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a b s t r a c t

We consider the problem of designing monotone deterministic algorithms for scheduling
tasks on related machines in order to minimize the makespan. Several recent papers
showed that monotonicity is a fundamental property to design truthful mechanisms for
this scheduling problem.

We give both theoretical and experimental results. First of all we consider the case of
twomachines when speeds of themachines are restricted to be powers of a given constant
c > 0. We prove that algorithm Largest Processing Time (LPT) is monotone for any c ≥ 2
while it is notmonotone for c ≤ 1.78; algorithm List Scheduling (LS), instead, ismonotone
only for c > 2.

In the case of m > 2 machines we restrict our attention to the class of ‘‘greedy-
like’’ monotone algorithms defined in [Vincenzo Auletta, Roberto De Prisco, Paolo Penna,
Giuseppe Persiano, Deterministic truthful approximation mechanisms for scheduling
related machines, in: Proceedings of 21st Annual Symposium on Theoretical Aspects of
Computer Science. STACS ’04, in: Lecture Notes in Computer Science, vol. 2996, Springer,
2004, pp. 608–619]. It has been shown that greedy-like monotone algorithms can be
used to design a family of 2 + ε-approximate truthful mechanisms. In particular, in
[Vincenzo Auletta, Roberto De Prisco, Paolo Penna, Giuseppe Persiano, Deterministic
truthful approximation mechanisms for scheduling related machines, in: Proceedings
of 21st Annual Symposium on Theoretical Aspects of Computer Science. STACS ’04, in:
Lecture Notes in Computer Science, vol. 2996, Springer, 2004, pp. 608–619], the greedy-
like algorithm Uniform is proposed and it is proved that it is monotone when machine
speeds are powers of a given integer constant c > 0. In this paper we propose a new
algorithm, called Uniform_RR, that is still monotone when speeds are powers of a given
integer constant c > 0 and we prove that its approximation factor is not worse than that
of Uniform. We also experimentally compare the performance of Uniform, Uniform_RR,
LPT, and several other monotone and greedy-like heuristics.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of designing deterministic monotone algorithms for scheduling tasks on related
machines in order to minimize the makespan (i.e. the maximum completion time). A classical result of game theory [15,2],
states that monotonicity is a necessary condition to design truthful (dominant strategies) mechanisms for problems with
one-parameter agents, such as our scheduling problem.

I An extended abstract of this paper appeared in [Pasquale Ambrosio, Vincenzo Auletta, Deterministic monotone algorithms for scheduling on related
machines, in: Revised Selected Papers of Second International Workshop on Approximation and Online Algorithms, WAOA ’05, in: Lecture Notes in
Computer Science, vol. 3351, Springer, 2005, pp. 267–280]. Work supported by the European Project IST-2001-33135, Critical Resource Sharing for
Cooperation in Complex Systems (CRESCCO).
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Mechanisms are a classical concept of the theory of non-cooperative games [18]. In these games there are several
independent agents that have to work together in order to optimize a global objective function. However, each player has
her own private valuation function, maybe different from the global objective function, and may lie if this can improve her
valuation of the game output, even though this can produce a suboptimal solution. Non-cooperative games can be used to
model problems that have to be solved inmarket environmentswhere heterogeneous entities have to cooperate to compute
some global function but they compete for ‘‘resources’’ (e.g. the autonomous systems that regulate the routing of traffic in
Internet) [19].

The main idea of the Mechanism Design theory is to pay the agents to convince them to perform strategies that help the
system to optimize the global objective function. A Mechanism M = (A, P) is a combination of two elements: an algorithm
A computing a solution and a payment function P specifying the amount of ‘‘money’’ the mechanism should pay to each
agent. A mechanism is Truthful with Dominant Strategies (in what follows, simply truthful) if its payments guarantee that
agents are not stimulated to lie, whatever strategies other agents perform.

Recently, mechanism design has been applied to several optimization problems arising in computer science and
networking that have been (re-)considered in the context of non-cooperative games [6,20,19].

1.1. State of the art

The celebrated VCG mechanism [8,13,21] is the prominent technique to derive truthful mechanisms for optimization
problems. However, this technique applies only to utilitarian problems, that are problems where the objective function is
equal to the sum of the agents valuation functions (e.g., shortest path, minimum spanning tree, etc.). In the seminal papers
by Nisan and Ronen [16,17] it is pointed out that VCG mechanisms do not completely fit in a context where computational
issues play a crucial role. In fact, VCG mechanisms assume that it is possible to compute an optimal solution of the corre-
sponding optimization problem, while several optimization problems exist that are NP-Hard.

Scheduling is a classical optimization problem that is not utilitarian, since we aim to minimize the maximum over
all machines of their completion times and it is NP-Hard. Moreover, scheduling models important features of different
allocation problems and routing problems in communication networks. Thus, it has been the first problem for which new
techniques, not VCG based, have been introduced. Nisan and Ronen [16,20] consider the problem of task scheduling when
each machine is owned by a different agent that declares the processing times of the tasks assigned to her machine and the
algorithm has to compute the scheduling based on the values declared by the agents. For the case of unrelated machines
they provide anm-approximate truthful mechanism, wherem is the number of machines.

The simpler variant of the task scheduling on related machines (in short Q ||Cmax) is considered in [2]. In this case each
machine i has a speed si and the processing time of a task is given by the ratio between the weight of the task and the speed
of the machine. This version of the problem has a very interesting property: the valuation of an agent can be expressed as
the product of the load assigned to its machine times a parameter (namely, the inverse of speed). We denote these problems
as problems involving One Parameter Agents. A fundamental result, given in [15,2], shows that a mechanismM = (A, P) for
a problem with one-parameter agents is truthful if and only if algorithm A is monotone. Moreover, in [2] it is shown how
to construct a payment function PA such that if A is monotone then (A, PA) is a truthful mechanism. It is also proved that
the algorithm that computes the lexicographically minimal optimal solution is monotone. Intuitively, monotonicity means
that increasing the speed of exactly one machine does not make the algorithm decrease the work assigned to that machine
(see Section 2 for a formal definition). The results of [15,2] bring us back to ‘‘pure algorithmic problems’’ as all we need is
to find a good algorithm for the original problem which also satisfies the additional monotonicity requirement. Recently,
several results have been obtained for problems with one-parameter agents, even for other problems such as combinatorial
auctions [1,5].

Several algorithms are known in the literature for Q ||Cmax, but most of them are not monotone. Greedy algorithms were
proposed by Graham in the ’60s for the case of identical machines. He proves that the algorithm Largest Processing Time
(LPT), which considers the tasks in non-increasing order by weight and assigns each task to the machine with the minimal
completion time, has approximation ratio (4/3 − 1/(3m)) [12]; algorithm List Scheduling (LS), which considers tasks
in the same order as given in input, is (2 − 1/m)-approximate [11]. Moreover, a PTAS can be constructed using LPT as a
subroutine [12]: first assign the h largest jobs optimally, for any constant h, and then assign the remaining jobs using the
algorithm LPT. The same algorithms canbe also used forQ ||Cmax. In particular, LPT isφ-approximate for twomachines,where
φ =

1+
√
5

2 is the golden ratio, and 2m
m+1 -approximate formmachines [10]. List Scheduling, instead, is O(logm)-approximate

[3,7]. However, both these algorithms are not monotone [2].
Non-greedy techniques have been used to provide a PTAS for Q ||Cmax [14] and constant approximations for the online

version of the problem [3,6]. However, all these algorithms are intrinsically not monotone.
The first non-trivial monotone algorithm for Q ||Cmax is given in [2], where a randomized 3-approximate mechanism for

Q ||Cmax is presented that is truthful in expectation. In [4] a technique is provided to construct a family of (2+ε)-approximate
monotone algorithms PTAS-Gc for Q ||Cmax starting from a monotone allocation algorithm that is ‘‘greedy-like’’ (i.e. its cost
is within an additive factor of O(tmax/s1) from the cost of LPT, where tmax is the largest task weight and s1 is the smallest
machine speed). The basic idea, derived by the PTAS of Graham, is to combine the optimal scheduling of the largest tasks
with the schedule computed by a monotone ‘‘greedy-like’’ algorithm. In [4] the algorithm Uniform is also proposed which
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is greedy-like and it is monotone in the particular case where machine speeds are divisible: that is, each speed belongs to a
set C = {c1, c2, . . . , cp, . . .} such that for each i, ci+1 is a multiple of ci. Thus, they obtain a family of deterministic truthful
(2 + ε)-approximate mechanisms for the case of divisible speeds. This result, combined with payment functions of [2],
implies the existence, for any fixed number of machines, of deterministic truthful (4+ ε)-approximate mechanisms for the
case of arbitrary speeds, for any ε > 0.

1.2. Our results

In [4] two questions are left open. The first one is whether LPT is monotone in the particular case of divisible speeds; the
second one is whether the algorithm Uniform is monotone also in the case of arbitrary speeds.

In this paper we try to answer both questions. With respect to the first question we give answers only for the case of 2
machines (see Section 3). We slightly modify the definition of divisible speeds of [4] and say that speeds are c-divisible if
and only if they are powers of a given positive constant c . We prove that LPT is monotone for c-divisible speeds when c ≥ 2
while it is not monotone when c ≤ 1.78. Moreover, we prove some interesting properties of the schedules computed by
LPT. We also prove that LS is monotone if c > 2. With respect to the second question, we prove that any ‘‘Uniform-like’’
algorithm is not monotone when speeds are not divisible. It is possible to modify the algorithm and obtain monotonicity
but this implies a much weaker approximation factor (see Section 4). We also describe a new algorithm Uniform_RR, that
is a variation of Uniform, and prove that it is monotone for divisible speeds and for each input it obtains an approximation
factor not worse than Uniform (see Section 4.1).

We experimentally evaluate the performances of algorithms Uniform and Uniform_RR, comparing them to LPT and to
several other ‘‘Uniform-like’’ heuristics. We run our experiments assuming arbitrary integer speeds chosen uniformly in a
given range. Obviously, for the algorithms that are guaranteed to be monotone only in the divisible speeds case we round
the speeds of the machines so that we can assume they are 2-divisible. The experiments show that algorithm Uniform_RR
outperforms the other considered heuristics both with respect to the worst case and the average case approximation factor
and it is very close to LPT; algorithm Uniform, instead, is very close to its theoretical upper bound (see Section 5). A
somewhat surprising result is that best results are obtained by rounding speeds and using algorithm Uniform_RR for 2-
divisible speeds. This means that the approximation induced by the rounding of the speeds is not significant in practice.

We also study the performance of the mechanism PTAS-Gc given in [4]. This mechanism uses a greedy-like algorithm as
a subroutine to compute the scheduling. We measure the performance of the mechanism when algorithms Uniform and
Uniform_RR are plugged into the mechanism. Our comparison is based on both the cost of the solution and the amount of
money that the mechanism has to pay to the agents. The experiments point out that the cost of the solution computed by
the mechanism based on Uniform is less than the cost of the solution computed by the mechanism based on Uniform_RR.
With respect to the payments, instead, the two algorithms are equivalent: in fact, in more than half of our tests the two
mechanisms pay exactly the same amount of money and there is no significant difference between the total amount of
money paid on average. There are few instances where Uniform pays much more than Uniform_RR, while on all instances
where Uniform_RR pays more than Uniform the difference is not significant.

2. The problem

In this section we formally define the Q ||Cmax problem. Consider m machines having speeds s = 〈s1, s2, . . . , sm〉, with
s1 ≤ s2 ≤ · · · ≤ sm, and n tasks of weights σ = (t1, t2, . . . , tn). In what follows, we simply denote the j-th task with its
weight tj. A schedule is a mapping that associates each task to a machine. The amount of time to complete task j onmachine
i is tj/si. The work of machine i, denoted as wi, is given by the sum of the weights of the tasks assigned to i. The load (or
completion time) of machine i is given by wi/si. The cost of a schedule is the maximum load over all machines, that is, its
makespan.

Given an algorithm A for Q ||Cmax, A(σ , s) = (A1(σ , s), A2(σ , s), . . . , Am(σ , s)) denotes the solution computed by A on
input the task sequence σ and the speed vector s, where Ai(σ , s) is the load assigned to machine i. The cost of this solution
is denoted by Cost(A, σ , s). In what follows, we omit σ and s every time it is clear from the context. Following the standard
notation of game theory, we denote by s−i = (s1, s2, . . . , si−1, si+1, . . . , sm) the vector of the speeds of all machines except
machine i and we write s = (s−i, si).

Definition 1 (Monotone Scheduling Algorithms). A scheduling algorithm A is monotone iff for any machine i, keeping fixed
the speeds of the other machines s−i, the work assigned to machine i is not decreasing with respect to si, that is for any
s′i > s′′i it holds that

wi(s−i, s′i) ≥ wi(s−i, s′′i ).

We denote by opt(σ , s) the cost of the optimal solution. Without loss of generality, we assume that the optimal solution
is lexicographically minimal. As shown in [2], an optimal algorithm that computes the lexicographically minimal solution is
monotone.
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An algorithm A is a c-approximate algorithm if, for every instance (σ , s), Cost(A, σ , s) ≤ c · opt(σ , s). A polynomial-time
approximation scheme (PTAS) for a minimization problem is a family A of algorithms such that, for every ε > 0 there exists
a (1 + ε)-approximation algorithm Aε ∈ A whose running time is polynomial in the size of the input and in 1/ε.

Largest Processing Time (LPT) and List Scheduling (LS) are twogreedy algorithmswidely used forQ ||Cmax. LPT first sorts
the tasks in nonincreasing order by weight and then process them assigning task tj to machine i that minimizes (wi + tj)/si,
wherewi denotes thework ofmachine ibefore task tj is assigned; ifmore than onemachineminimizing the above ratio exists
then the machine with smaller index is chosen. LS uses the same rule as LPT to assign tasks to machines, but it processes the
tasks in the same order as they appear in σ . For any fixed number of machines, there exists a PTAS for Q ||Cmax that assigns
the h largest tasks optimally, for h large enough, and the remaining tasks with LPT [12].

We introduce now the class of greedy-close algorithms.

Definition 2 ([4] Greedy-close Scheduling Algorithms). A scheduling algorithm A is greedy-close if for any speed vector s and
for any task sequence σ we have that

Cost(A, σ , s) ≤ Cost(LPT, σ , s) + O
(
tmax

s1

)
,

where tmax is the largest task of σ and s1 is the smallest speed in s.

In [4] themonotone scheduling algorithm PTAS-Gc is provided that uses a greedy-close algorithmGc as a subroutine. This
algorithm splits the task sequence in three parts: the h largest tasks are scheduled optimally; remaining tasks are scheduled
by LPT until it is possible to assign tasks without increasing the makespan obtained in the first phase; the remaining tasks
are scheduled by Gc, independently from the schedule obtained in the first two phases. The following theorem holds.

Theorem 3 ([4]). For any positive integer n and for any ε > 0, if Gc is a greedy-close algorithm, then there exists an integer
h > 0 such that for all task sequences σ and all speed vectors s of length n,

Cost(PTAS-Gc, σ , s, h) ≤ (2 + ε)opt(σ , s)

We say that speeds of the machines are c-divisible, for any constant c > 0, if and only if each speed is a power of c.
We say that the Q ||Cmax problem is restricted to c-divisible speeds if speeds are c-divisible and each agent can declare only
values that are powers of c.

3. Scheduling on two machines with c-divisible speeds

In this section we consider the case of two machines with c-divisible speeds and give upper and lower bounds on the
values of c that guarantee the monotonicity of algorithms LPT and LS.

We start by showing two interesting properties of the schedules computed by LPT. We first observe that the scheduling
computed by LPT is a Nash Equilibrium: if a task assigned to a machine (say i) is moved to another machine then it has a
completion time that is not smaller than its completion time on machine i. This property has been first proved in [9] and it
is very important in the context of dynamic systems since it implies that the system is in a stable state and no entity has an
incentive to move from its state. Here, for the sake of clarity, we give a formal proof of it.

Claim 4. Let w1, w2, . . . , wm be the works assigned to the machines by LPT. For each task tk, let i(k) be the machine which tk is
assigned to. Then, for each 1 ≤ j ≤ m, it holds that wj+tk

sj
≥

wi(k)
si(k)

.

Proof. Suppose that our thesis is false and there exists a task tk that is assigned to machine i(k) and a machine j such that
wj+tk

sj
<

wi(k)
si(k)

. Without loss of generality we can assume that tk is the smaller task assigned to i(k) (otherwise we can replace
tk with another smaller task assigned to i(k)). Let w′

i(k) and w′

j be the works assigned to machines i(k) and j just before the
algorithm assigns task tk. Observe that w′

j ≤ wj and w′

i(k) = wi(k) − tk. Thus, we have that

w′

j + tk
sj

<
w′

i(k) + tk
si(k)

,

contradicting the hypothesis that the algorithm assigned task tk to machine i(k). �

Lemma 5. For each speed vector s and for each sequence of tasks σ , the schedule computed by LPT on input s and σ is such that
for any i, j, if si ≤ sj/2 then wi ≤ wj, where wi is the work assigned by the algorithm to machine i.

Proof. Suppose by contradiction that wi > wj and consider a task t assigned to machine i. We have that wj+t
sj

<
2wi
sj

≤
wi
si
,

contradicting the hypothesis that LPT assigned task t to machine i. �

Let c(A) > 0 be the smallest real number such that for each c ≥ c(A) the algorithm A is monotone when restricted
to c-divisible speeds. We briefly describe now the argument that we use to lower bound c(A). Consider two speed vectors
s = 〈s1, s2〉 and s′ = 〈s′1, s

′

2〉, where s′ differs from s only for the speed of one machine (say machine i) and si ≤ s′i . For each
sequence of tasks σ = 〈t1, t2, . . . , tn〉, we divide the tasks in σ in the following four sets with respect to the allocations
computed by A with respect to s and s′:
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• Ti(σ ), for i = 1, 2, is the set of tasks of σ that are assigned to machine i both with respect to s and s′;
• L(σ ) is the set of tasks of σ that are assigned to machine 1 with respect to s and to machine 2 with respect to s′;
• R(σ ) is the set of tasks of σ that are assigned to machine 2 with respect to s and to machine 1 with respect to s′.

In the following we omit the argument σ whenever it is clear from the context. It is easy to see that

w1(s) =
T1 + L
s1

, w2(s) =
T2 + R

s2
, w1(s′) =

T1 + R
s′1

, w2(s′) =
T2 + L
s′2

. (1)

Theorem 6. For any c ≥ 2, the algorithm LPT is monotone when restricted to the case of two machines with c-divisible speeds.

Proof. Suppose by contradiction that LPT is not monotone for c-divisible speeds. Then, there exist two speed vectors
s = 〈s1 ≤ s2〉 and s′ = 〈s′1 ≤ s′2〉, where s′ has been obtained from s by increasing only one speed, and a sequence of
tasks σ = 〈σ ′, t〉 such that the scheduling of the tasks in σ computed by LPT with respect to s and s′ is not monotone.
Without loss of generality assume that σ is the shortest sequence that LPT schedules in a not monotone way. This means
that the schedule of σ ′ is monotone while the allocation of t destroys the monotonicity. We distinguish three cases.

First of all, consider the case s′2 ≥ c · s2. Since, by hypothesis, the schedule of σ ′ is monotone while the schedule of σ is
not monotone we have that w2(σ

′, s) ≤ w2(σ
′, s′) and w2(σ , s) > w2(σ , s′). By Eq. (1) it follows that

R(σ ′) ≤ L(σ ′) < R(σ ′) + t. (2)

Moreover, since t is the smallest task of σ we have that

R(σ ′) ≥ L(σ ′)/2. (3)

Observe now that if LPT on input s assigns task t to machine 2 then T1(σ ′)+L(σ ′)+t
s1

>
T2(σ ′)+R(σ ′)+t

s2
, from which we obtain

T2(σ ′) <
s2
s1

(
T1(σ ′) + L(σ ′) + t

)
− R(σ ′) − t. (4)

Similarly, if LPT on input s′ assigns task t to machine 1 then T1(σ ′)+R(σ ′)+t
s′1

≤
T2(σ ′)+L(σ ′)+t

s′2
, from which we obtain

T2(σ ′) + L(σ ′) + t ≥
s′2
s1

(T1(σ ′) + R(σ ′) + t). (5)

Substituting Eq. (4) in Eq. (5) we obtain that

L(σ ′) ≥
s′2
s1

(T1(σ ′) + R(σ ′) + t) − T2(σ ′) − t

≥
s′2
s1

(T1(σ ′) + R(σ ′) + t) −
s2
s1

(T1(σ ′) + L(σ ′) + t) + R(σ ′) + t − t

≥
2s2
s1

(T1(σ ′) + R(σ ′) + t) −
s2
s1

(T1(σ ′) + L(σ ′) + t) + R(σ ′) + t − t

=
s2
s1

T1(σ ′) +
s2
s1

(2R(σ ′) + 2t − L(σ ′) − t) + (R(σ ′) + t) − t

=
s2
s1

T1(σ ′) +
s2
s1

(2R(σ ′) − L(σ ′)) + t
(
s2
s1

− 1
)

+ (R(σ ′) + t)

≥ (R(σ ′) + t)

where the last inequality holds since by hypothesis s2
s1

≥ 1 and, by Eq. (3), R(σ ′) ≥ L(σ ′)/2. However, this contradicts Eq. (2)
and therefore there is no instance σ for which the schedule computed by LPT is not monotone.

The case s2 ≥ s′1 ≥ c · s1 can be reduced to the previous case by observing that if there exists σ such that w1(σ , s) >
w1(σ , s′) then it holds thatw2(σ , s) < w2(σ , s′). However, the schedules computed by LPTwith respect to s and s′ are equal
to the schedules computed with respect to speed vectors (1, s2/s1) and (1, s2/s′1), where s2/s′1 < s2/s1.

The case s′1 > s2 follows from Lemma 5. �

The previous theorem implies that a deterministic monotone algorithm exists for Q ||Cmax on two machines.

Corollary 7. There exists a deterministic monotone algorithm for scheduling tasks on two related machines with approximation
factor not greater than 2φ.

Proof. Consider the sequence of tasks σ and the speed vector s = (s1, s2). We first compute s′ = (s′1, s
′

2), where s′i = 2blog sic

and then run LPT on σ and s′. By Theorem 6 the scheduling produced by this algorithm is monotone. The approximation
factor of LPT on two machines is less than φ [10]. We have to add a factor of 2 for the rounding of the machine speeds. �
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Table 1
Schedules of σ = 〈y, x, x/2 +

2ε, x/2−ε〉 produced by LPT on
input s = 〈1, c〉 and s′ = 〈1, c2〉

Speed 1 c

Tasks x y
x/2 + 2ε
x/2 − ε

Speed 1 c2

Tasks x/2 + 2ε y
x/2 − ε x

Notice that a better approximation factor is obtained by the simple algorithm that schedules all tasks on the fastest
machine. However, this Corollary is interesting because it suggests a possible way to give monotone algorithms for the case
of m machines: given an algorithm A that is monotone for c-divisible speeds, round down the speeds of the machines to
powers of c and then use A to compute a scheduling with respect to the rounded speeds.

Intuitively, Theorem 6 states that LPT is monotone if a machine that wants to reduce its speed has to do it in a significant
way (at least half in this case). It is interesting to study which is the value of c(LPT). Next Lemma gives a constructive lower
bound on this value.

Lemma 8. For any c ≤ 1.78, the restriction of LPT to two machines and c-divisible speeds is not monotone.

Proof. Consider the sequence of tasks σ = 〈y ≥ x ≥ x/2+ 2ε ≥ x/2− ε〉 and the speed vectors s = 〈1, c〉 and s′ = 〈1, c2〉.
Without loss of generality we assume c ≥ 1, otherwise we can simply scale the speeds down. Assume that LPT schedules
tasks of σ as shown in Table 1 when receives in input s and s′, respectively. Clearly, this schedule is not monotone since
machine 2 receives a total load of y + x + ε with speed c and a total load of x + y with speed c2. In the following we give
conditions on y, x and ε in order to have LPT producing the schedules given in Table 1.

We observe that LPT on input s produces the schedule given in Table 1 when

y + x
c

> x (6)

and

y + x + ε

c
<

3
2
x − ε. (7)

Similarly, LPT, on input s′, produces the schedule given in Table 1 when

y + x
c2

< x (8)

and

y + x + x/2 − ε

c2
> x + ε. (9)

By trivial computations it can be seen that for any c ≤ 1.78 it is possible to choose y, x and ε so that previous inequalities
hold. In particular, for c = 1.78 we can take y = 113.5, x = 68, ε = 0.005. �

The argument of the proof of Lemma 8 cannot be extended since for any c ≥
3+

√
17

4 it is not possible to choose y, x and
ε in order to satisfy Eqs. (6)–(9).

Theorem 9. For any c > 2, the algorithm LS is monotone when restricted to the case of two machines with c-divisible speeds.

Proof. The proof is similar to Theorem 6. Suppose by contradiction that LS is not monotone for c-divisible speeds and let
s = 〈s1, s2〉 and s′ = 〈s1, s′2〉 be two speed vectors that differ only on one speed and let σ = 〈σ ′, t〉 be a minimal length
sequence of tasks such that the schedules of σ produced by LS on input s and s′ are not monotone. Thus, the schedules of σ ′

are monotone while the assignment of task t destroys the monotonicity.
Consider first the case where s′2 ≥ c · s2. In this case we can state that LS assigns t to machine 2 if it receives in input s,

and it assigns t to machine 1 if it receives in input s′. Observe that Eq. (2) holds also in this case and we have that

T1(σ ′) + R(σ ′) + t
s1

<
T2(σ ′) + L(σ ′) + t

s′2
≤

T2(σ ′) + L(σ ′) + t
cs2

.
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Fig. 1. Algorithm Uniform.

Thus, we have that

L(σ ′) ≥
cs2
s1

(T1(σ ′) + R(σ ′) + t) − T2(σ ′) − t

≥
cs2
s1

(T1(σ ′) + R(σ ′) + t) −
s2
s1

(T1(σ ′) + L(σ ′) + t) + R(σ ′) + t − t

= R(σ ′) + t + (c − 1)
s2
s1

T1(σ ′) +
s2
s1

(R(σ ′) − L(σ ′) + t) + (c − 1)
s2
s1

R(σ ′) +

(
(c − 2)

s2
s1

− 1
)
t,

where the second inequality follows from Eq. (4). Observe now that, since c > 2 and s2 ≥ s1, we have that (c−1) s2
s1
T1(σ ′) ≥

0, (c − 1) s2
s1
R(σ ′) ≥ 0 and

(
(c − 2) s2

s1
− 1

)
t ≥ 0. Thus, we can conclude that(

1 +
s2
s1

)
L(σ ′) ≥

(
1 +

s2
s1

)
(R(σ ′) + t)

that contradicts Eq. (2).
The proofs of the caseswheremachine 1 increases its speed are the same as the proofs of the same cases in Theorem6. �

4. Uniform-like algorithms

In this section we prove that algorithm Uniform, proposed in [4], is not monotone with respect to not divisible speeds.
In all this section we assume that machine speeds are positive integers.

We start by giving a short description of the algorithm (the code of the algorithm is given in Fig. 1), while we refer
the interested reader to [4] for a complete description. Algorithm Uniform works in two phases: first it uses LPT as a
subroutine to compute a schedule of the tasks to S =

∑m
i=1 si identical ‘‘virtual machines’’; then, it assigns to each real

machine i the work assigned to si virtual machines in such a way that each virtual machine is assigned to only one real
machine. To guarantee the monotonicity of Uniform the mapping of the virtual machines to the real machines is such that
w1/s1 ≤ w2/s2 ≤ · · · ≤ wm/sm. In particular, Uniform partitions the virtual machines into g blocks of the same size,
where g is equal to GCD(s1, s2, . . . , sm), in such a way that each virtual machine of block i has a work greater than any other
machine in a block j < i. Finally, for each block i, for i = 1, 2, . . . ,m, it assigns si/g consecutive virtual machines to the real
machine i, starting from the virtual machine with less work.

In [4] it is proved that Uniform is greedy-close and it is monotone in the particular case of divisible speeds. The question
whether Uniform is monotone also when speeds are not divisible is left open. Theorem 10 gives a negative answer to this
question.

Theorem 10. Algorithm Uniform is not monotone with respect to not divisible speeds.

Proof. We prove the Theorem by constructing an example where the allocation computed by algorithm Uniform is not
monotone. Consider the task sequence σ = 〈2, 2, 2, 1, 1, 1〉 and the speed vectors s = 〈3, 8〉 and s′ = 〈2, 8〉. Observe that
on input (σ , s) algorithm Uniform partitions the virtual machines in only one block and assigns all the load to machine 2
(see Fig. 2(a)): thus, we have a work equal to 0 for machine 1 and a work equal to 9 for machine 2. On input (σ , s′), instead,
algorithmUniform splits the virtualmachines in 2 blocks producing the schedule given in Fig. 2(b), wheremachine 1 obtains
a work of 2. Thus, the algorithm is not monotone because machine 1 increases its load while reducing its speed. �

The proof of Theorem 10 shows that any algorithm based on the partition of virtual machines in blocks will not be
monotone if thenumber of blocks depends on the speeds of themachines.We canmodifyUniform, so that it sets g = 1 and it
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Fig. 2. An example of non monotone scheduling computed by Uniform. In (a) it is given the scheduling computed for s = (3, 8); in (b) it is given the
scheduling computed for S ′

= (2, 8).

Fig. 3. Algorithm Uniform_RR.

Fig. 4. Assignments computed by Uniform (left) and Uniform_RR (right) on an instance with two machines with speeds s = 〈3, 4〉. Uniform produces an
assignment with makespan equal to 19.75; Uniform_RR produces an assignment with a makespan equal to 16.25.

considers all the virtualmachines as in the same block. This new algorithm ismonotone but it obtains aweak approximation
since the assignment of the virtual machines to real machines is completely unbalanced (see Fig. 4(a)). We describe now a
variation of Uniform that computes g = GCD(s1, s2, . . . , sm) blocks but it makes a more clever assignment of the virtual
machines of each block to the real machines.

4.1. Algorithm Uniform_RR

Several variations of Uniform can be designed, differing for the strategy used to assign virtual machines of a block to the
real machines. In this paper we restrict our attention to algorithms that allocate virtual machines to real machines while
preserving the property that for each block B and for each pair ofmachines i, j, with si < sj, the total load assigned tomachine
i in block B must be not greater than the total load assigned to machine j. We require this property since it is a sufficient
condition to guarantee the monotonicity of the allocation.

We now describe algorithm Uniform_RR, that uses a round-robin strategy to assign virtual machines of a block to real
machines, starting from the virtual machine with lowest work that is assigned to the real machine with lowest speed.
Algorithm Uniform_RR is described in Fig. 3. In Fig. 4 it is given evidence of the more balanced scheduling computed by
Uniform_RR by showing the assignments computed by Uniform and Uniform_RR on an instance of 7 virtual machines.
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Fig. 5. An example of partitioning the virtual machines of a block in rounds.

In the rest of the sectionwe prove that algorithmUniform_RR is monotonewhen restricted to c-divisible speeds, for any
positive integer c , and it is (2 + ε)-approximate. The proof of the monotonicity of Uniform_RR is a technical extension of
the proof of monotonicity of Uniform, given in [4].

Consider the allocations computed by algorithm LPT on N and N ′
= N + d identical machines. We denote by

- Li the load of the i-th least loaded machine when LPT allocates tasks on N identical machines;
- li the load of the i-th least loaded machine when LPT allocates tasks on N + d identical machines.

The following technical result is fundamental for our proof.

Lemma 11 ([4]). Consider the allocations computed by the algorithm LPT on N and N ′
= N +d identical machines, respectively.

Then, for 1 ≤ i ≤ N and 0 ≤ k ≤ d it holds that

li+k ≤ Li
li + li+1 ≤ Li

Consider a block B.We partition the virtualmachines of B in rounds,where a round is a set of consecutive virtualmachines
such that each virtual machine is assigned to a distinct real machine (see Fig. 5 for an example). It can be easily seen that the
machines of B are partitioned in sm/g rounds. Moreover, if round i contains a virtual machine assigned to the real machine
j then it contains also virtual machines assigned to all the real machines k, with k > j. To prove the monotonicity of the
algorithmwehave to show that increasing the speed of onemachine thework assigned to such amachine does not decrease.
In the following we denote by wi(s) the work assigned to the machine i when the algorithm receives in input the vector
speed s.

Theorem 12. For any integer c > 0, algorithm Uniform_RR is monotone when restricted to c-divisible speeds.

Proof. Let s = (s1, s2, . . . , sm) be a vector of machine speeds that is c-divisible and denote by s′ the vector obtained from
s by substituting sj with s′j ≥ c · sj. Thus, the algorithm Uniform_RR uses S =

∑
j sj virtual machines when it receives in

input s while it uses S ′
= S + (s′j − sj) virtual machines when it receives in input s′. We will show that the algorithm, on

input s, allocates to machine j somework that is not greater than the work that the algorithm allocates to the samemachine
on input s′. For the sake of clarity we prove the theorem only for the case where c = 2, s′j = 2sj and thus S ′

= S + sj. The
general case is a trivial generalization of this case.

We distinguish two cases depending on the value of j. In fact, when j 6= 1 the number of blocks constructed by the
algorithm on input s is the same as the number of blocks constructed on input s′; when j = 1, instead, the number of blocks
constructed on input s′ is twice the number of blocks constructed on input s.

• [j 6= 1] Denote by Bi(t) the i-th block of virtual machines constructed by the algorithm on input the speed vector t .
Observe that |Bi(s)| = S/s1, |Bi(s′)| = (S + sj)/s1 and if the index of the first virtual machine of Bi(s) is a then the first
index of Bi(s′) is a′

= a + d, where d ≤ sj. Suppose first that s′j ≤ sj+1 and thus machine j does not change its position
in the speed vector (note that the speed vector is sorted). In this case the first sj rounds of the algorithm allocate virtual
machines to real machines in the same order. Thus if, on input s, machine h 6= j in round r receives the work of the
virtual machine x then the same machine, on input s′ receives in round r the work of the virtual machine x′

≤ x + d. By
Lemma 11 for each machine h ≤ j it holds that lx′ ≤ Lx. Summing over all the blocks we obtain that for each machine
h 6= jwe have that wh(s) ≥ wh(s′), and this implies that wj(s) ≤ wj(s′).

Suppose now that s′j > sj+1 and machine jmoves to position j′ in s′ (and thus sj = sj+1 = · · · = sj′ ). We have to prove
that wj(s) ≤ wj′(s′). Observe that in this case all machines with indices from j to j′ change their position in the round
robin allocation computed by the algorithm. However, since, for each 1 ≤ h < m, algorithm Uniform_RR assigns a load
to the h-th machine not greater than the load assigned to the (h+1)-th machine, we know thatwj(s) ≤ wj′(s). Thus, it is
sufficient to prove that wj′(s) ≤ wj′(s′). Without loss of generality assume that j′ = j+1. The general case can be proved
by repeatedly applying the same argument to pairs of machines (j + 1, j + 2), (j + 2, j + 3), . . . , (j′ − 1, j′). Consider
now a new vector s, obtained from s by exchanging machines in position j and j+ 1. Notice that the algorithm computes
the same allocation on input s and s and thus wj+1(s) = wj+1(s). Consider now the vector s′ obtained by s substituting
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sj+1 with 2sj+1. Observe that s′ = s′ and by the previous case wj+1(s) ≤ wj+1(s′) = wj+1(s′). Putting things together, we
have that

wj(s) ≤ wj+1(s)
= wj+1(s)
≤ wj+1(s′)
= wj+1(s′).

• [j = 1] If s′1 ≤ s2 then machine 1 does not change its position in the round robin allocation and it receives the works of
the first virtual machine of each block. However, the number of blocks doubles. Observe that the first machine of Bi(s),
for 1 ≤ i ≤ s1, has index a(i) = (i − 1) S

s1
+ 1, while the first index of Bi(s′), for a ≤ i ≤ 2s1, is a′(i) = (i − 1) S+s1

2s1
+ 1.

Since a′(2i − 1) − a(i) = i − 1 < s1, then by Lemma 11 we have that La(i) ≤ la(i) + la(i)+1 ≤ la′(2i−1) + la′(2i). Finally, we
can conclude that

w1(s) =

s1∑
i=1

La(i) ≤

s1∑
i=1

la′(2i−1) + la′(2i) =

2s1∑
i=1

la′(i) = w1(s′).

The case where machine 1 changes its position in s′ can be solved as the similar case for j 6= 1. In fact, in this case s1 = s2
and the number of blocks constructed by the algorithm is the same on input s and s′. �

In order to give an upper bound on the approximation factor of Uniform_RR, we show that for any speed vector s and
any task sequence σ it holds that

Cost(Uniform_RR, σ , s) ≤ Cost(Uniform, σ , s).

In [4] it is proved that the makespan of Uniform is obtained by machine m. We prove that a similar property holds also
for Uniform_RR.

Lemma 13. For any speed vector s = 〈s1, s2, . . . , sm〉 and any task sequence σ it holds that

Cost(Uniform_RR, σ , s) = wm/sm,

where m is the fastest machine and wm is the work assigned to this machine.

Proof. We prove the lemma by showing that for each block B the load assigned to machine m in block B is greater than or
equal to the load assigned in the same block to any other machine.

Let x1 ≤ x2 ≤ · · · ≤ xsm/g and y1 ≤ y2 ≤ · · · ≤ ysj/g be the loads of the virtual machines assigned to machine m and j,
for any j < m, respectively. We observe that xh ≥ yh for 1 ≤ h ≤ sj/g and xh ≥ ysj/g for sj/g < h ≤ sm/g . Then,

1
sm

sm/g∑
h=1

xh ≥
1
sj

sj/g∑
h=1

yh. �

Lemma 14. For any speed vector s = 〈s1, s2, . . . , sm〉 and any task sequence σ it holds that

Cost(Uniform_RR, σ , s) ≤ Cost(Uniform, σ , s).

Proof. By Lemma 13 it is sufficient to prove that Uniform_RR assigns to machine m a total load not greater than the load
assigned by Uniform to the same machine.

Observe that the two algorithms compute the same assignment of tasks to the virtual machines and the same partition
of virtual machines in blocks. Thus, it is sufficient to prove that the load assigned by algorithm Uniform_RR to machine m
for each block B is not greater than the load assigned by Uniform to the same machine. Let x1 ≤ x2 ≤ · · · ≤ xsm/g and
y1 ≤ y2 ≤ · · · ≤ ysm/g be the works of the virtual machines of block B assigned to machine m algorithms by Uniform and
Uniform_RR, respectively. It can be easily seen that xh ≥ yh for 1 ≤ h ≤ sm/g and the lemma follows. �

Theorem 15. For any speed vector s = 〈s1, s2, . . . , sm〉 and any task sequence σ it holds that

Cost(Uniform_RR, σ , s) ≤ (2 + ε)opt(σ , s).

Proof. The theorem follows by Lemma 14 and Theorem 16 of [4]. �
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Table 2
Algorithms considered in our testing and their theoretical
approximation factors
Upper bounds to approximation factors of monotone
scheduling algorithms

Largest Processing Time ( 2n
n+1 )

Largest Processing Time restricted ( 2n
n+1 )

Uniform g = 1 (4 + ε)

Uniform g = 1 restricted (4 + ε)

Uniform restricted (4 + ε)

Uniform_RR g = 1 (4 + ε)

Uniform_RR g = 1 restricted (4 + ε)

Uniform_RR restricted (4 + ε)

Table 3
Summary of the number of instances performed in each run
Jobs Machines Instances

β = 1 β = 2 β = 3 β = 4 β = 5 β = 6

10 4 3690 7380 11070 14760 22140 29520
25 5 3690 11070 14760 19680 29520 39360

100 10 5538 17694 33232 54310 66466 88620

Table 4
Average Competitive ratio computed on all the instances
Average approximation factors of monotone
scheduling algorithms

LPT 1.377031
LPT restricted 1.777902
Uniform MCD = 1 4.692374
Uniform MCD = 1 restricted 4.062987
Uniform restricted 3.387385
Uniform Round-Robin MCD = 1 2.935213
Uniform Round-Robin MCD = 1 restricted 2.600026
Uniform Round-Robin restricted 1.988051

5. Experimental results

In this section we describe the results of an experimental analysis on the performance of several monotone scheduling
algorithms. We have performed three different experiments:

• in the first experiment we have measured the approximation factors of several monotone heuristics, comparing them to
the approximation of LPT;

• in the second experiment we have measured the approximation factors of the algorithms obtained by plugging different
monotone greedy-like algorithms in the scheme described in [4];

• in the third experiment we have measured the total quantity of money paid by the mechanisms induced from the
algorithms Uniform and Uniform_RR.

In our test we have considered three basic algorithms: LPT, Uniform and Uniform_RR. We have also considered several
variations of these three algorithms, obtained by changing the number of blocks, if used, or rounding the speeds of the
machines. In particular, the restricted versions of the three algorithms take in input the machine speeds, round up the
speeds to a power of 2 and then compute the scheduling. Table 2 summarizes the algorithms we have considered in our
testing.

We have performed experiments with respect to arbitrary speeds. We executed our measures on three different runs:
in each run we fix the number of machines and the number of tasks and select speeds uniformly in a range [1, 2β

] with
1 ≤ β ≤ 6 and task weights uniformly in a range [1, 2α

] with 0 ≤ α ≤ 8. Table 3 gives a summary of the instances
performed in each run. For each instance we have measured the makespan and the approximation factor. Then we have
computed the average makespan, the average approximation factor and the worst case approximation factor in each run.
We have also performed similar experiments for speeds and weights selected according to a normal distribution and for
2-divisible speeds. The results obtained are similar and we omit them.

Fig. 6 shows the worst case approximation factors obtained in the three runs. Table 4, instead, shows the average
approximation factors, where the average is computed on the set of all the instances.

Experiments give evidence that Uniform_RR obtains the best results among the monotone algorithms considered in our
testing. Its approximation factor is very close to LPT, both in the worst case and in the average case.
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Fig. 6.Worst case approximation factors obtained in our testing. (a) 10 tasks and 4 machines (b) 15 tasks and 5 machines (c) 100 tasks and 15 machines.

Fig. 7. Average approximation factor of PTAS-Gc, computed on all the instances of our testing, for different selections of Gc and h.

Uniform, instead, obtains an approximation factor that is very close to the theoretical bound. An unexpected result is
that the restricted version of Uniform_RR obtains better results than the unrestricted version of the same algorithm and its
performance improves when the number of tasks increase. Our interpretation is that the restricted version of the problem
uses more blocks and thus obtains a more balanced assignment of virtual machines to real machines, counterbalancing the
approximation induced by the rounding of the machine speeds.

We have also experimentally measured the impact of the proposed greedy-close monotone algorithms on the
performance of the PTAS-Gc algorithm defined in [4]. Notice that PTAS-Gc takes three inputs: the task sequence, the speed
vector and a parameter h, that is the number of tasks that are allocated optimally in the first phase of the algorithm. Our
testing is organized in two runs: the first run is performed on instances with 15 tasks and 4 machines; the second run is
performed on instanceswith 25 tasks and 5machines. For each instance of σ and swe run the algorithmwith h ∈ {0, 3, 5, 8}
(see Fig. 7 for a summary of the approximation factors and the computation times).

Our experiments point out two interesting aspects: the first one is that, since the largest tasks are assigned optimally,
the difference in the performance between Uniform_RR and the other heuristics is significantly smaller; the second one is
that all the considered heuristics, except for Uniform_RR, improve their performance when h increases. In particular, for
h sufficiently large, algorithm Uniform outperforms Uniform_RR. Moreover, we notice that the computation time grows
dramatically when h increases (see Fig. 8), while the approximation factor is improved only by a small factor.



P. Ambrosio, V. Auletta / Theoretical Computer Science 406 (2008) 173–186 185

Fig. 8. Average computation times of PTAS-Gc, computed on all the instances of our testing, for different selections of Gc and h.

Table 5
Summary of the number of instances computed in each run and the average total
payment

Instances E[P(Uniform)] E[P(Uniform_RR)]

100 tasks and 10 machines 100.000 7.979 7.935
25 tasks and 5 machines 100.000 1.857 1.851
15 tasks and 4 machines 88.560 1.149 1.147

Table 6
Maximum difference between payments computed by mechanisms induced on
algorithms Uniform and Uniform_RR

100 tasks 25 tasks 15 tasks
10 machines 5 machines 4 machines

max(P(Uniform) − P(Uniform_RR)) 8.660, 8 3.490, 7 1.423, 8
max(P(Uniform_RR) − P(Uniform)) 743, 3 541, 5 375

Finally, we have considered the truthful mechanisms obtained from algorithms Uniform and Uniform_RR using the
payment functions described in [2]. We have organized the experiment in three different runs: for each run we have fixed
the number of machines and tasks and we have computed several instances by selecting the weights of the tasks and the
speeds of the machines as in the previous experiments. Table 5 summarizes the number of instances computed in each run
and the average payment computed in each run. It can be easily seen that the the average payments are approximately
equal. In more than half of the instances the two mechanisms computed exactly the same payments and in the remaining
instances the difference between the payments is always small (see Table 6).

6. Conclusion

The contribution of this paper is twofold. From a theoretical point of view, we have proven that greedy algorithms like
LPT and LS are monotone if we restrict our study to the case of 2 machines with c-divisible speeds, for large enough c. This
implies that greedy algorithms can bemademonotone with a loss in the approximation factor. We think that this technique
can be extended to the case ofm > 2 machines.

From an experimental point of view we have analyzed several heuristics, based on the algorithm Uniform, and proved
that making cleverer assignments of virtual machines to real machines can significantly improve the performance of
the algorithm. In particular, we have shown that in several cases rounding machine speeds and using a ‘‘Uniform-like’’
scheduling algorithm (i.e. algorithm Uniform_RR) can yield better results than solving the problem with respect to the
original speeds. However, if we could prove that LPT is monotone for c-divisible speeds, for a small c , we could obtain even
better approximations.
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