram, describing the flow of PIN processing, and
the block diagram, displaying the flow of sensitive data through the system,
have to be present in the documentation.

Furthermore, to provide merchants with guidance regarding how to en-
sure the PIN is entered in a way that it cannot be observed by bystanders,
an application instruction manual must be maintained.

Any additional cardholder data entered during the processing of a trans-
action can be viewed in clear text only during its initial entry and only for
the purposes of error correction by the cardholder. If this data has to be
presented again during the transaction processing it must be masked so that
it does not reveal any data correlatable to the cardholder.

One of the requirements specifies that the application’s buffers containing
sensitive data must be explicitly cleared whenever a transaction has finished
or a tamper-detection event has been observed.

66

5.2.2 Secure Provisioning
All platforms supported by the solution must be defined and the PIN CVM
application must not be operated on unsupported systems since they do not
receive security updates patching discovered vulnerabilities. Additionally,
the standard imposes the following requirements on supported platforms:

• the platform’s operating system must validate its integrity on boot as
well as enforce a mandatory access control framework,

• application’s signature and checksum must be verified before its in-
stallation or execution by the platform,

• a mechanism must exist to prevent applications that are not present
in the foreground from accessing details regarding touch events.

To support the authenticity of the PIN CVM application the standard
requires that the application might be installed using only the application
store of the operating system. This also applies to any future updates to the
application.

After the initial installation of the application, it is required that during
the first execution it becomes uniquely identifiable to the back-end systems.
This includes white-box keys used in the PIN CVM application that must
also be unique to each application’s instance. Any initial data, such as
cryptographic keys, must be securely downloaded and stored safely.

5.2.3 Tamper Checks
To reduce the ability of potential attackers to perform tampering with the
PIN CVM application using the process of reverse-engineering, the applic-
ation must implement tamper-resistance measures to code that is involved
in the use of security features. One of the measurements that can be imple-
mented may be code obfuscation, which makes it more difficult to perform
useful code decompilation for the attacker. All tamper-resistance measure-
ments must be documented.

When a COTS device has been rooted or jailbroken, it is considered
vulnerable to malicious tampering and the PIN CVM application must be
able to detect it and not accept PIN data.

5.2.4 PIN Entry
During PIN entry the cardholder enters their PIN using the PIN CVM ap-
plication that must render a custom keyboard because the keyboard provided

67

by the OS is susceptible to spoofing and whenever one of the following events
happen during a PIN entry, the session must be terminated and all session
data cleared:

• screen focus of the application lost (includes switching between applic-
ations),

• attempts to perform screen capture,

• application is not running in a full-screen mode,

• device sensors have been accessed by any other application,

• application is running in developer or emulator mode.

It is not allowed for the application to give away any visible or audible
signal related to the touch event, since it may give away the cardholder’s
PIN. Additionally, the PIN entered must be fully masked and the application
mustn’t cache it.

The PIN entry is available only for EMV-based transactions that are
processed online.

5.2.5 PIN Encryption
The PIN entered must be immediately encrypted and remain encrypted
when sent to the SCRP. The application must protect the entered PIN from
any extraction attempts till it’s present in the memory.

PIN encryption keys in the application must be securely established and
adhere to requirements specified in Appendix C of the standard. This also
applies to all cryptographic algorithms related to PIN encryption.

It is mandatory that all white-box cryptography keys are changed monthly,
at a minimum.

5.2.6 Audit Logs
To help with intrusion detection, problem identification and reconstruction
of events, the PIN CVM application must securely send logs to the back-end
monitoring system. Logs created must contain the information required by
the standard and must support the reconstruction of the following events:

• access to security functions and application’s authentication mechan-
isms,

68

• application lifecycle events (initialization, stopping or pausing),

• access to PIN data.

However, it is forbidden that logs contain any data correlatable with PIN
data.

5.3 Back-end Systems – Monitoring/Attest-
ation

The third module defines requirements related to components responsible
for monitoring and attestation.

The interaction between a verifier and a prover to evaluate the prover’s
security and integrity is called attestation, during which the verifier is con-
sidered trusted and the prover is considered untrusted. The verifier pre-
defines measurements and thresholds on which the evaluation is based. The
process of attestation is crucial and must be performed periodically, as it
provides the required assurance to the verifier that the prover can be trus-
ted to accept and process sensitive data.

5.3.1 Attestation Types And Components
Different attestation types based on possible locations of the prover as
defined by the standard are listed in Table 5.1:

Type Prover Verifier
1 SCRP Back-end / PIN CVM application

attestation component
2 COTS platform Back-end / PIN CVM application

attestation component and SCRP
3 PIN CVM application

attestation component
Back-end attestation component and

SCRP

Table 5.1: Attestation types based on the location of the prover.

The diagram of the attestation process can be found in Figure 5.2 and
the annotated arrows have the following meaning:

• 1a – the SCRP is verified by the PIN CVM application, but since the
PIN CVM application itself has to be verified, further verification of
SCRP is required,

69

• 1b – the SCRP is verified by the back-end system, and its integrity is
assured,

• 2a – the COTS platform is verified by the PIN CVM application, but
since the PIN CVM application is running on the COTS platform,
further verification is required,

• 2b – the COTS platform is verified by the back-end system, and its
integrity is assured,

• 3a – the PIN CVM application is verified by the back-end system, and
its integrity is assured.

COTS

3a
- PIN Entry
- Attestation Component
- ...

PIN CVM APPLICATION

32a 2b

Operating System

Firmware

Hardware

1b

SCRP

1a
Card Reader

Firmware

Hardware

Back-end Systems

Processing

Monitoring

Attestation

PIN

Figure 5.2: Attestation flow diagram.

Additionally, the SCRP may also perform verification of the PIN CVM
application and the COTS platform to further increase the security of the
system as a whole.

5.3.2 COTS System Baseline
The solution provider has to define a set of requirements that COTS devices
and operating systems must fulfill for the PIN CVM application to be ex-
ecuted there. All processes in use that determine the subset of all currently
deployed COTS platforms must be documented as well as the process that
is used to discover new bugs and vulnerabilities in the system.

70

If a COTS platform becomes unsupported (for example due to a new
vulnerability discovered) all COTS devices using that platform must be pro-
hibited from processing transactions.

5.3.3 Attestation Mechanism
It is required that the process of attestation must be performed whenever
the PIN CVM application has been initialized or when five minutes have
passed since the last attestation has been made.

Since a potential attacker could use the attestation mechanism to in-
troduce a forged component into the system all attestation messages and
communication must be cryptographically signed.

Similarly to the code of security features, all attestation code implemen-
ted in the PIN CVM application must be protected by tamper-resistance
features.

As some attestation messages may require a manual process (e.g., during
a potential tamper event) they must be escalated to vendor staff, which
validates and actions them within 48 hours.

Any manual updates must be done according to the documented proced-
ures and deployment of such changes must utilize the dual-control process.

5.3.4 Attestation of SCRP (Type 1 Attestation)
Attestation of the SCRP must occur whenever the system has been initial-
ized, the SCRP is reconnected to the COTS platform, or when it has been
requested by the monitoring environment. Additionally, prior to the first
transaction, the attestation must also occur. The monitoring system may
also poll the SCRP for attestation at unpredictable intervals.

During attestation of the SCRP, it has to be verified at a minimum that
SCRP’s identifier matches the identifier of the SCRP associated with the
COTS, its firmware version is supported and that it is operating in a secure
state (it hasn’t been tampered with).

5.3.5 Attestation of COTS (Type 2 Attestation)
The following events must be detectable by attestation mechanisms of the
COTS:

• the COTS platform OS or the PIN CVM application has been tampered
with,

71

• the PIN CVM application has been executed in developer or debug
mode or an emulator is used to run it,

• relay attacks were performed on the PIN entry component,

• attempts to root the COTS platform OS were made.

The COTS platform must undergo an attestation at a minimum whenever:

• the PIN CVM application is started and prior to the first transaction
of the day,

• the PIN CVM application is minimized and brought to the front,

• initiated by a monitoring environment request,

• major changes were made to the solution configuration.

Attestation responses of the COTS platform must also include complete
configuration information such as SCRP and merchant ID, version of the
application and platform’s firmware. However, responses mustn’t leak in-
formation about the attestation mechanism implemented or interrupt an
ongoing payment transaction.

To protect against man-in-the-middle attacks it is required that responses
are unclonable and complete within an expected timeframe.

5.3.6 Monitoring Environment Attestation of PIN CVM
Application (Type 3 Attestation)

A prerequisite for the attestation of the PIN CVM application is the suc-
cessful attestation of the COTS platform. The solution provider must also
define a set of rules for analysis of the attestation responses and have a
risk-severity rating assigned for it.

Requirements specifying when attestation of the PIN CVM application
has to occur are similar to those that define when attestation of the COTS
platform must occur.

The solution provider must also define a minimum PIN CVM application
supported version and enforce that participation of unsupported versions of
the PIN CVM application in payment processing is prohibited.

Additionally, to prevent abuse of the PIN CVM application attestation
mechanism, the solution must have controls established to protect the sub-
version of the prover (PIN CVM application), such as defense against DDoS
or data poisoning attacks.

72

5.3.7 Basic Protection
Back-end components related to attestation and monitoring that reside in
CDE 4 must be PCI compliant and all attestation traffic must be encrypted
and signed to ensure that unauthorized components and subjects cannot
gain access to attestation data.

5.3.8 Operational Management
Processes that support the operation of the monitoring environment must
be well documented and the staff of the monitoring environment must be
provided with up-to-date security training. Reviews, that verify operational
security processes, must be performed at least quarterly.

5.4 Solution Integration Requirements
The Solution Integration Requirements module defines requirements mainly
related to the communication between components of the solution.

5.4.1 Pairing of Disparate Components
It is required that both the PIN CVM application and SCRP components are
uniquely identified and their pairing is validated before any communication
between the PIN CVM application and the SCRP happens. In addition to
that, any PIN-based transaction must be associated with a specific merchant,
COTS and SCRP components that took place in its processing.

5.4.2 Secure Channels
A secure channel that provides mutual authentication, so that each com-
ponent participating in an exchange of sensitive data can be identified, must
exist between each of the disparate components. Keys used to encrypt data
going through a secure channel must not be the same keys used for data
encryption.

5.4.3 PIN CVM Solution Requirements
The solution is allowed to initiate PIN entry sessions only when online (con-
nected to the back-end monitoring and attestation systems) and authorized

4Cardholder Data Environment – Processes and people that store or process sensitive
cardholder data.

73

by the monitoring environment.
All transactions performed using the solution must be analyzed for anom-

alous and potentially fraudulent activity, either by local or remote detection
systems.

When a solution provider submits the solution to the PCI-approved lab
for certification, it is also required that the lab is provided with a test en-
vironment that the solution runs in with full accessibility and visibility so
that it can be evaluated in-depth. A solution provider must also have a
risk-assessment policy as well as a threat-management process document,
which is reviewed at least annually.

The standard further requires that the injection of all encryption keys is
done by a key-injection facility compliant with PCI PIN Security Require-
ments.

5.5 Back-end Systems – Processing
Since the back-end system is the only component of the solution that is
allowed to perform decryption of cardholder data and PIN data, it must
adhere to the PCI PIN Security Requirements as well as to PCI DDSS DEV
requirements.

5.6 Secure Card Reader (SCRP)
The standard allows only PCI-approved SCRP devices to be used in the
solution for reading chip cards of customers.

74

6 Contactless Payments on
COTS

This chapter covers the CPoC (Contactless Payments on COTS) standard
[36], where contactless-enabled cards and devices such as smartwatches and
mobile phones can be accepted using COTS devices with embedded NFC
capabilities to authorize contactless card payments, making card acceptance
easier and more available for merchants. All hardware that is required to
accept cards is a COTS device with NFC capabilities running a supported
version of an operating system and the associated CPoC application connec-
ted to back-end processing systems (see fig. 6.1).

This solution further reduces the initial cost when a merchant decides
that he would like to accept card payments as it is very likely that a mer-
chant already owns a supported COTS device. As no special hardware such
as an SCRP or an external pin-pad is required, the process of merchant on-
boarding is typically faster in comparison to onboarding with a dedicated
card terminal.

ST
AN
IS
LA
V
KR
ÁL02

/2
2

VALID

THRU

MONTH/YEAR

12
34
 5
67
8
90
12
 3
45
6

1234 5678 9012 3456

02/22

1.23 EUR

Back-end
Processing

System

Payment
Network

Figure 6.1: A diagram visualizing card acceptance using a CPoC solution.

Cardholder data is wirelessly transmitted to the COTS device using the
device’s embedded NFC antennas, where it is initially processed by the CPoC
application that periodically undergoes security attestations. After that, it is
sent to the back-end systems of the solution, where it is eventually forwarded

75

to the payment network. The authorization result is later received by the
COTS device and displayed to the merchant by the CPoC application.

For example, this solution may prove useful for traveling merchants as
they won’t have to carry any additional equipment during their sales. Addi-
tionally, the quick setup and minimal hardware requirements make it suitable
for temporary points of sale (such as payment on delivery) or philanthropy
events where it was previously costly and inefficient to accept card payments.
Merchants can accept contactless payments using the Android device they
already own.

A CPoC application residing on the COTS device provides a channel
to the embedded NFC interface to be able to initiate the reading of a con-
tactless payment instrument. Cardholder data read by the NFC controller
using a contactless kernel are encrypted and delivered through a secure chan-
nel to the back-end processing environment to be decrypted so that it can
be passed for subsequent transaction processing. Furthermore, the applic-
ation periodically passes attestation health-check data about the platform
to the back-end monitoring system and using implemented software protec-
tion mechanisms protects the solution against attacks. The architecture of
a CPoC solution is visualized in Figure 6.2.

COTS

- Processing of data read
- Attestation Component
- Contactless Kernel
- Software Protection Mechanisms

CPOC Application

Operating System

Firmware

Hardware

Back-end Systems

Processing

Monitoring

Attestation

Contactless
Cardholder

Data

NFC Controller

Figure 6.2: A diagram visualizing the architecture of a CPoC solution.

76

The commercial-off-the-shelf device may be any device with NFC capab-
ilities that runs a supported up-to-date operating system. This may include
various Android devices, such as smartphones or tablets.

A set of back-end systems is responsible for the periodical evaluation
of the solution’s integrity which is done by providing monitoring and at-
testation functions. It is also responsible for forwarding the transaction and
cardholder data received from the CPoC application to the payment network
for authorization.

The flow of the processing of a transaction in a CPoC solution is described
in the following steps:

1. The CPoC application is downloaded from the OS application store.

2. A secure communication channel between the CPoC application and
back-end systems is established.

3. The security status of both the COTS platform and the CPoC applic-
ation is determined by the attestation component.

4. Merchant data and cryptographic keys are used to initialize the CPoC
application.

5. Device’s proximity is probed for contactless payment instruments using
a contactless kernel after the merchant initiates the payment transac-
tion by setting the amount for authorization.

6. A contactless payment instrument is presented to the COTS device
and required data is acquired from it.

7. The CPoC application encrypts the transaction data and sends it to
back-end systems for subsequent processing.

The CPoC standard does not cover the printing of a transaction receipt,
as it is not expected that COTS devices are equipped with a receipt printer.
Merchants may utilize external printers or paperless receipts that can be
sent through an SMS or email.

6.1 Security Requirements
It is not surprising that most of the security requirements specified by the
standard that the solution must meet are similar to those that are defined
for SPoC solutions as both solution types operate with sensitive information
related to financial operations.

77

Similarly to the SPoC standard security and test requirements are di-
vided into 5 modules:

• Core Requirements – defines base security rules for cryptography
and key management, random number generations, privileged access
to sensitive data and secure services, software development and oper-
ational management.

• CPoC Application – contains requirements for tamper-resistance
and code obfuscation methods implemented in the CPoC application,
transaction processing, encryption of cardholder data and maintaining
audit logs.

• Back-end Systems – Monitoring/Attestation – describes required
properties of the monitoring and attestation components as well as
types of attestations to be performed.

• Back-end Systems – Processing – states that the decryption of
all cardholder account data must occur only in back-end payment pro-
cessing environments that maintain and comply with PCI DSS require-
ments.

• Contactless Kernel – defines contactless kernel requirements such
as that the solution must use implementations of kernels approved by
payment brands and complying with PCI DSS requirements.

During attestation the security of the COTS platform is evaluated and
at a minimum, the following must be reported:

• whether the device is rooted or operating in developer mode,

• asynchronous rooting and unrooting of the COTS OS has been detec-
ted,

• platform’s support for secure compilation and application execution,

• modifications or tampering of the platform’s OS,

• rollback of the platform’s OS or the CPoC application,

• NFC interface access logs if available.

If any of the following events are detected during transaction processing
the payment session must be immediately terminated and all captured data
deleted:

78

• tamper-detection event is signaled,

• it is detected that the application is running in a developer or emulator
mode,

• the application loses foreground, focus, pauses or stops executing.

When reading cardholder data from the contactless payment instrument
the CPoC must attempt to lock the NFC interface so that it cannot be
used by other applications residing on the platform. Not doing so might
allow other applications to monitor and sniff data exchanged between the
customer’s payment instrument and the CPoC application. A solution pro-
vider should carefully examine the API of the platform’s OS to find suitable
locking options. For example, the OS may only allow applications in the
foreground to access the NFC interface. The CPoC application can utilize
that restriction by reacting to the loss of focus and aborting any transaction
processing once it is removed from the foreground, effectively locking the
NFC interface for itself.

Similar to the locking of the device’s NFC interface, the application must
also attempt to lock the device camera during the processing of a transaction
as the camera may be misused by potential attackers to visual capturing of
cardholder data when it is in proximity to the COTS device. A solution
provider should examine the possibilities of locking the camera in the API
of the platform’s OS, and if such locking is unavailable, it should at least
prompt the user to disable the camera manually and not allow to initiate a
transaction until the camera is disabled.

6.2 Limitations
Since the CPoC application may run on a wide variety of uncertified devices
to which users may have full privileged access and weren’t initially designed
to accept payments, the standard prohibits offline authorizations as well
as the PIN CVM method as the application may be exposed to attacks
from malicious software residing on the device. This means, due to security
challenges and complexities of protecting cardholder data in an uncertified
environment, traditional contactless transactions that are over the contact-
less amount limit cannot be performed as they require the cardholder to
enter his PIN. Furthermore, the COTS device must be connected to the
internet during the processing of a payment transaction as all transactions
are required to be authorized online.

79

The prohibition of PIN CVM methods is one of the biggest disadvantages
of CPoC solutions, as it forbids a particular group of transactions. However,
as the popularity of card tokenization is increasing [37], cardholders are more
often being verified using the CDCVMmethod, which does not require a PIN
to be entered on the merchant’s payment acceptance device, but uses the
customer’s mobile phone to enter the PIN or completely avoids it by utilizing
biometric authentication.

To allow both PIN entry and the reading of cardholder data on COTS
devices, it is speculated that the PCI Security Standards Council will in the
near future issue a new standard called CPoC + PIN [38] that will further
increase the security requirements put on the solutions. Various technologies
such as TEE (Trusted Execution Environment) and TUI (Trusted User
Interface) that help implement a secure environment on the COTS device
to capture cardholder PIN are emerging and will probably be used to meet
the requirements of the new standard.

It should be noted that some card schemes such as Visa or Mastercard
have published contactless kernels and guidelines that allow PIN transactions
using a combination of CPoC and SPoC solutions [39, 40].

6.3 Contactless Kernels
Both Visa and Mastercard offer their own contactless kernels that can be
used in CPoC solutions. These kernels also come in the form of Java libraries
that can be used in Android applications.

6.3.1 Visa
Visa allows members of the Visa Ready program to use the Visa Tap To
Phone SDK, which can be used in Android applications to accept contactless
Visa cards. This SDK contains the Visa Contactless Kernel as well as other
functions that support transaction processing on Android COTS devices.

Additionally, solutions created with the Visa SDK that are compliant
with the Visa PIN Entry guidelines may support the Online PIN CVM
method. This means that when using this solution cardholders can present
their cards to a COTS device and be prompted to enter their PIN on the
same COTS device, as opposed to solutions built on the base CPoC standard,
where transactions requiring the Online PIN CVM method are prohibited.

80

6.3.2 Mastercard
During the year 2020 Mastercard has developed and released their Tap on
Phone pilot SDK that contains a selection module and a kernel compli-
ant with Mastercard contactless specifications, allowing compatible Android
devices to read contactless Mastercard cards [40]. Tap on Phone with PIN
pilots can perform PIN CVM methods and compliance with PCI CPoC is
not required as compliance with Mastercard Security Principles is sufficient.
As of 2022, this SDK is free of charge and is available after email commu-
nication with Mastercard.

6.4 Successful Card Read Rate
When trying to tap the card to a COTS device, one may observe that it
requires more time and precision to correctly place the card to the NFC
reader of the device to successfully present it. Additionally, the orientation
of the card when tapping it affects the rate of successful presentations [41].
The process of reading a card is certainly not as smooth as when using
traditional card terminals. However, this is to be expected as COTS devices
were not designed for card acceptance as opposed to card terminals that
have their NFC antennas optimized in a such way, that the successful card
read rate is very high.

6.5 Existing Implementations

6.5.1 Android OS Platform
As of Q1 2022, there are several applications on the Google Play application
store that enable Android devices with NFC capabilities to accept payment
cards. Example of such applications include UniCredit Bank SoftPOS1,
Revo SoftPOS2 and SoftPOS3.

These applications require that a merchant undergoes a registration pro-
cess and signs a contract with an acquiring bank before they can be used to
authorize transactions.

1https://play.google.com/store/apps/details?id=com.provisionpay.softpos
.unicredit

2https://play.google.com/store/apps/details?id=app.openmpos.eservice.Re
voSoftPOS

3https://play.google.com/store/apps/details?id=com.mst.retail

81

https://play.google.com/store/apps/details?id=com.provisionpay.softpos.unicredit
https://play.google.com/store/apps/details?id=com.provisionpay.softpos.unicredit
https://play.google.com/store/apps/details?id=app.openmpos.eservice.RevoSoftPOS
https://play.google.com/store/apps/details?id=app.openmpos.eservice.RevoSoftPOS
https://play.google.com/store/apps/details?id=com.mst.retail

Based on its description in the application store, the Revo SoftPOS ap-
plication claims that it supports the PIN CVM. None of the other mentioned
applications do not explicitly claim that this feature is supported.

However, when taking the number of downloads and reviews of the men-
tioned applications into consideration, it seems like these solutions are not
widely used. Negative reviews also suggest that users of these solutions are
not entirely satisfied with them. In summary, some CPoC implementations
do exist, their quality is uncertain and they aren’t frequently adopted by
merchants at this moment.

6.5.2 iOS Platform
At this moment, there are no solutions available that provide support of
processing payment card transactions on iOS. This is caused by the fact
that the iOS SDK currently forbids communication with payment-related
card applications [42].

In February 2022 Apple has announced that later in 2022 US merchants
will be able to accept payment cards on iPhones using partner-enabled iOS
apps4. This new feature will be called Tap to Pay and will be available to
application developers in the SDK of the upcoming iOS versions running
on iPhone XS or later devices. This means that in the next years we can
expect various iOS applications that will enable iPhones to be used as card
terminals.

It should be noted that the referenced Apple press release does not men-
tion whether the PIN CVM method will be supported.

4https://www.apple.com/newsroom/2022/02/apple-unveils-contactless-pay
ments-via-tap-to-pay-on-iphone/

82

https://www.apple.com/newsroom/2022/02/apple-unveils-contactless-payments-via-tap-to-pay-on-iphone/
https://www.apple.com/newsroom/2022/02/apple-unveils-contactless-payments-via-tap-to-pay-on-iphone/

7 Extending the Dotypay
Application

The main goal of the implementation part of this master’s thesis is to verify
that COTS devices running the Android OS can be used to accept contactless
payment cards by extending the Dotypay1 application with support for this
group of devices.

Dotypay is a product developed by Smart software s.r.o.2 that allows
merchants to interface with payment cards to make electronic funds trans-
fers via a payment terminal it offers. It is currently available in the Czech
Republic and Slovakia with plans to expand to Slovenia and Hungary in the
near future.

The terminal is a mobile device running an Android OS with a built-in
chip and contactless card reader with the support of magnetic stripe cards.
The fact that the terminal is running an Android OS means that it allows
for the utilization of various cash register applications that can be installed
directly on the terminal. This reduces the number of devices the merchant
has to operate in order to process customer orders to just a single all-in-one
device.

The terminal comes with two preinstalled applications: Dotypay and
Dotypay Launcher. The former is used for creating and processing pay-
ment, preauthorization and return transactions with the ability to preview
the transaction and settlement history. The latter is used for device config-
uration which consists of the following tasks:

• cryptographic keys setup – in order to securely process card pay-
ment transactions, the terminal must be properly configured in the
means of having all required cryptographic keys securely stored in the
device storage,

• merchant personalization – configuration of the terminal based on
the merchant it belongs to (e.g., terminal ID, merchant ID, currency
code, country code, etc.),

• and maintenance of the software installed – periodically check
whether there are updates available to the installed software such as

1https://dotypay.com/
2https://www.smart-software.cz/

83

https://dotypay.com/
https://www.smart-software.cz/

payment application, terminal firmware or cash register application.

Configuration and management of terminals happen on a dedicated web
application, where merchants can also access transaction history, analytics
and other useful insights of made turnovers.

After initial validation on the terminal, card transactions are routed to
the systems of the Monet+ acquirer3 for authorization.

7.1 Application Specification
The Dotypay application is an application for the Android OS platform
and is written mostly in the Kotlin language with some of the legacy code
written in Java. It was designed in a such way that it can only be run
on the Landi A8 device4 and supports all basic features one would expect
from a fully-fledged card terminal, including standard payment transactions,
refunds and pre-authorizations. The Landi A8 device is running version 5.1
of the Android OS. The application’s dependency on the Landi A8 device is
the main issue there is with the application, as it makes use of other devices
impossible. It is also expected that the device vendor will soon no longer
support the device with any updates.

The application uses a local SQLite5 database to store the history of
performed transactions and heavily relies on the reactive library RxJava6 to
control the application flow. Using database triggers, the local transaction
history of each terminal is synchronized to the back-end systems by making
HTTP requests to the REST API interface of the back-end.

Additionally, to allow integration with POS systems of a wide variety,
the application exposes a REST API that can be used to initialize payment
transactions without having to manually enter the transaction amount or
currency in the application itself. The exposed REST API implements the
Nexo protocol7 used in the card payment industry to unify the card terminal
interface.

It should be noted that the application does not allow offline authoriza-
tions. This means that every card transaction must be sent to the Monet+
acquirer. Before communication with Monet+ is possible, the device must
be properly loaded with encryption keys and terminal configuration (such
as terminal ID and merchant ID) to allow for secure communication with it.

3https://www.monetplus.cz/emv-payments
4http://www.landicorp.com/en/product3_312.html
5https://sqlite.org/index.html
6https://github.com/ReactiveX/RxJava
7https://www.nexo-standards.org/standards/nexo-retailer-protocol

84

https://www.monetplus.cz/emv-payments
http://www.landicorp.com/en/product3_312.html
https://sqlite.org/index.html
https://github.com/ReactiveX/RxJava
https://www.nexo-standards.org/standards/nexo-retailer-protocol

7.2 Application User Interface
The user interface is rather simple and provides quick navigation using a
subtle color palette to distinguish between the main UI elements of the
application (see figures 7.1 and 7.2).

Figure 7.1: Screenshots of the Dotypay application screens during user sign
up, action selection and transaction amount entry.

Figure 7.2: Screenshots of the Dotypay application screens during card
presentation and after a transaction authorization is finished.

85

Transitions between the screens of the application are visualized in Figure
7.3. Some of the application screens that are not directly linked to the
processing of payment transactions are omitted there.

Login screen Main Menu screen Transaction Amount
Input screen

Card Reading
screen

Transaction Summary
screen

Other application
screens

Figure 7.3: A diagram visualizing the transitions between screens of the
application.

If enabled in the device’s configuration, the application may prompt the
merchant for a variable symbol or the customer to specify a tip that will
be added to the transaction amount. Transaction parameters, such as the
amount or variable symbol, can be automatically set by scanning a payment
QR code.

Additionally, the device’s configuration allows putting the terminal into a
kiosk mode in which the application’s main menu is hidden and transactions
are most often initiated remotely (typically by a POS system).

7.3 Cryptographic Key Infrastructure and Ex-
change

To create a secure environment for card transaction processing, it is required
that all components of the solution (card terminal, back-end processing sys-
tems, the acquirer, etc.) have established a secure communication channel
between each other.

The following text is solely based on the integration with the Monet+
acquirer that is used in the Dotypay product to authorize card payments,
however, it is expected that other acquirers and card terminal manufacturers
follow a similar infrastructure.

To allow secure cryptographic key exchange card terminal manufacturers
sell in addition to card terminals a specialized device called KLD (Key

86

Loading Device), that is used to safely inject symmetric cryptographic keys
into terminals. The KLD device itself is injected with a master key and the
premise is, that injected keys cannot be extracted from either the KLD or
terminals. See Figure 7.4 for an example of a KLD device.

Figure 7.4: A KLD device from the Nexgo manufacturer.

An acquirer keeps the KLD master key secret and on-demand gener-
ates a list of TTK (Terminal Transport Key) keys that are associated with
provided serial numbers of terminals to be introduced to the payment net-
work as requested by a solution provider. Both the KLD and the list of
enciphered TTK keys are then delivered to the solution provider, who then
uses the KLD to inject the received keys into its terminals. During the dual-
control process of injecting keys, the KLD decrypts the enciphered keys
using its master key. After that, the terminal is prepared to be shipped to
merchants.

Eventually, during merchant personalization of the terminal, additional
cryptographic keys such as TMK (Terminal Master Key) and TEK (Ter-
minal Encryption Key) must be injected into the terminal. These keys are
delivered enciphered by the TTK to the terminal over HTTPS and must be
decrypted before being stored in the device’s storage.

87

The previous text is mostly based on the process of key exchange with the
Monet+ acquirer that the Dotypay solution uses to forward authorization
requests to card schemes. The key exchange itself is initiated by a separate
application on the terminal called Dotypay Launcher that uploads required
credentials to an SFTP (Secure File Transfer Protocol) server operated by
Monet+. In response to the key exchange request, the acquirer uploads
enciphered keys to the SFTP server that the Dotypay Launcher application
downloads and loads into the card terminal using the device’s SDK API.
After that, the card terminal is ready to begin communication encrypted by
acquired keys that is considered secure by both parties.

7.4 Application Architecture
The development of a card transaction processing solution involves an in-
tegration of many processes and services. Not only does the solution as a
whole must be able to participate in an EMV dialogue, but it also must
send transaction data to an acquirer for online transaction authorization. In
addition to that, it is also expected that the solution allows merchants to
view the transaction history in the card terminal application itself and also
to view more sophisticated reports of sales in some form of a web interface.
The card terminal application should also be able to initiate a card transac-
tion after receiving a request originating from an authorized remote device
located in a local or remote network.

From a business perspective of a solution provider, one of many crucial
requirements is that the designed architecture of the application residing on
the card terminal must be relatively easily portable to other terminals that
it was not originally designed for. The probability of the risk that a need to
change terminal vendors arises, be it due to an end of device support or due
to changes to a vendor’s pricing policy, is not negligible, but rather high,
and its consequences are very severe if not handled properly.

Another component of the solution that can eventually change during its
lifetime is the dependency on the acquirer. This may involve changes made
to the interface exposed by the acquirer or integration of an interface of a
new and previously unknown acquirer. New acquirers may also use different
techniques of cryptographic key exchange.

The Dotypay card terminal application was initially developed specific-
ally only for the Landi A8 device, which offers chip, contactless and magnetic
stripe interfaces as well as a receipt printer. Because rapid progress on the
product was required by the business during its initial development, some

88

aspects of the application’s architecture weren’t properly thought out, which
resulted in dependencies on the Landi A8 device interface being scattered
everywhere around the application’s code, making it almost impossible to
implement support for any other card terminals.

It was required to design a new architecture that would allow separat-
ing the device-specific code from other application code, making it easy to
replace the dependency on the underlying device interface (see fig. 7.5).

Transaction
State

searchForCard

(TransactionRequest,
CardData)

Transaction
StatusEvent

TransactionService

TransactionStatus
Event

authTransaction

CRUD operations
TransactionProcessor

SQLite
database

Transaction
Request

CardFragment
CardEvent

CardReader

PinPad Device SDK API

EMV Handler

AcquirerEvent
AcquirerService

Acquirer

TransactionRepository

Transaction
Request

HTTPd server

data
exchange

over
HTTPS

POS Nexo protocol
over HTTPs

Dotypay Portal
REST API

data exchange over HTTPS

PortalSynchronizer

KeyService

Figure 7.5: The newly designed architecture of the Dotypay application.

Aside from the promise of easier application maintenance, the main
reason why it was necessary to design a new application architecture was
the business requirement of being able to operate the Dotypay application
on other devices (see fig. 7.6), including COTS devices and devices from the
Nexgo manufacturer (specifically the Nexgo N86 device8).

8https://www.nexgoglobal.com/smart-pos/n86-smart-pos-terminal.html

89

https://www.nexgoglobal.com/smart-pos/n86-smart-pos-terminal.html

Figure 7.6: The updated application running on Nexgo N86 and Google
Pixel 6 devices.

7.4.1 Refactoring of the Application
Right after the new architecture has been designed, the author of this mas-
ter’s thesis presented it to the team behind the Dotypay application. After
making some minor tweaks to the architecture the team started to refactor
the application to use the new architecture. As a lot of Landi A8 device-
specific code was scattered around the whole application codebase, this was
a particularly challenging task. Before the planned support for devices from
other manufacturers, such as Nexgo, Sunmi9 or Kozen10, the Dotypay team
struggled whenever a new feature was requested or a new bug was found
because the application’s codebase was hard to navigate around and even
small changes could potentially break other (presumably unrelated) features
of the application. The new architecture also aimed to solve this issue as it
has been drastically slowing down the development of the application. Ad-
ditionally, the newly achieved modularization achieved by putting emphasis
on separation of concerns, from which the application codebase benefited,
made covering some parts of the application’s code with tests much easier,

9https://www.sunmi.com/en/
10https://www.kozenenterprise.com

90

https://www.sunmi.com/en/
https://www.kozenenterprise.com

and unit tests targeted at critical parts of the application were created. Once
the refactoring was done, the application’s codebase was ready to be exten-
ded with the support for other devices, which meant implementing interfaces
hidden behind the CardReader architecture component.

7.4.2 Transaction Service Component
Initiation of a payment transaction happens in the Transaction Service,
where based on the input transaction request a new session is created and
sensors of the card terminal are activated to probe for customer payment
instruments, and when found, the card data alongside the transaction data
is sent to the Transaction Processor component where it is further processed.
Activation of card terminal sensors is delegated to the Card Reader com-
ponent.

Additionally, the author of the Transaction Request is notified several
times during the processing of the transaction with the latest transaction
state. This allows displaying the current status of the transaction on the
device’s screen. In the Dotypay application, the instances of the CardViewM-
odel class observe the status of the ongoing transaction and display it to
the user.

7.4.3 Card Reader Component
The responsibility of the Card Reader component is to facilitate the com-
munication between the terminal and the presented payment card. This
involves the usage of the device’s SDK to search for cards and to gain ac-
cess to the device’s encryption capabilities, which are for example used to
encipher the entered PIN during cardholder verification or encryption of the
communication with the acquirer.

Searching for a card is initiated by calling the searchForCard method,
which returns a stream of events that are broadcasted whenever a card is
interacted with. Events are also broadcasted to notify whenever an error
during a communication with a card has occurred or when user interaction
is required. One of the scenarios that require user interaction is when the
presented card contains multiple applications and the cardholder is asked to
select which application should be used for further processing. Some of the
most important events broadcasted by this component include:

• ReadCardStarted – informs that probing for cards has been started,

91

• SelectAid – requests user interaction to select a card application from
a candidate list to be used for further transaction processing,

• OnlineRequest – indicates that the transaction requires online au-
thorization,

• KernelVerificationSuccessful – indicates that the response from
the acquirer has been sucessfully verified,

• WrongPin – notifies that an invalid PIN has been entered.

Device SDK

The Device SDK component provides an interface to other device-specific
features such as illumination of LED indicators or activation of the speaker to
provide sound feedback. The device’s capabilities to read cards are exposed
by this component.

PIN Pad

The functionality of displaying a PIN pad to make entry of a cardholder’s
PIN possible is provided by the PIN Pad component. The layout of the PIN
pad’s keys can be specified as well as whether the PIN is being entered for
online or offline verification. In the case of an online verification, the PIN is
enciphered into a PIN block and is sent to the acquirer for verification.

The PIN Pad component also provides methods that allow using the
secret keys stored in the device’s storage to encrypt and decrypt sensitive
data.

EMV Handler

The EMV Handler component provides an interface to communicate with
a card using the EMV protocol. It is used when the card is being presen-
ted to the card reader using one of the available physical interfaces. Data
exchanged are encoded using the TLV encoding.

7.4.4 Transaction Processor Component
Once a card has been successfully read and all required data have been
gathered from it, the Transaction Processor receives this data and addi-
tional processing begins. Before being sent to the acquirer for authorization
the transaction data is stored in the local database using the Transaction
Repository component. After a response from the acquirer is received the

92

transaction status in the database entry is updated accordingly and the
authorization result is further propagated to the Transaction Service com-
ponent.

7.4.5 Acquirer Service Component
Communication with the acquirer that facilitates the incoming payment card
transactions is encapsulated in the Acquirer Service component so that if a
new acquirer’s services must be integrated, the scope of changes required
to be made in the solution is minimized. This component uses the features
of the PIN Pad component to securely encrypt the communication between
the terminal and the acquirer using the secret keys stored in the device’s
storage.

7.5 Modularization of the Application
To add support for other devices to the Dotypay application, it was required
to create a device-specific implementation of most of the interfaces based on
the architecture as described in the section 7.4. Additionally, all these mod-
ules and components associated with device-specific implementation have to
be properly initialized during the application startup.

To be able to efficiently initialize and connect created modules and com-
ponents of the designed architecture in the Dotypay application, a depend-
ency injection container had to be introduced to the application. This in-
volved choosing the right dependency injection library available for Android
applications. The two most used dependency injection libraries in Android
application development are the Dagger 2 [43] and Koin [44] libraries. Al-
though the Koin library uses more readable constructions, offers native Kot-
lin API and does not negatively impact the compile time of the application,
the Dagger 2 library, after a research, was selected, as it validates all con-
figuration preconditions at compile time and uses code-generation to create
component providers, meaning that almost all issues there might be with
the dependency injection container, such as missing or circular dependen-
cies, are discovered during compile time, rather than during runtime. This
eliminates a certain domain of unnecessary runtime crashes, which is im-
portant for an application related to finances. The Koin library does not
use any static validation or code generation and thus does not provide this
benefit.

93

7.6 Implementation for Nexgo Devices
Adding support for Nexgo devices to the Dotypay application meant using
the Nexgo Device SDK API to create an implementation of architecture’s
interfaces related to payment card discovery and interactions with payment
cards.

The core of the implementation lies in the NexgoCardReader class from
the com.stpos.a8pos.devicesdk.impl.nexgo package. Its most import-
ant method is the searchForCard method, which returns a stream of CardEvent
objects that have to be sent in the right order so that the transaction is cor-
rectly processed. To even better modularize the code, following classes that
are imported in the NexgoCardReader class were created:

• NexgoEmvInitializer – initializes the Nexgo EMV handler by setting
the list of supported AIDs and issuer certificates,

• NexgoEmvHelper – contains code that is responsible for controlling
the flow of an EMV transaction (e.g., prompting for PIN or gathering
cardholder data)

• NexgoCardReaderHelperImpl – provides helper methods for discover-
ing cards entering one of the device’s interfaces.

As most of the EMV communication implementation is provided by the
Nexgo Device SDK API, the most difficult aspect of the implementation was
understanding how to use the API, as its documentation was quite hard to
work with because it is not descriptive enough with some of the functionality
of the API lacking important information, such as documentation of method
parameters. This is particularly true for sections that describe how to load
encrypted keys into the device’s storage, where it is not clear at all what
meaning the parameters of some methods have.

As a result of this, a great part of the implementation the author of this
master’s thesis had to experiment with the parameters of methods related
to loading of encrypted keys. Before the loading of cryptographic keys was
correctly implemented, it was impossible to communicate with the Monet+
acquirer.

7.6.1 Working With Cryptographic Keys
Being able to properly load the encrypted cryptographic keys into the device
meant utilizing the PinPad class from the Nexgo SDK library to implement
the PinPad component. The SDK separates keys into two classes: master

94

and work keys, but it does not specify based on what criteria keys should
be categorized. However, as opposed to work keys, master keys cannot be
directly used for the decryption of data as the SDK does not provide any
methods that would accept data encrypted by a master key and return the
data in a decrypted form. The decryption of encrypted data can only be
achieved indirectly when loading other master keys that are encrypted by
another master key. The decrypted form of master keys cannot be retrieved
in any way.

During implementation, it has been decided that in the PinPad com-
ponent implementation work keys are such keys that are specific to each
payment transaction and change often. For example, this includes keys used
to encrypt the PIN block before sending it to the acquirer for validation.
On the other hand, master keys are set up only during terminal initializ-
ation or during merchant personalization and are used only when loading
other master keys. Encrypted keys are loaded into the device by using the
writeMKey (for master keys) and writeWKey (for work keys) methods of the
PinPad class from the Nexgo SDK. In these methods the encrypted key to
be loaded, its length and the key to be used for decryption of the key must
be specified.

Aside from the Dotypay Application, the Dotypay Launcher application
also had to be updated to call the writeMKey method from the NexgoSDK
when master keys are downloaded from the acquirer during key injection.

7.6.2 CardReader Interface Implementation
The CardReader component of the application’s architecture is respons-
ible for discovering and interacting with payment cards. The core of the
interface’s implementation is done by using CardReader and EmvHandler
classes from the Nexgo SDK.

At the start of each transaction, the list of supported AIDs and issuer
certificates has to be passed to the EMV module of the Nexgo SDK. This
was achieved by mapping the list of supported AIDs and issuer certificates
already present in the Dotypay application to the structure required by the
Nexgo SDK API.

This allows invoking the searchCard method of the Nexgo SDK CardRea-
der class that begins to probe the device’s interfaces for payment cards.
Once a card is found, the EMV process is started using the startEmvProcess
method using the EmvHandler class and a listener that reacts to certain EMV
actions is passed.

When required, the device’s software PIN pad is shown (see fig. 7.7).

95

This PIN pad overlays the Dotypay Application and is controlled by the
Nexgo SDK itself. Its layout is randomized each time this PIN pad is dis-
played. Once the cardholder has finished entering his PIN the PIN pad is
dismissed.

Figure 7.7: The software PIN pad displayed on Nexgo devices during PIN
CVMs.

After the initial EMV communication is finished, all fields required by
the acquirer, such as the values of Application Cryptogram or Unpredictable
Number TLV tags, are gathered and sent to the output stream wrapped in-
side an instance of the OnlineRequest class. This data is then eventually
forwarded from the TransactionService component to the AcquirerSer-
vice component to create and submit a transaction authorization request
to the acquirer. Later, using a callback, the response from the acquirer is
verified by the EMV handler using the onSetOnlineProcResponse method
of the EmvHandler class, and the EMV process is finished.

It should be noted that as opposed to the Landi A8 Card Reader imple-

96

mentation the Nexgo implementation does not currently support magnetic
stripe transactions, as the focus of this master’s thesis was primarily on
EMV transactions which magnetic stripe transactions aren’t. Furthermore,
printing of receipts on Nexgo devices is not implemented yet in the current
version of the application. Both the presentation of cards using a magnetic
stripe and ability to print receipts will have to be added to the application
in order for it to be ready to be used in the production environment.

7.7 Implementation for COTS Devices
Visa and Mastercard card schemes both offer a contactless kernel that can be
used on mobile devices in combination with the device’s NFC capabilities to
accept card payments [39, 40]. These kernels are available to card terminal
application developers for free after applying for the brand’s partnership
program and being accepted.

The Smart software s.r.o. company has already been accepted to the
Visa Ready program and has access to the pilot Visa Tap to Phone SDK
that includes a contactless kernel for accepting Visa brand cards.

Unfortunately, this master’s thesis author’s application for the Master-
card MPOS Partner program that contains the mobile contactless Master-
card kernel has been declined by Mastercard due to the reason that they
do not offer the SDK for educational purposes. The Smart software s.r.o.
company has not applied for this program yet and thus does not have access
to it. As a result of that, the Dotypay application, when running on COTS
devices, only supports Visa cards because it does not contain the Mastercard
contactless kernel.

7.7.1 CardReader Interface Implementation Using Visa
Tap to Phone SDK

To implement the CardReader interface for COTS devices it was required
to use the Visa Tap to Phone SDK11 (referred to as Visa TTP SDK in the
following text) in combination with the device’s NFC capabilities. This in-
cludes searching for NFC tags and initiating a communication with a found
NFC tag using the transmission protocol specified in the ISO 14443-4 stand-
ard [45]. The implementation of the transmission protocol is available in the
Android SDK by using the android.nfc.tech.IsoDep class [46] that works
with instances of the android.nfc.Tag class [47].

11Requires Android API Level 26 (Android 8.0).

97

An example of reading and working with NFC tags is shown in Code
Sample 7.1.

1 import android .nfc. NfcAdapter .*
2
3 // specify reader flags to define supported tag types
4 private const val nfcReaderFlags = FLAG_READER_NFC_A or

FLAG_READER_NFC_B or FLAG_READER_NFC_F or
FLAG_READER_NFC_V or FLAG_READER_NFC_BARCODE

5
6 // get the NFC adapter using the Android activity
7 val nfcAdapter = NfcAdapter . getDefaultAdapter (activity)
8 // start searching for NFC tags
9 nfcAdapter . enableReaderMode (
10 activity ,
11 { tag ->
12 // process the found tag
13 val isoDep = IsoDep .get(tag)
14 isoDep . connect ()
15 // send the command to select a proximity payment

system environment
16 val receivedData = isoDep . transceive (SELECT_PPSE)
17 // process the received data
18 processPpseResult (receivedData)
19 },
20 nfcReaderFlags ,
21 null // do not pass any extras
22)

Code Sample 7.1: Example of Kotlin code used to search for NFC tags and
exchange data with found ones.

When a tag is found, it is required to check whether it contains a sup-
ported application. As this functionality is not specific to Visa cards only,
it is not part of the Visa TTP SDK, however, the PPSEManager class, which
is part of the example application that comes with the Visa Tap to Phone
SDK, supports the discovery of card’s PPSE (described in 3.5.2) and the fol-
lowing application selection. The class does so by querying the NFC tag for
a PPSE and when a PPSE is found, it is validated and the list of candidate
applications is assembled. The first application with the highest priority in
the list is selected and an appropriate contactless kernel is used. Because
only a Visa contactless kernel is available at this moment, the user is asked
to present another card when a non-Visa AID is selected.

If a VISA application is selected, initial terminal TLV tags based on the
transaction and merchant data are generated. These tags are stored into
an instance of the ContactlessConfiguration class that is used as one of

98

the parameters passed when calling the performTransaction method from
the ContactlessKernel to initiate the kernel transaction (both mentioned
classes are part of the Visa TTP SDK).

Online PIN CVM implementation

To properly set the CVM limit (described in 2.4) one must add the propri-
etary tag DF01 from the Visa TTP kernel namespace to the list of TLV tags
passed to the kernel, otherwise, transactions above the CVM limit won’t
require a CVM, in this case, the Online PIN CVM.

As opposed to the Landi A8 SDK or Nexgo SDK the Visa TTP SDK
does not offer any software-based PIN pad to be displayed when the card-
holder should be prompted for a PIN. This means that any application that
integrates the Visa TTP SDK must implement its own software-based PIN
pad if PIN-based CVMs are to be supported. In the Dotypay application,
this was implemented by utilizing the already available SimpleInputDialog
class, which is used to display a modal dialog prompting for a value to be
entered (see fig. 7.8).

During Online PIN CVM this dialog is set to accept only numeric values
and display a custom keyboard (PIN pad). Entered digits are masked and
replaced with the asterisk symbol * when being displayed on the screen. The
implementation of the custom Online PIN CVM also required extending the
CardReader interface with a new event type (PromptForSoftPin class) to
be used to notify the UI to display the PIN pad dialog.

Since the Monet+ acquirer does not currently allow a key exchange with
COTS devices, placeholder keys are currently used to encrypt the PIN block
when sent to the acquirer alongside other transaction data.

The implemented software-based PIN pad does not currently meet all the
requirements imposed by Visa guidelines, however, at this moment, its main
purpose is to demonstrate the application’s ability to perform transactions
that require the Online PIN CVM.

Kernel Outcome Processing

Once the kernel finishes the processing of the transaction an instance of
the ContactlessResult is returned by the performTransaction method.
The result is processed in the processKernelResult method where further
actions are taken based on the result’s finalOutcome attribute that may be
one of the following values:

• COMPLETED – the kernel has authorized the transaction and the Kernel

99

Figure 7.8: The software PIN pad used on COTS devices during the Online
PIN CVM.

CVM Outcome (present in the tag DF03) should be examined to decide
whether additional CVM should be performed (this may require the
Online PIN CVM). When no CVM is required or it has been success-
fully performed, an online authorization request should be created and
sent to the acquirer.

• DECLINED – the kernel has decided to decline the transaction offline,
the user may choose to repeat the transaction and present another
card.

• ABORTED – the kernel processing of the transaction was terminated, in
this case, the user is prompted to present the card again.

• TRYNEXT – the selected application cannot be used to perform the
transaction, the user is prompted to present another card.

100

• SELECTAGAIN – returned by the kernel when a mobile phone is presen-
ted but CDCVM is required, the user is prompted to follow the in-
structions on the mobile phone and present it again to the terminal.

Same as in the Nexgo CardReader implementation, when the initial
processing has been done by the kernel the cardholder data alongside other
data gathered from the card is wrapped inside an instance of the OnlineReq-
uest event and eventually sent to the acquirer for online authorization. As
opposed to the Nexgo implementation, here the online authorization result is
not validated by the kernel (see the generation of the application cryptogram
in 3.3.9) as the kernel does not support it at the moment.

Printing of Receipts

Since COTS devices usually do not have the capability to print paper re-
ceipts, other alternatives have to be considered when implementing a pay-
ment application. This includes utilizing a Bluetooth printer, sending the
receipt to the customer’s email address or displaying the receipt in form of
a QR code to be scanned by the customer’s phone. However, since this is
out of the scope of this master’s thesis, it has not been implemented yet in
the Dotypay application. Further development of the application is required
before being suitable to be released for production.

7.8 Recommendations for Future Development
From the observations made during the implementation part of this thesis, it
would be recommended that the initialization of the EMV module (such as
setting the list of supported AIDs and initial TLV tags) would be refactored,
so that it can be shared between different CardReader implementations.
Currently, the code responsible for this is duplicated in all 3 implementations
of the CardReader component.

Additionally, some interfaces that were created based on the new archi-
tecture are difficult to be implemented, because they are too similar to the
interface of the Landi A8 SDK. This is most likely caused by the fact that
when the application was being refactored by the Dotypay team to use the
new architecture, some parts of interfaces of the Landi A8 SDK were reused
and the architecture was not implemented correctly in all parts of the code.
As a result of this, some parts of the code cannot be easily shared between
different implementations and there are several unused classes and methods
in Nexgo and COTS implementations.

101

8 Testing the Validity of the
Updated Solution

All major payment schemes mandate proper testing and certification before
allowing card terminals to participate in their payment infrastructure.

One of the certifications required is the EMV Certification, which consists
of 3 levels [48]:

• Level 1 – consists of tests that verify whether the tested device meets
the physical requirements and correctly implements all required low-
level communication protocols,

• Level 2 – validates the software that runs on Level 1 certified hard-
ware. This includes the EMV Kernel/Library that implements the
EMV communication protocol to exchange data with payment cards.
Typically, the hardware supplier provides its own EMV kernel that
runs internally within the device.

• Level 3 – also known as EMV End-to-End certification, this certific-
ation can be achieved after successfully testing a payment application
utilizing the Level 2 certified kernel running on a Level 1 certified
device. This also requires the solution to already have chosen an ac-
quirer or transaction processor to authorize transactions. Eventually,
this level tests all the components that participate in an EMV trans-
action.

Another important certification is the PCI DSS Certification, which con-
sists of a set of security standards formed by major card brands such as
Visa, Mastercard or Discover [49]. It is governed by the Payment Card
Industry Security Standards Council and aims to make card transactions
as resilient against and fraud as possible. For example, PCI DSS security
standards include the verification of the used network’s security, encryption
of transmitted cardholder data and guidelines for manipulation of sensitive
data.

It is a challenging task for payment solution providers to achieve all the
necessary certifications before being accepted by card scheme networks.

102

8.1 Transaction Authorization in a Test En-
vironment

Both Visa and Mastercard card schemes allow providers of card payment
solutions to test their products in a testing environment. Because the
Monet+ acquirer used in the Dotypay application supports forwarding of
transaction authorization requests to this environment, the extended ap-
plication could be tested there. It should be noted that even in testing
environments Monet+ requires that all transaction authorization requests
are enciphered using keys loaded during a proper key injection.

Transactions initiated on Nexgo N86 devices running the Dotypay applic-
ation were successfully authorized when forwarded to a testing environment
(see figures 8.1 and 8.2).

Figure 8.1: A screenshot of the record of a successful Nexgo transaction
authorization displayed in the Monet+ transaction history web application.

Figure 8.2: A screenshot of successful Nexgo transaction authorizations dis-
played in the Monet+ transaction history web application.

103

8.2 The UL Brand Test Tool
The UL Brand Test Tool is a test tool that aims to ease the payment solution
development and certification process preparations for acquirers, payment
processors, terminal vendors and merchants that aim to connect to existing
payment schemes [50]. It contains more than 100 guided test scenarios that
cover all mandatory requirements imposed by EMV standards and major
card schemes, such as Visa or Mastercard. To be able to execute these tests
the tool includes all the necessary hardware such as the UL SmartLink Box
that is used to emulate chip cards or UL SmartWave Box that is used to
emulate contactless cards. It also contains a wide variety of preloaded test
cards to be used during test scenario execution.

Using this tool it is possible to emulate payment cards and intercept, log
and validate all the communication that is happening between the card and
the card terminal, making it easy to trace bugs and issues.

Figure 8.3 contains an image of the setup UL Brand Test Tool used to
test the Dotypay application running on the Nexgo N86 device. This figure
contains the following annotations:

1. A SmartLink Probe connected to the SmartLink Box used to emulate
chip cards.

2. The Nexgo N86 device running the Dotypay application that is cur-
rently waiting for a card to be presented to it to authorize a transac-
tion.

3. A SmartLink Box that is powering the emulated chip card. To be able
to display intercepted communication between the card and the card
terminal this component is connected using a USB cable to a computer
running the UL Tool application.

4. A SmartWave Box that is used to power and emulate contactless cards.
It has a SmartWave Probe connected to it to be used as a payment
card. Additionally, this component is connected to a SmartLink Box.

5. A SmartWave Probe on which the data of emulated contactless cards
is loaded. It is powered by a SmartWave Box and can also be used in
combination with any other standard card to intercept the communic-
ation between the card and the terminal.

The Windows application that is used in combination with the mentioned
tool components contains a list of available test scenarios to be executed

104

Figure 8.3: An image of the UL Brand Test Tool with annotations.

(see fig. 8.4). It provides text guidelines for each scenario to help the tester
execute the test, as some tests require a particular transaction amount to be
entered or some other manual action such as a cardholder signature. In some
cases, the test evaluation is not automatic, but rather manual, where the
user has to manually confirm using a checkbox in the application whether a
particular condition has been fulfilled (e.g., the receipt has been printed).

Figure 8.4: A screenshot of the UL Brand Test Tool Windows Application.

105

Additionally, the tool proved itself to be very useful when studying the
EMV standard, as it provides necessary examples to better understand the
theory behind the communication in the EMV standard.

8.3 Created Test Scenarios
To test the functionality of the Dotypay application running on Nexgo or
COTS devices, 13 test scenarios have been designed that cover the funda-
mental features of a card terminal (see table 8.1).

Most of the test scenarios listed in the table 8.1 should result in the
transaction being authorized online1 and in scenarios, where PIN CVM is
required, the tester should enter a valid PIN of the card used. The applica-
tion should be tested on both Nexgo and COTS devices, however, scenarios
requiring a card to be inserted into the device should be omitted on COTS
devices as they do not support it.

It is important that test scenarios include both Mastercard and Visa
transactions, as there might be some differences in the communication between
the card and the terminal between these brands, that could cause issues in
the transaction processing.

None of the tests include the use of the card’s magnetic stripe as it is not
currently implemented in any of the added device-specific implementations
and it is expected that in the near future transactions that utilize the card’s
magnetic stripe will no longer be supported [51].

8.4 Test Results
To test the application running on Nexgo devices the Nexgo N86 device has
been used during the testing. Oneplus 6 (Android 11) has been selected to
test the application running on COTS devices.

8.4.1 Nexgo Devices
Out of the 13 test scenarios that were run to test the application on Nexgo
devices 11 of them passed successfully. The tests that failed were tests
#11 and #12 in which a tokenized Mastercard card was used to perform
a contactless transaction. Due to unknown reasons, the Nexgo SDK EMV
module always returns a general failure error when a tokenized Mastercard

1The Monet+ acquirer should forward transaction authorization requests to testing
environments of card schemes.

106

Card
type/brand Amount Description UL-TOOL

Test Name

1 Visa < 500 CZK Standard contact transaction with a
PIN CVM.

ADVT 7.0 –
Test Case 12

2 Visa >= 500
CZK

Standard contact transaction with a
PIN CVM above the CVM limit.

ADVT 7.0 –
Test Case 12

3 Visa Con-
tactless < 500 CZK Contactless transaction below the

CVM limit, without a PIN CVM.
CDET 2.3 –
Test Case 02

4 Visa Con-
tactless ≥ 500 CZK Contactless transaction above the

CVM limit, requiring a PIN CVM.
CDET 2.3 –
Test Case 01

5
Tokenized
Visa Con-
tactless

< 500 CZK Mobile transaction under the CVM
limit, without a CDCVM.

CDET –
GP001

6
Tokenized
Visa Con-
tactless

any Mobile transaction requiring a
CDCVM.

CDET –
GP004

7 Mastercard < 500 CZK Standard contact transaction with a
PIN CVM.

M TIP06 Test
01 Scenario 01

8 Mastercard ≥ 500 CZK Standard contact transaction with a
PIN CVM above the CVM limit.

M TIP06 Test
01 Scenario 01

9 Mastercard
Contactless < 500 CZK Contactless transaction under the

CVM limit, without a PIN CVM.
MCD01 Test
01 Scenario 04

10 Mastercard
Contactless ≥ 500 CZK Contactless transaction above the

CVM limit, requiring a PIN CVM.
MCD01 Test
01 Scenario 01

11
Tokenized
Mastercard
Contactless

< 500 CZK Mobile transaction under the CVM
limit, without a CDCVM.

CDET –
GP103

12
Tokenized
Mastercard
Contactless

≥ 500 CZK Mobile transaction above the CVM
limit, requiring a CDCVM.

CDET –
GP101

13 any any
Use a card with multiple suitable ap-
plications, requesting an application
to be selected by the cardholder.

ADVT 7.0 –
Test Case 05

Table 8.1: A list of payment transaction scenarios designed to test the
Dotypay application.

card is presented. To eliminate this issue, EMV transaction logs should
be carefully analyzed to find out its cause. Most likely this is caused by a
missing entry in the list of supported AIDs or a missing TLV tag in the initial

107

EMV configuration. Other transactions have been successfully processed on
the terminal and were authorized by the payment network when applicable.

8.4.2 COTS Devices
On COTS devices, the only tests that could have been executed were tests
#3, #4, #5 and #6. Other tests have been skipped because contact trans-
actions cannot be performed on COTS devices and the Dotypay application
is currently missing a Mastercard kernel.

All of the performed tests passed successfully and transactions initiated
during these tests were correctly processed on the Oneplus 6 device, however,
these transactions could not be authorized by the acquirer, as COTS devices
currently do not support key injection. As a result of that, all transactions
performed on the Oneplus 6 device were declined by the acquirer.

Although the UL Brand Test Tool did not report any errors during the
transaction processing done by the COTS device, communication with the
acquirer can’t be established when the device has not been loaded with cor-
rect encryption keys. This suggests that if the COTS device was properly
injected with encryption keys, all performed transactions would be author-
ized by the acquirer.

Additionally, the tests yielded the same results when the application was
tested on Google Pixel 6 and Samsung S10e devices.

108

9 Conclusion

This master’s thesis covers the fundamentals of the payment card industry
and the set of EMV standards used in cards and card terminals to facilitate
financial transactions. Because the volume of information in the covered
standards is quite large (only the first four books of EMV consist of more
than 500 pages), they could not be easily summarized in a compact way.
However, a deep understanding of the aforementioned topics was necessary
to design and implement a suitable architecture for a modular application
that could be run on different devices with specific hardware capabilities
related to the reading of payment cards.

A new architecture was designed and implemented within the scope of
this thesis to extend the commercial Dotypay application by supporting
Nexgo and COTS devices. Eventually, the application was able to success-
fully finish a transaction authorization on Nexgo N86. Although payment
transactions are correctly processed on Android COTS devices running the
Dotypay application (as verified by the UL Brand Test Tool), successful on-
line authorizations are currently impossible there as the Monet+ acquirer
does not support key injection on COTS devices at this moment. This
is required to establish communication with the transaction authorization
centre, but the application’s architecture is prepared to be easily extended
to support key injection on COTS devices when the necessary support and
guidelines are available.

Furthermore, it would be advised to perform more refactoring of the
application’s code to better implement the new architecture, allowing easier
maintainability of the codebase.

The UL Brand Test Tool is described in this master’s thesis and was used
to verify the ability of the extended application to correctly participate in
EMV dialogues with payment cards. Almost all selected tests passed suc-
cessfully when the Monet+ acquirer was used to route transactions to real
payment networks on Nexgo N86. When additional work on the Dotypay ap-
plication is done, such as the implementation of support for magnetic stripes
or printing of receipts, the application will undergo various certifications to
be able to be used in a production environment with Nexgo devices.

From testing the application on COTS devices, it has been observed that
sometimes it is more difficult to successfully present a card to this type of
devices, in comparison to standard card terminals. In general, it was con-
firmed that COTS devices can be used to accept payment cards and it would

109

be recommended that solutions using these devices are deployed in environ-
ments with lower transaction count, such as in barber shops, convenience
stores, food stalls, etc., where small hold-ups during checkout are tolerable.

Additionally, based on the research done on card tokenization techniques,
it is expected that COTS-based solutions will work best in markets with
high mobile payment penetration, as they allow to replace the PIN CVM
on COTS, which some customers might find unfamiliar and insecure, with
CDCVM.

110

List of Acronyms

• AEF – Application Elementary File

• AFL – Application File Locator

• AID – Application Identifier

• AIP – Application Interchange Profile

• APDU – Application Protocol Data Unit

• API – Application Programming Interface

• ARPC – Authorization Response Cryptogram

• ARQC – Authorization Request Cryptogram

• ATC – Application Transaction Counter

• ATM – Automated Bank Teller

• ATR – Answer-to-Reset

• BER-TLV – Basic-Encoding-Rules - Tag-Length-Value

• BIN – Bank Identification Number

• CDA – Combined Data Authentication

• CDCVM – Consumer Device Cardholder Verification Method

• CDE – Cardholder Data Environment

• CID – Card Identification Number

• COTS – Commercial off-the-shelf

• CPoC – Contactless Payments on COTS

• CSC – Card Security Code

• CVC – Card Verification Code

• CVK – Card Verification Key

• CVM – Cardholder Verification Method

111

• CVN – Card Verification Number

• CVR – Cardholder Verification Rule

• CVV – Card Verification Value

• DDA – Dynamic Data Authentication

• DOL – Data Object List

• DOL – Data Object List

• EMV – Europay Mastercard Visa

• FCI – File Control Information

• FID – Fixed File Identifier

• HCE – Host Card Emulation

• HSM – Hardware Security Module

• ICC – Integrated Circuit Card

• IC – Integrated Circuit

• IIN – Issuer Identification Number

• KCV – Key Check Value

• KEK – Key Encryption Key

• KLD – Key Loading Device

• MOTO – Mail Order Telephone Order

• NFC – Near Field Communication

• PAIE – Proprietary Application ID Extension

• PAN – Primary Account Number

• PCI – Payment Card Industry

• PCI SSC – Payment Card Industry Security Standard Councils

• PED – PIN Entry Device

• PICC – Proximity Integrated Circuit Card

112

• PIN – Personal Identification Number

• POS – Point-of-Sale

• PPSE – Proximity Payment System Environment

• PSP – Payment Service Provider

• RFID – Radio Frequency Identification

• RID – Registered Identifier

• RNG – Random Number Generator

• SCD – Secure Cryptographic Device

• SCRP – Secure Card Reader for PIN

• SDA – Static Data Authentication

• SFI – Short File Identifier

• SFTP – Secure File Transfer Protocol

• SPoC – Software-based PIN Entry on COTS

• TEE – Trusted Execution Environment

• TEK – Traffic Encryption Key

• TMK – Terminal Master Key

• TSI – Transaction Status Information

• TSP – (Token Service Provider)

• TTK – Terminal Transport Key

• TUI – Trusted User Interface

• TVR – Terminal Verification Result

Bibliography

[1] I. Dubinsky, Acquiring card payments. Auerbach, 2019.

[2] J. Bengtsson, “Diving into magnetic stripe card skimming devices,” Digital
Evidence and Electronic Signature Law Review, vol. 5, 01 2014.

[3] S. Clar. (2022, Feb) Contactless payment transaction limit increases around
the world. [Online]. Available: https://www.nfcw.com/2020/03/26/366173
/table-contactless-payment-transaction-limit-increases-around-the-world/

[4] A. Woodyatt. (2020, Mar) Contactless card spending limit increased to
tackle coronavirus spread. [Online]. Available: https://edition.cnn.com/20
20/03/24/tech/contactless-payment-limit-covid-gbr-intl-scli/index.html

[5] R. d. Best. (2021, Jul) Visa, MasterCard, UnionPay Transaction Volume
2020. [Online]. Available: https://www.statista.com/statistics/261327/num
ber-of-per-card-credit-card-transactions-worldwide-by-brand-as-of-2011/

[6] (2018) Authorization vs Clearing vs Settlement. [Online]. Available:
https://doc.payneteasy.com/technology_overview/authorization_vs_clear
ing_vs_settlement_en.html

[7] (2020) Authorization and Reversal Processing Requirements for Merchants.
[Online]. Available: https://usa.visa.com/dam/VCOM/global/support-legal
/documents/best-practices-authorization-and-reversal-processing.pdf

[8] (2021, Oct) EMV Card-Present Transaction Percentage. [Online]. Available:
https://www.emvco.com/about/deployment-statistics/

[9] (2011, Nov) Application Independent ICC to Terminal Interface
Requirements. [Online]. Available:
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-get
file.php?u=wp-content/uploads/documents/EMV_v4.3_Book_1_ICC_t
o_Terminal_Interface_2012060705394541.pdf

[10] (2011, Nov) Security and Key Management. [Online]. Available:
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Boo
k_2_Security_and_Key_Management_20120607061923900.pdf

[11] (2011, Nov) Application Specification. [Online]. Available:
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Boo
k_3_Application_Specification_20120607062110791.pdf

https://www.nfcw.com/2020/03/26/366173/table-contactless-payment-transaction-limit-increases-around-the-world/
https://www.nfcw.com/2020/03/26/366173/table-contactless-payment-transaction-limit-increases-around-the-world/
https://edition.cnn.com/2020/03/24/tech/contactless-payment-limit-covid-gbr-intl-scli/index.html
https://edition.cnn.com/2020/03/24/tech/contactless-payment-limit-covid-gbr-intl-scli/index.html
https://www.statista.com/statistics/261327/number-of-per-card-credit-card-transactions-worldwide-by-brand-as-of-2011/
https://www.statista.com/statistics/261327/number-of-per-card-credit-card-transactions-worldwide-by-brand-as-of-2011/
https://doc.payneteasy.com/technology_overview/authorization_vs_clearing_vs_settlement_en.html
https://doc.payneteasy.com/technology_overview/authorization_vs_clearing_vs_settlement_en.html
https://usa.visa.com/dam/VCOM/global/support-legal/documents/best-practices-authorization-and-reversal-processing.pdf
https://usa.visa.com/dam/VCOM/global/support-legal/documents/best-practices-authorization-and-reversal-processing.pdf
https://www.emvco.com/about/deployment-statistics/
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMV_v4.3_Book_1_ICC_to_Terminal_Interface_2012060705394541.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMV_v4.3_Book_1_ICC_to_Terminal_Interface_2012060705394541.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMV_v4.3_Book_1_ICC_to_Terminal_Interface_2012060705394541.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf

[12] (2011, Nov) Cardholder, Attendant, and Acquirer Interface Requirements.
[Online]. Available: https://www.emvco.com/wp-content/uploads/2017/05
/EMV_v4.3_Book_4_Other_Interfaces_20120607062305603.pdf

[13] (2020, Mar) Book A - Architecture and General Requirements. [Online].
Available: https://www.emvco.com/wp-content/plugins/pmpro-customizati
ons/oy-getfile.php?u=wp-content/uploads/documents/EMV-Contactless-
Book-A-Architecture-and-General-Rqmts-v2.9-April-2_logoupdate.pdf

[14] (2004) ISO 7816 - Smart Card Standards Overview. [Online]. Available:
https://smartcardsupply.com/Content/Cards/7816standard.htm

[15] (2013, Nov) SIM card forensics: An introduction. [Online]. Available: https:
//resources.infosecinstitute.com/topic/sim-card-forensics-introduction/

[16] (2001, September) Smart Card HOWTO. [Online]. Available:
https://tldp.org/HOWTO/pdf/Smart-Card-HOWTO.pdf

[17] (2020, Dec) Complete list of Application Identifiers (AID). [Online].
Available:
https://emv.cool/2020/12/23/Complete-list-of-application-identifiers-AID/

[18] A. Schwier. (2010) Static Data Authentication (SDA). [Online]. Available:
https://www.openscdp.org/scripts/tutorial/emv/SDA.html

[19] (2016, Mar) Book A - Architecture and General Requirements. [Online].
Available:
https://www.emvco.com/wp-content/uploads/2017/05/Book_A_Architect
ure_and_General_Rqmts_v2_6_Final_20160422011856105.pdf

[20] (2021) EMV MasterCard Contactless Transaction Flow. [Online]. Available:
https:
//www.level2kernel.com/emv-mastercard-contactless-transaction.html

[21] (2022) Google Pay Safety & Security Features - Google Safety Center.
[Online]. Available: https://safety.google/pay/

[22] (2022) Apple Pay security and privacy overview. [Online]. Available:
https://support.apple.com/en-us/HT203027

[23] (2022, Apr) A Guide to Use Cases. [Online]. Available:
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-get
file.php?u=wp-content/uploads/documents/EMVCo-Payment-Tokenisation
-A-Guide-To-Use-Cases-v2.2.pdf

https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_4_Other_Interfaces_20120607062305603.pdf
https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_4_Other_Interfaces_20120607062305603.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMV-Contactless-Book-A-Architecture-and-General-Rqmts-v2.9-April-2_logoupdate.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMV-Contactless-Book-A-Architecture-and-General-Rqmts-v2.9-April-2_logoupdate.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMV-Contactless-Book-A-Architecture-and-General-Rqmts-v2.9-April-2_logoupdate.pdf
https://smartcardsupply.com/Content/Cards/7816standard.htm
https://resources.infosecinstitute.com/topic/sim-card-forensics-introduction/
https://resources.infosecinstitute.com/topic/sim-card-forensics-introduction/
https://tldp.org/HOWTO/pdf/Smart-Card-HOWTO.pdf
https://emv.cool/2020/12/23/Complete-list-of-application-identifiers-AID/
https://www.openscdp.org/scripts/tutorial/emv/SDA.html
https://www.emvco.com/wp-content/uploads/2017/05/Book_A_Architecture_and_General_Rqmts_v2_6_Final_20160422011856105.pdf
https://www.emvco.com/wp-content/uploads/2017/05/Book_A_Architecture_and_General_Rqmts_v2_6_Final_20160422011856105.pdf
https://www.level2kernel.com/emv-mastercard-contactless-transaction.html
https://www.level2kernel.com/emv-mastercard-contactless-transaction.html
https://safety.google/pay/
https://support.apple.com/en-us/HT203027
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMVCo-Payment-Tokenisation-A-Guide-To-Use-Cases-v2.2.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMVCo-Payment-Tokenisation-A-Guide-To-Use-Cases-v2.2.pdf
https://www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=wp-content/uploads/documents/EMVCo-Payment-Tokenisation-A-Guide-To-Use-Cases-v2.2.pdf

[24] M. Fehr. (2018, Apr) Apple Pay: How different is it from other Pay
solutions, what role does tokenisation play, and to what degree can Card
not Present payment benefit from Apple Pay in future. [Online]. Available:
https://www.royalholloway.ac.uk/media/5612/rhul-isg-2018-3-techreport-
marcelfehr.pdf

[25] (2014) Apple Announces Apple Pay. [Online]. Available: https:
//www.apple.com/newsroom/2014/09/09Apple-Announces-Apple-Pay/

[26] (2018, May) Introduction to Secure Elements. [Online]. Available:
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-
Secure-Element-15May2018.pdf

[27] (2021) Where you can travel on public transport using Apple Pay. [Online].
Available: https://support.apple.com/en-gb/HT207958

[28] A. Radu, T. Chothia, C. J. Newton, I. Boreanu, and L. Chen. (2021, Aug)
Practical EMV Relay Protection. [Online]. Available:
https://practical_emv.gitlab.io/assets/practical_emv_rp.pdf

[29] G. Wong, “Google Wallet officially announced,” May 2011. [Online].
Available:
https://www.ubergizmo.com/2011/05/google-wallet-officially-announced/

[30] (2012) Google Wallet Security: PIN Exposure Vulnerability. [Online].
Available:
https://zvelo.com/google-wallet-security-pin-exposure-vulnerability/

[31] B. Popper. (2015, May) Google introduces Android Pay a replacement for
its wallet app on mobile. [Online]. Available: https://www.theverge.com/2
015/5/28/8661867/google-introduces-android-pay-replace-wallet-app

[32] (2021) How payments work - Google Pay Merchant Help. [Online].
Available: https://support.google.com/pay/merchants/answer/6345242?h
l=en#zippy=%2Cdetailed-google-pay-transaction-process-in-stores

[33] (2021) Host-based card emulation overview | Android Developers. [Online].
Available:
https://developer.android.com/guide/topics/connectivity/nfc/hce.html

[34] G. Marwaha. (2014) Apple Pay vs Google Wallet : The Secure Element.
[Online]. Available: http://www.gmarwaha.com/blog/2014/10/02/apple-p
ay-vs-google-wallet-the-secure-element/

[35] (2020, June) Software-based PIN Entry on COTS (SPoC)™ - Security
Requirements. [Online]. Available: https://www.pcisecuritystandards.org/d
ocuments/SPoC_SecurityRequirements-v1.1.pdf

https://www.royalholloway.ac.uk/media/5612/rhul-isg-2018-3-techreport-marcelfehr.pdf
https://www.royalholloway.ac.uk/media/5612/rhul-isg-2018-3-techreport-marcelfehr.pdf
https://www.apple.com/newsroom/2014/09/09Apple-Announces-Apple-Pay/
https://www.apple.com/newsroom/2014/09/09Apple-Announces-Apple-Pay/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://support.apple.com/en-gb/HT207958
https://practical_emv.gitlab.io/assets/practical_emv_rp.pdf
https://www.ubergizmo.com/2011/05/google-wallet-officially-announced/
https://zvelo.com/google-wallet-security-pin-exposure-vulnerability/
https://www.theverge.com/2015/5/28/8661867/google-introduces-android-pay-replace-wallet-app
https://www.theverge.com/2015/5/28/8661867/google-introduces-android-pay-replace-wallet-app
https://support.google.com/pay/merchants/answer/6345242?hl=en#zippy=%2Cdetailed-google-pay-transaction-process-in-stores
https://support.google.com/pay/merchants/answer/6345242?hl=en#zippy=%2Cdetailed-google-pay-transaction-process-in-stores
https://developer.android.com/guide/topics/connectivity/nfc/hce.html
http://www.gmarwaha.com/blog/2014/10/02/apple-pay-vs-google-wallet-the-secure-element/
http://www.gmarwaha.com/blog/2014/10/02/apple-pay-vs-google-wallet-the-secure-element/
https://www.pcisecuritystandards.org/documents/SPoC_SecurityRequirements-v1.1.pdf
https://www.pcisecuritystandards.org/documents/SPoC_SecurityRequirements-v1.1.pdf

[36] (2019, December) Contactless Payments on COTS (CPoC™) - Security and
Test Requirements. [Online]. Available:
https://www.pcisecuritystandards.org/documents/Contactless_Payment
s_on_COTS-Security_and_Test_Requirements-v1.0.pdf

[37] D. Curry. (2022, Jan) Mobile payments app revenue and usage statistics
(2022). [Online]. Available:
https://www.businessofapps.com/data/mobile-payments-app-market/

[38] R. Hayton, B. Gourdin, D. Keating, and A. Lindsay. (2021, May) What is
CPOC + PIN? Preparing for the PCI’s next evolution in contactless
payments. [Online]. Available: https:
//www.trustonic.com/whitepapers/cpoc-plus-pin-contactless-payments/

[39] (2022) Visa Ready Tap to Phone Program. [Online]. Available:
https://partner.visa.com/site/programs/visa-ready.html

[40] (2022, Jan) Tap on Phone Implementation Guide. [Online]. Available:
https://www.mastercard.com/content/dam/public/mastercardcom/na/glo
bal-site/documents/tap-on-phone-implementation-guide-jan2022.pdf

[41] A. Jamieson. (2020) Commercial Off-the-Shelf (COTS) Devices -
Implementation Challenges . [Online]. Available: https://www.ul.com/resou
rces/commercial-shelf-cots-devices-implementation-challenges

[42] (2021) Core NFC | Apple Developer Documentation. [Online]. Available:
https://developer.apple.com/documentation/corenfc

[43] (2022) Dagger. [Online]. Available: https://dagger.dev/

[44] (2022) What is Koin? [Online]. Available:
https://insert-koin.io/docs/reference/introduction

[45] I. O. for Standardization, Cards and security devices for personal
identification — Contactless proximity objects — Part 4: Transmission
protoco, iso/iec 14443-4:2018 ed. Vernier, Geneva, Switzerland:
International Organization for Standardization, 2018. [Online]. Available:
https://www.iso.org/standard/73599.html

[46] (2021) IsoDep | Android Developers. [Online]. Available:
https://developer.android.com/reference/android/nfc/tech/IsoDep

[47] (2021) Tag | Android Developers. [Online]. Available:
https://developer.android.com/reference/android/nfc/Tag

https://www.pcisecuritystandards.org/documents/Contactless_Payments_on_COTS-Security_and_Test_Requirements-v1.0.pdf
https://www.pcisecuritystandards.org/documents/Contactless_Payments_on_COTS-Security_and_Test_Requirements-v1.0.pdf
https://www.businessofapps.com/data/mobile-payments-app-market/
https://www.trustonic.com/whitepapers/cpoc-plus-pin-contactless-payments/
https://www.trustonic.com/whitepapers/cpoc-plus-pin-contactless-payments/
https://partner.visa.com/site/programs/visa-ready.html
https://www.mastercard.com/content/dam/public/mastercardcom/na/global-site/documents/tap-on-phone-implementation-guide-jan2022.pdf
https://www.mastercard.com/content/dam/public/mastercardcom/na/global-site/documents/tap-on-phone-implementation-guide-jan2022.pdf
https://www.ul.com/resources/commercial-shelf-cots-devices-implementation-challenges
https://www.ul.com/resources/commercial-shelf-cots-devices-implementation-challenges
https://developer.apple.com/documentation/corenfc
https://dagger.dev/
https://insert-koin.io/docs/reference/introduction
https://www.iso.org/standard/73599.html
https://developer.android.com/reference/android/nfc/tech/IsoDep
https://developer.android.com/reference/android/nfc/Tag

[48] (2020, July) EMV Certification Process in 3 Easy Steps. [Online]. Available:
https:
//idtechproducts.com/blog/emv-certification-process-in-3-easy-steps/

[49] (2019, December) PCI DSS Certification. [Online]. Available:
https://www.imperva.com/learn/data-security/pci-dss-certification/

[50] (2019, Aug) UL Brand Test Tool. [Online]. Available:
https://www.ul.com/sites/g/files/qbfpbp251/files/2021-08/Fact-sheet-UL
-Brand-Test-Tool_201905.pdf

[51] V. Hyman. (2021, Aug) Swiping left on magnetic stripes. [Online]. Available:
https://www.mastercard.com/news/perspectives/2021/magnetic-stripe/

https://idtechproducts.com/blog/emv-certification-process-in-3-easy-steps/
https://idtechproducts.com/blog/emv-certification-process-in-3-easy-steps/
https://www.imperva.com/learn/data-security/pci-dss-certification/
https://www.ul.com/sites/g/files/qbfpbp251/files/2021-08/Fact-sheet-UL-Brand-Test-Tool_201905.pdf
https://www.ul.com/sites/g/files/qbfpbp251/files/2021-08/Fact-sheet-UL-Brand-Test-Tool_201905.pdf
https://www.mastercard.com/news/perspectives/2021/magnetic-stripe/

A Source Code Listing

The following text lists source files of the Dotypay application that have
been added or updated during this master’s thesis. However, minor or non-
significant changes are omitted there.

A.1 Files Specific to Nexgo CardReader Im-
plementation

All files that were added to extend the application with the support for
Nexgo devices are located in the com.stpos.a8pos.devicesdk.impl.nexgo
package. The following files from that package are of the most importance:

• NexgoCardReader.kt – implementation of the CardReader interface,
where the most important method is the searchForCard method,
which is used as the starting entry-point of a card transaction on Nexgo
devices,

• NexgoRxPinPad.kt – implementation of the RxPinPad interface spe-
cific to Nexgo devices, where methods required for injection of PIN
working keys, calculation of a KCV value of a key and encryption or
decryption using injected keys are implemented. The method that al-
lows to encrypt or decrypt data using the injected keys is used when
encrypting messages sent to the acquirer and without it, online trans-
action authorizations would not be possible;

• card/NexgoCardReaderHelper.kt – contains a helper method that
wraps the call of the method from the Nexgo SDK used to initialize
the searching for cards,

• emv/NexgoEmvDataConverter.kt – defines methods that are used to
convert the list of objects containing certificates of supported card
issuers and properties of supported card applications from Dotypay
class instances to instances of classes from the Nexgo SDK,

• emv/NexgoEmvInitializer.kt – defines a method used to initialize
the device’s EMV component with the list of supported card applica-
tions and card scheme certificates,

1

• emv/NexgoEmvProcessHelperImpl.kt – contains a helper method that
initializes the EMV transaction and processes it according to the device’s
and card’s capabilities (e.g., prompts for PIN or creates an online au-
thorization request).

A.2 Files Specific to COTS CardReader Im-
plementation

All files that were added to extend the application with the support for
COTS devices are located in the com.stpos.a8pos.devicesdk.impl.cots
package.

The COTSCardReader.kt file contains the implementation of the CardR-
eader interface. Inside the searchForCardInternal method the device’s
NFC interface is activated and the process of application selection is initiated
using the ppse.PPSEManager class extracted from the Visa TTP SDK. When
a supported Visa card application is found, the VisaTTPKernelHelper class
(located in the visa/VisaTTPKernelHelper.kt file) is used to call the Visa
TTP kernel. This class is responsible for correctly initializing the kernel as
well as setting all necessary TLV tags. Online authorization results are not
validated there because the Visa TTP kernel does not currently support it.

2

B User Guide

B.1 Building the Application
Before being able to compile and assemble Android applications, one must
have the Android SDK installed and configured in his development environ-
ment. The official Android documentation1 contains a guide that involves
installing the Android Studio IDE and setting up all the necessary tools
(including the Android SDK).

The Dotypay application can then be built to operate in one of 3 different
modes (flavors):

• mock – transactions are not sent to the acquirer and online authoriza-
tion results are rather mocked,

• stTest – transactions are routed to the testing environment of the
Monet+ acquirer,

• production – transactions are routed to the production environment
of the Monet+ acquirer.

Additionally, it can also be selected whether the application is built to
be run in debug or release mode (debug and release).

An APK that can be installed on supported devices (Android SDK Level
22 – Android 5.1 or higher) is assembled by selecting the build mode and
flavor and executing the following command in the root of the application’s
project’s directory:

./gradlew assemble{flavor}{Debug|Release}

This produces an APK archive in the ./app/build/outputs/apk folder.
For example, the debug variant of the application, where transactions are

routed to the testing environment of the acquirer, can be built by executing
the following command:

./gradlew assembleStTestDebug

1https://developer.android.com/studio/install

3

https://developer.android.com/studio/install

C Operating the Application

The complete user guide to the Dotypay application can be found on the
following website: https://manual.dotypay.com/1/cz/topic/uvod .

Credentials to be used to log in to the application1 are listed in the Table
C.1.

Role PIN
Cashier 0000
Manager 1111

Table C.1: Default login credentials.

1These credentials are present only in the default configuration that is preloaded when
the application is installed.

4

https://manual.dotypay.com/1/cz/topic/uvod
https://manual.dotypay.com/1/cz/topic/uvod

	Introduction
	Payment Cards and Their Protocols
	Payment Card Description
	PAN Identifier
	Types of Payment Cards
	The Magnetic Stripe

	CVV Code
	Computation Algorithm
	CVV1
	CVV2
	iCVV
	dCVV

	Card Presentation Methods
	Use of Magnetic Stripe
	Chip Transaction
	Contactless Transactions
	Card Tokenization

	Cardholder Verification Methods
	Offline PIN
	Online PIN
	Signature
	Failed CVM
	No CVM
	Consumer Device Cardholder Verification Met-hod
	Static Password
	One-time Password
	Mobile Authentication

	Entities Participating in Transaction Processing
	Transaction Processing
	Transaction Types
	Purchase
	Pre-authorization and Completion
	Refund
	Reversal
	Mail Order Telephone Order
	Balance Inquiry

	Terminal Capabilities
	PIN Entry
	Key Entry
	Chip Reader
	Contactless Reader
	Magnetic Stripe
	Contactless Magnetic Stripe
	Card Capture
	Card Data Output
	Terminal Output

	EMV Transactions
	Hardware Architecture
	Answer to Reset

	Software Architecture
	Command APDU Structure
	Response APDU Structure

	EMV Transaction Flow
	BER-TLV Encoding
	Data Object List (DOL)
	Application Selection
	Initiate Application Processing
	Offline Card Authentication
	Cardholder Verification
	Terminal Risk Management
	Terminal Action Analysis
	Application Cryptogram Generation
	Script Processing

	Key Hierarchy
	EMV Contactless
	Kernels
	Entry Point Processing
	Kernel Outcome Processing

	Payment Card Tokenization
	Tokenization Architecture Overview
	Apple Pay
	Google Wallet
	Google Pay

	Software-based PIN Entry on COTS
	Core Requirements
	Protection of Sensitive Services
	Random Number Generation
	Acceptable Cryptography
	Key Management
	Development

	PIN Cardholder Verification Method Application Requirements
	Development
	Secure Provisioning
	Tamper Checks
	PIN Entry
	PIN Encryption
	Audit Logs

	Back-end Systems – Monitoring/Attestation
	Attestation Types And Components
	COTS System Baseline
	Attestation Mechanism
	Attestation of SCRP (Type 1 Attestation)
	Attestation of COTS (Type 2 Attestation)
	Monitoring Environment Attestation of PIN CVM Application (Type 3 Attestation)
	Basic Protection
	Operational Management

	Solution Integration Requirements
	Pairing of Disparate Components
	Secure Channels
	PIN CVM Solution Requirements

	Back-end Systems – Processing
	Secure Card Reader (SCRP)

	Contactless Payments on COTS
	Security Requirements
	Limitations
	Contactless Kernels
	Visa
	Mastercard

	Successful Card Read Rate
	Existing Implementations
	Android OS Platform
	iOS Platform

	Extending the Dotypay Application
	Application Specification
	Application User Interface
	Cryptographic Key Infrastructure and Exchange
	Application Architecture
	Refactoring of the Application
	Transaction Service Component
	Card Reader Component
	Transaction Processor Component
	Acquirer Service Component

	Modularization of the Application
	Implementation for Nexgo Devices
	Working With Cryptographic Keys
	CardReader Interface Implementation

	Implementation for COTS Devices
	CardReader Interface Implementation Using Visa Tap to Phone SDK

	Recommendations for Future Development

	Testing the Validity of the Updated Solution
	Transaction Authorization in a Test Environment
	The UL Brand Test Tool
	Created Test Scenarios
	Test Results
	Nexgo Devices
	COTS Devices

	Conclusion
	List of Acronyms
	Bibliography
	Source Code Listing
	Files Specific to Nexgo CardReader Implementation
	Files Specific to COTS CardReader Implementation

	User Guide
	Building the Application

	Operating the Application

