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1. Introduction 

Software effort estimation (SEE) is one of the early activities of the software life cycle. SDEE 
estimates how much effort and cost are required to develop a new software system. Estimating effort is 
essential because the software organizations must release the software within a given timeframe and cost. 
Unfortunately, most software projects are delivered over time and budget. Time and cost overruns have 
been common problems in software projects for many years [1]. As reported by Bloch et al. [2], software 
projects with a budget of more than $15 million run 66% over budget and 33% over time. Hence, 
estimating effort and cost accuracy is essential in SEE to successfully evade the time and budget overruns 
for overall software delivery [3], [4]. 
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 Among algorithmic-based frameworks for software development effort 
estimation, Use Case Points I s one of the most used. Use Case Points is a 
well-known estimation framework designed mainly for object-oriented 
projects. Use Case Points uses the use case complexity weight as its essential 
parameter. The parameter is calculated with the number of actors and 
transactions of the use case. Nevertheless, use case complexity weight is 
discontinuous, which can sometimes result in inaccurate measurements and 
abrupt classification of the use case. The objective of this work is to 
investigate the potential of integrating particle swarm optimization (PSO) 
with the Use Case Points framework. The optimizer algorithm is utilized 
to optimize the modified use case complexity weight parameter. We 
designed and conducted an experiment based on real-life data set from 
three software houses. The proposed model’s accuracy and performance 
evaluation metric is compared with other published results, which are 
standardized accuracy, effect size, mean balanced residual error, mean 
inverted balanced residual error, and mean absolute error. Moreover, the 
existing models as the benchmark are polynomial regression, multiple 
linear regression, weighted case-based reasoning with (PSO), fuzzy use case 
points, and standard Use Case Points. Experimental results show that the 
proposed model generates the best value of standardized accuracy of 99.27% 
and an effect size of 1.15 over the benchmark models. The results of our 
study are promising for researchers and practitioners because the proposed 
model is actually estimating, not guessing, and generating meaningful 
estimation with statistically and practically significant.  
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Software size and productivity factors are two variables in estimating the software development 
project. Use case points (UCP) is a software sizing and estimation framework introduced by Karner [5]. 
UCP utilizes use case diagrams to calculate the size of the software and multiply it by the productivity 
factor. In the second step of UCP, as notated in Eq. (2), the use case (UC) complexity weight level is 
classified into simple, average, and complex. Each weight complexity level is assigned based on the 
number of UC transactions. The original UCP framework appointed complexity weight levels as 5 for 
Simple, 10 for average, and 15 for the complex. Researchers have criticized the origin complexity weight 
level as the complexity hierarchy level is discontinuous, which can sometimes result in inaccurate 
measurements [6] and abrupt classification of use case [7], [8]. For example, the use case of 8 transactions 
has double the weight of the use case with seven transactions. Moreover, they are not considering huge 
use case transactions. For example, the use case of 25 transactions has the same weight as the use case 
of 9 transactions. 

Several works have been conducted to solve the abrupt classification problem of the use case 
complexity weight level. For instance, the existing fuzzy approaches are utilized and proposed [6], [7], 
[9], [10]. Fuzzy logic is always used to discretize the existing complexity weight level. It tries to smoothen 
the abrupt classification by providing continuous and gradual classification. Most studies prove that fuzzy 
UCP improved estimation performance compared with the original UCP. 

Continuous use case classification weight level allows us to further improve the accuracy of UCP by 
conducting optimization. A well-known approach to the continuous problem is optimization. Particle 
Swarm Optimization (PSO) is an appropriate optimization algorithm for this problem due to several 
considerations. First, PSO is straightforward, easy to implement, and computationally efficient [11], 
[12]. Second, the performance of PSO outpaces several well-known evolutionary algorithms such as 
simulated annealing and genetic algorithm. Furthermore, PSO converges quickly and is widely proven 
for solving various troublesome optimization problems [13].  

Search-based software effort estimation research has been used in many studies [14]. Particle swarm 
optimization (PSO) [13], Genetic programming [15], [16], simulated annealing [17], Bayesian 
optimization [18], hybrid PSO-SA [19], Genetic Algorithm (GA) [20], and differential evolutionary 
(DE) [21] optimization are employed for cased-based reasoning effort estimation. COCOMO effort 
estimation is optimized by using Firefly [22], [23], PSO [24]–[27], GA [28], stochastic gradient descent 
[29], DE [30], and COA [31], [32]. However, little work has been studied in the UCP framework by 
utilizing the optimization approach to the best of our knowledge. Hence, there is a gap and challenge to 
improve the use case classification weight level derived from the modified use case weight level UCP 
proposed by previous studies. Therefore, this study aims to optimize the use case complexity weight 
parameter to improve the accuracy of software sizing and effort development using PSO. In contrast, the 
contribution of this study is an improved Use Case Point estimation method by integrating the PSO 
algorithm. 

The structure of the remaining part of this paper is organized as follows: Section 2 related work; 
Section 3 the theoretical framework of use case points and particle swarm optimization; Section 4 details 
the proposed model in this study; Section 5 details of experiment setup; Section 6 presents and discusses 
the experimental results and Section 7 discusses the conclusion and recommends future works of this 
study. 
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2. Related works 

There are three primary trends in the study of use case points effort estimation: modification of the 
UCP sizing technique, simplifying and examining the UCP, and hybridizing the UCP with machine 
learning and data mining techniques.  Several studies proposed the reconstruction of the UCP sizing 
technique. Braz and Vergilio [33] modified the use case complexity weight using fuzzy theory, while [34] 
successfully optimized this modified weight. Robiolo and Orosco [35] added two new variables, the size-
transactions and entity objects, computed from the use case description. The study of Anda et al. [36] 
has modified the complexity assessment of actors and handled the non-functional requirements. This 
study made an essential contribution to the adaptability of the UCP for incremental development. 

Anda et al. [37], [38] examined and simplified the UCP to understand the impacts of technical and 
environmental complexity factors. The authors suggested that adjusting the environmental factors based 
on the type of organization will improve estimation precision. Whereas Ochodek et al. [39], [40] 
excluded several parts of UCP to simplify the calculation process of the UCP. The investigator claimed 
that these parts are insignificant concerning the effort estimation. Recently, Nhung et al. [41] optimized 
the correction factors (ECF and TCF) and multiple regression models to improve the estimation 
accuracy of the modified UCP. 

The utilization of machine learning and data mining techniques to improve UCP performance has 
been studied in recent years. Nassif [42] built cooperation between effort, UCP, and productivity by 
introducing a log-linear regression model. This study was followed by a hybrid model that simultaneously 
predicts productivity factor and effort estimation from historical data [43]. Meanwhile, Nassif et al. [44] 
estimated an effort based on UCP and team productivity using the Treebost model. 

The ultimate objective of software effort estimation studies is to minimize an error between actual 
and estimated effort. The inflexibility of the use case complexity weight level impacts the accuracy of the 
estimation [10]. Moreover, the original complexity and assigned weight levels might not reflect the 
actual situations [45]. Fortunately, this was confirmed earlier by Karner [5] that the proposed complexity 
weight is based on the people’s approximation at Objective Systems. Karner [5] also strongly suggests 
that more data is needed to adjust the model, weights, and parameters. Clearly, the original complexity 
weight is not the final ideal weighting parameter. In other words, the granularity should be supported 
to achieve the best weighting scheme and yield the best accuracy in estimation. There are three primary 
approaches focused on proposing the improvement of use case complexity weight: adding extra 
complexity weight level, discretizing existing complexity weight level, and calibrating the complexity 
weight level as described. 

Silhavy et al. [46] proposed two critical parameters in estimating software effort: actor and use case 
specification. Meanwhile, technical and environmental complexity factors have been evaluated by Nhung 
et al. [47]. Qi and Boehm [48] measured the project size by automatically calculating the transactions 
and class diagram using the USIM tool. 

Several studies proposed extra complexity weight due to factors affecting the complexity weight level. 
The type of application and use-case-specific style are two examples that affected the complexity weight 
level. Hence, the complexity weight should be re-evaluated based on circumstances. Galorath and Evans 
[49] proposed weight values 10 (simple), 15 (average), and 20 (complex). Periyasamy and Ghode [50] 
proposed an extra level –“most complex” – to the use case complexity weighting. Manzoor and Wahid 
[51] proposed the extra level – “critical.” Minkiewicz [52] proposed the extra level – “very high” for more 
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than 14 transactions, and assigned weights are 5, 10, 15, and 20. Whereas Nassif [53] added three more 
complexity weight levels – 20, 25, and 30. 

Fuzzy logic is commonly used for discretizing the existing complexity weight level. It tried to 
smoothen over the abrupt classification by providing a continuous and gradual classification. Early works 
in discretizing the current complexity weight level was proposed [7], [6], [10]. Wang et al. [7] introduced 
the complexity weight level from three to five. They proposed the EUCP by integrating the fuzzy set 
theory and Bayesian Belief Network (BBN). The result showed that EUCP was more effective than UCP 
for the two projects. Xie et al. [6] proposed discretizing complexity weight level that extends the use-
case complexity from three to four-level. The result showed that the proposed complexity weight 
increased by 5.5 (person-hours) with an error rate of 15.45% using four real project data sets. Nassif et 
al. [10] offered ten complexity weight levels according to the number of transactions per use case. The 
study assumes that the largest use case contains ten transactions, and the complexity factor of the largest 
use case is fifteen. The result showed that the proposed method improved by 22% in some projects. 

The study of UCP calibration is conducted by Nassif  et al. [8] and followed by Qi et al. [45]. Nassif 
et al. [8] introduced a six-level use case complexity weight instead of a three-level as initially proposed 
by the original UCP. The neural network is used to calibrate the proposed six weight complexity levels. 
After successfully calibrating the weight, fuzzy logic is applied to smoothen the abrupt change in 
complexity levels and weights. Unfortunately, this study did not report any experimental results in detail 
and the model validation. Qi et al. [45] explored the Bayesian analysis to calibrate the use case complexity 
weights. The study collected the use case weight and empirical project data as an input. The a priori use 
case weights are the source input for calculating a priori mean and variances. At the same time, the 
empirical project data is the source input for calibrating the use case weight by using multiple linear 
regression. In the final process, the calibration, mean, and variance results calculate the Bayesian 
weighted average. Bayesian estimates of the weights are the output of the calculation. The method was 
evaluated using 105 projects and compared with a priori, original UCP, and regression approaches. The 
result showed that the Bayesian provides better effort estimation accuracy. 

Continuous and gradual classification values provided a broader chance to extend the complexity 
weight. Moreover, these approaches showed promoting results by expanding the complexity weight in 
the original UCP method. Despite Nhung et al. [41] and Hoc et al. [54] conducted the optimization in 
UCP. However, they do not explore the potential of continuous complexity weight level in terms of 
optimization function. Metaheuristic-based optimization can smoothen the abrupt change in complexity 
level because of its ability for continuous function optimization. Thus, this study modified the UCP 
estimation method by searching for the optimum use case complexity weight parameter to improve 
estimation performance. 

3. Method 

3.1. Theoretical Background 

3.1.1. Use Case Points 

The original UCP framework consists of seven steps.  

First, calculating unadjusted actor weighting (UAW) by classifying the actors into three levels of 
complexity and assigning a weight for each actor based on its complexity, as notated in Eq. (1). 
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𝑈𝐴𝑊 =  ∑ 𝑊𝑖
3
𝑖=1 ∗ 𝐴𝑖  () 

where 𝑊𝑖 is the weight factor classified as simple for 1, the average for 2, and complex actor for 3. 𝐴𝑖 is 
a number of actors in the use case diagrams based on the same classification as 𝑊𝑖.   

Second, calculating unadjusted use case weighting (UUCW) by classifying the use case into three levels 
of complexity and assigning a weight for each actor based on its level of complexity as formulated in Eq. 
(2). 

UUCW =  ∑ W𝑖
3
𝑖=1 ∗ UC𝑖  () 

where 𝑊𝑖 is a weight factor classified as simple (5), average (10), and complex (15) use case, respectively. 
𝑈𝐶𝑖 is a number of transactions counted in use case specification diagrams based on the same 
classification as 𝑊𝑖. Alongside the original weight level, Table 1 presents the complexity weight level 
derived [9], [10].  

Table 1.  The original and modified use case complexity weight level 

Number of Use Case Transactions Original weight level Modified weight level 

1-2 5 5.00 
3 5 6.45 
4 10 7.50 
5 10 8.55 
6 10 10.00 
7 10 11.40 
8 15 12.50 
9 15 13.60 

>10 15 15.00 
 

Third, calculating unadjusted use case points (UUCP) as notated in Eq. (3). UAW in Eq. (1) is added 
with UUCW in Eq. (2) to obtain UUCP. 

𝑈𝑈𝐶𝑃 = 𝑈𝐴𝑊 + 𝑈𝑈𝐶𝑊  () 

Fourth, calculate technical complexity factors (TCF). TCF is formulated in Eq. (4) by grading (𝐺𝑖) 13 
weight factors (𝑊𝑖) using a score of 0 to 5. 

𝑇𝐶𝐹 = 0.6 + (0.01 ∗ ∑ 𝑊𝑖
13
𝑖=1 ∗ 𝐺𝑖)  () 

Fifth, calculating environmental complexity factors (ECF) as notated in Eq. (5) by grading (𝐺𝑖) 8 factors 
(𝑊𝑖) using a score of 0 to 5. 

ECF = 1.4 + (−0.03 ∗ ∑ W𝑖
8
𝑖=1 ∗ G𝑖)  () 

Sixth, calculate the formulae in Eq. (6). UCP is obtained by multiplying UUCP in Eq. (3) by TCF in 
Eq. (4), and ECF in Eq. (5). 

UCP = UUCP ∗ TCF ∗ ECF  () 

Seventh, the estimated effort is obtained from UCP in Eq. (6) is multiplied by PF as notated in Eq. (7). 
𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑈𝐶𝑃 ∗ 𝑃𝐹  () 
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PF is the productivity factor. We can set the number of PF equal to 20 person-hours/UCP, 8.2 
person-hours/UCP [55], [56], or using the learning productivity ratio as proposed by [57].  

3.1.2. Particle Swarm Optimization 

PSO was inspired by the behaviour of bird flocking and fish schooling to find a place with enough 
food [28]. PSO starts by generating the population according to swarm size parameters randomly. The 
population itself consists of N particles in which each particle i act as the representation of potential 
solutions to the given problem. A particle is represented by the vector 𝑥𝑖 in the decision space. Each 
particle has its position (x) and velocity (v). Position means the flying direction, and velocity means the 
step of the particle. 

Optimization is achieved from the cooperation between the particles. The nearest particle to the 
objective is called the success particle. The successful particles will influence the behaviour of other 
particles. They will adjust their positions (𝑥𝑖) toward the global optimum. Two factors affected the 
position of the particle. First, the best position visited by itself is called personal best (𝑃𝑏𝑒𝑠𝑡𝑖); second, 
the best position visited by the whole particles is called global best (𝐺𝑏𝑒𝑠𝑡𝑖). 

After the population successfully created, for the subsequent iterations, each particle will apply the 
following operations: 

Update the velocity to define the amount of change applied to the particle described as formulated 
in Eq. (8). 

𝑣𝑖 = 𝜔𝑣𝑖 + 𝐶1𝑅1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) + 𝐶2𝑅2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖)  () 

where 𝑣𝑖 is the current or initialized velocity by assigning a random number between [0, 1] when the 
population is generated. 𝐶1 and 𝐶2 represent the constant variables known as cognitive learning and 
social learning factors. 𝑅1 and 𝑅2 are two random variables in the range of [0, 1]. 𝑃𝑏𝑒𝑠𝑡𝑖 is the best 
position visited by particle i. 𝐺𝑏𝑒𝑠𝑡𝑖 is the best position visited by the overall particles. 𝑥𝑖 is the current 
position of the particle. At the same time, ω is an inertia weight defined as a constant value of 0.9. 

Update the position of the particle as notated in Eq. (9), where 𝑥𝑖+1 is a new position of the particle, 𝑥𝑖 
is the last position, and 𝑣𝑖 is the current velocity of the particle. 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖  () 

Each particle will update its personal best solution if 𝑥𝑖 < 𝑃𝑏𝑒𝑠𝑡𝑖 then 𝑃𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖 and global best 
will be updated if 𝑥𝑖 < 𝐺𝑏𝑒𝑠𝑡𝑖, then 𝐺𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖 . 

3.2. The Proposed Method 

This study proposes UCW+PSO for optimizing the use case complexity weight parameters. 
UCW+PSO is slightly different from UCP. UCP is a pure estimation method without any modification, 
whereas UCW+PSO is a UCP estimation method integrating PSO. PSO is applied to obtain an 
optimized weight parameter based on the modified weight classification level submitted by Nassif et al. 
[10] and Hariyanto and Wahono [9], as shown in Table 1. UCW+PSO consists of two-phase which are 
described as follows.  

The first phase is generating the initial population. The population was developed using a random 
number from Simple, Average, and Complex complexity weights. The number of particles, fitness value, 
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𝐶1, 𝐶2, 𝑅1, 𝑅2, maximum iterations, and inertia weight is applied together with random complexity 
weight. All the parameters and variables are then calculated using UCP methods. This calculation is 
called effort estimation and will be used in the first iteration of the second phase.  

The second phase is calculating initial velocity and positions. The first iteration, initial velocity, and 
positions for all particles are calculated using Eq. (8) and Eq. (9). Positions 𝑥𝑖 itself are acted as same as 
the complexity weight in the use case. The UCP method was then calculated again to get new estimation 
values. From this first iteration, the AE value is compared with the fitness value. Two conditions make 
the iteration stop. The first condition is if the AE value is less than or equal to the fitness value, or the 
second condition is reached maximum iteration. When the first condition is fulfilled, we get the best 
optimized UCP and jump to the next iteration. If the AE value is greater than the fitness value, then 
the best positions and global best value are updated, followed by generating new velocity and positions. 
The second phase is repeated until all data points in the data set are used as test data. When the second 
condition is fulfilled, the iteration will stop, and the minimum AE will be assigned as the best optimized 
UCP. The overall AE will be evaluated using the evaluation metric in Eq. (10) to Eq. (14).  

The general description of PSO is pointed out by Algorithm 1 (Fig. 1) whereas our proposed model 
is shown in Fig 2. It shows the improved Use Case Point estimation model integrating PSO as the 
weight complexity optimizer. The light blue shape of Weight Optimization denoted the original 
contribution of this study.  

Algorithm 1. Particle Swarm Optimization (PSO). 
(1)  Input: Dataset X, Parameters settings in Section 5.4 
(2)  Output: Optimized solutions 
(3)  for each project in X do  
(4)   generate initial population 
(5)   while (Gbest > stopping value) or (Tmax > 0) do 
(6)             for i = 1, 2, 3, ..., Tmax do 
(7)            update velocity using Equation (8) 
(8)              update positions using Equation (9) 
(9)  calculate effort estimation 
(10)             updated particles 
(11)                  end for 
(12)             Gbest ← min(Pbests) 
(13)            if Gbest > stopping value then 
(14)   temps[] ← Gbest 
(15)            else 
(16)            Gbest 
(17)            end if 
(18)             increment++ 
(19)  end while 
(20)  if temps are not empty then 
(21)       Gbest ← min(temps) 
(22)  end if 
(23) end for 

Fig. 1.  Algorithm of Particle Swarm Optimization (PSO) 
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Fig. 2.  The proposed model 

3.3. Experimental Design 

Software effort estimation aims to minimize the estimation error between actual and estimated effort, 
as notated in Eq. (10). Therefore, the experimental procedure was carried out based on the proposed 
method described in Section 4. The experimental design consists of four stages: project data set 
description, data preprocessing, model validation, and evaluation. 

3.3.1. Project dataset description 

This study employed real-life historical project data set from three software houses. The project data 
set contains seventy-one projects gathered Silhavy et al. [58]. The data set consists of several problem 
domains such as insurance, government, banking, and others. The data set contains the following thirty-
eight (38) variables: Simple Actors, Average Actors, Complex Actors, Simple UC, Complex UC, T1-
T13, Env1-Env8, Sector, Language, Methodology, Application Type, UAW, UUCW, TCF, ECF, 
Real_P20, Real_Effort_Person_Hours, and Data Donator. We employed seven (7) variables for this 
study and eliminated the rest. The final utilized variables are Simple UC, Average UC, Complex UC, 
UAW, TCF, ECF, and Actual Effort. We choose these variables because they are the primary variables 
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of the UCP estimation method, as formulated in Eq. (1)-(7). Most of the projects were written using 
Java and C# language. The summary statistics for the project data set are demonstrated in Table 2. 

Table 2.  Descriptive statistics of the project data set (N = 71) 

Variable Mean StDev Skewness Kurtosis Max Min 

SimpleUC 2.7 2.9 3.29 17.658 20 0.00 
AverageUC 15.84 5.37 0.296 0.140 30 3.00 
ComplexUC 14.29 4.45 0.191 -0.290 27 5.00 

UAW 10.49 5.01 0.803 -1.264 19 6.00 
TCF 0.92 0.114 -0.269 -1.019 1.12 0.71 
ECF 0.86 0.117 -0.556 0.861 1.09 0.51 

Actual Effort 6558.72 664.24 0.574 -0.922 7970 5775 
 

From Table 2, we can observe that AverageUC, ComplexUC, and TCF variables have a normal 
distribution with skewness very close to zero. In comparison, a simple use case variable has not had a 
normal distribution with skewness very far away from zero. Interestingly, the complex use case variable 
tends to widen with a kurtosis value of -0.290, and a simple use case variable formed a leptokurtosis 
curve with a kurtosis value of 17.658. If a kurtosis value is less than three, the variable is less outlier-
prone. Only simple use case variable has a kurtosis value greater than three, which suggests AverageUC, 
ComplexUC, UAW, TCF, ECF, and Actual Effort variables are outlier-prone. We can also find that 
most of the project use case is average. It pointed out that the mean and maximum value of the 
AverageUC variable is more extensive than SimpleUC and ComplexUC.  

3.3.2. Model Validation 

Model validation is the process where the trained model is evaluated with a testing data set to foresee 
how good the performance of the estimation method [59]. The testing data set is a separate portion of 
the same data set from which the training set is derived. This study uses leave-one-out cross-validation 
(LOOCV) to validate the proposed model [60]. LOOCV takes each project as a test set, while the rest 
is used as the training set. Each test data entered the prediction model to obtain the predicted effort. 
The accuracy would be calculated each time the model successfully predicted the effort. The difference 
between LOOCV and other n-fold cross-validation techniques is that LOOCV uses deterministic 
procedures that can be easily applied in other studies with various datasets. Moreover, n-fold methods 
use random selection to build their train and test sets, which introduces the problem of conclusion 
instability [61]. LOOCV was chosen because it produces lower estimation bias and higher variance values 
[43], removing the conclusion instability, especially for a relatively small data set [62]. Furthermore, 
LOOCV ensures that any prediction model is constructed from the same set of training data. The 
performance of the proposed model is then compared with the existing model, which is polynomial 
regression [58], multiple linear regression (MLR) [63], WGRA+PSO with setting K = 2 and Mean [13], 
FUCP [9], [10], and original UCP model proposed by Karner [5]. 

3.3.3. Model Evaluation 

The evaluation of estimation models should be evaluated using reliable accuracy measurement 
techniques. The measurement results must be unbiased and not produce an asymmetric error 
distribution [43]. The first evaluation measurement is an absolute error (AE), as formulated in Eq. (10). 
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AE = |y𝑖 − ŷ𝑖|  () 

where AE is the estimation or prediction error, 𝑦𝑖 is the 𝑖𝑡ℎ the actual value of the variable being 
estimated, and �̂�𝑖 is the 𝑖𝑡ℎ estimated value. AE is the fundamental metric because by using this metric, 
we can measure other metrics such as MAE, MBRE, MIBRE, standardized accuracy (SA), and effect 
size (Δ). The second evaluation measurement is mean absolute error (MAE), as notated in Eq. (11). 

MAE =
1

𝑛
∑ AE𝑖

𝑛
𝑖=1   () 

where n is the number of projects in the data set and 𝐴𝐸𝑖 is the 𝑖𝑡ℎ absolute error value. The third 
evaluation measurement is the mean balanced residual error (MBRE) formulated in Eq. (12). 

MBRE =
1

𝑛
∑

AE𝑖

min(y𝑖,ŷ𝑖)
𝑛
𝑖=1   () 

where 𝑚𝑖𝑛(𝑦𝑖 , �̂�𝑖) is the minimum value between 𝑦𝑖 and �̂�𝑖. The fourth evaluation measurement is the 
mean inverted balanced residual error (MIBRE) formulated in Eq. (13).  

MIBRE =
1

𝑛
∑

AEi

max(y𝑖,ŷ𝑖)
𝑛
𝑖=1   () 

where 𝑚𝑎𝑥(𝑦𝑖 , �̂�𝑖) is the maximum value between 𝑦𝑖 and �̂�𝑖. 

MAE, MBRE, and MIBRE accuracy measurements are used because they behave differently from 
each other. They can be effectively evaluated how well a model performs. The superior model is the one 
with the minimum value. 

Besides the four metrics, we also used the evaluation framework proposed by [64]. The framework 
consists of two metrics: standardized accuracy (SA) and effect size (∆) as notated in Eq. (14) and Eq. 
(15). SA is an accuracy measurement used to evaluate that the estimation model 𝑃𝑖 produces meaningful 
estimation. The value of SA must be better than the baseline estimation model derived from random 
guessing (P0).  

SA𝑃𝑖
= 1 − (

MAE𝑃𝑖

𝑀𝐴𝐸𝑃0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

)  x 100  () 

where 𝑀𝐴𝐸𝑃𝑖
 is the mean value produced by the proposed or existing estimated model (𝑃𝑖). 𝑀𝐴𝐸𝑃0

̅̅ ̅̅ ̅̅ ̅̅ ̅ is 
the mean value provided by a large number, typically 1000 runs of the random guessing model (𝑃0). 
The random guessing model (𝑃0) is defined as estimating a �̂� for the target case t by randomly sampling 
(with equal probability) over all the remaining 𝑛 − 1 cases and takes�̂�𝑡 = 𝑦𝑟  where r is drawn randomly 
from 1 … 𝑛 ⋀ 𝑟  ≠ 𝑡. SA is interested in one direction that how much better 𝑃𝑖 is than 𝑃0. If 𝑃𝑖 value 
is greater than 𝑃0, then we can interpret that 𝑃𝑖 is predicting, not guessing, and 𝑃𝑖 is generating 
meaningful estimation in this particular study. The SA is discouraging with a value close to zero or even 
negative. The larger the value yielded by the standardized accuracy metric shows a good estimation 
model. 

Effect size is a metric to interpret the practical or real-world significance of the result [65]. Effect 
size is used to ensure the results by 𝑃𝑖 does not produce by chance as formulated in Eq. (15).  

Δ =
MAE𝑃𝑖

−MAE̅̅ ̅̅ ̅̅ ̅𝑃0

S𝑃0

  () 
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where S𝑃0
 is the standard deviation of the random guessing model (P0). There are three margins we can 

use to interpret the effect size improvement over the baseline model, small (Δ ≈ 0.2), medium (Δ ≈ 0.5), 
and large (Δ ≈ 0.8) [64], [66]. For example, if an effect size does not reach a small effect size (e.g., Δ = 
0.1777), we can interpret the result is not attractive. In other words, the improvement of the model 
accuracy is not contributed a good effect in a practical matter. The larger value yielded by the effect size 
metric shows a good estimation model. 

Finally, the significance test was carried out using the Wilcoxon sum ranked at the 95% confidence 
level. The null hypothesis H0 is tested based on the absolute errors (AE) of data samples. It then used 
the p-value to test the hypothesis to decide whether the null hypothesis was accepted or rejected. Hence, 
there are five hypotheses proposed in this study. 

H0(1): There is no difference in absolute error between the proposed and random guessing model. 

H0(2): There is no difference in absolute error between the proposed and MLR model 

H0(3): There is no difference in absolute error between the proposed and FUCP model 

H0(4): There is no difference in absolute error between the proposed and Karner model. 

H0(5): There is no difference in absolute error between the proposed and WGRA+PSO model. 

3.3.4. Parameter settings and constraints 

The objective and fitness functions are derived from Eq. (7) and Eq. (10), respectively. There are 
three-dimensional variables: simple UC (𝑥1), average UC (𝑥2), and complex UC (𝑥3). The range for 
these variables then set as 𝑥1 = 5.00 to 7.49, 𝑥2 = 7.50 to 12.49, and 𝑥3 = 12.50 to 15.00, based on the 
modified use case weight level (see Table 1) proposed [9], [10]. 

The proposed model was developed using PHP 7.2.28, and the parameters of the PSO are set as 
particles = 70, C1 = 2.8, C2 = 1.3, maximum iterations = 500, fitness value = 50, and inertia factor (ω) = 
0.9, respectively. The parameter of C1, C2, and maximum iterations was adopted from [13]. The number 
of particles or swarm size is adopted from [67] as it recommended the size between 70 – 500. For ω itself 
is linearly decreasing inertia-weight (LDW) [68]. 

4. Results and Discussion 

This section presented empirical results obtained from the experimental, model validation, and 
evaluation. A reliable and meaningful estimation model is indicated by which received a larger SA value. 
The estimation model is unlikely to have been generated by chance if the model has a larger effect size 
value. Thus, we consider three research questions (RQ): RQ1: How much better 𝑃𝑖 is over random 
guessing (𝑃0)? Q2: How much better are Polynomial, MLR, FUCP, WGRA+PSO, and UCW+PSO 
than the Karner model? and RQ3: How much better is UCW+PSO than Polynomial, MLR, FUCP, 
and WGRA+PSO models? 

4.1. RQ1: The performance of 𝑷𝒊 versus 𝑷𝟎 model 

All six models were validated using SA and effect size (Δ) while random guessing as to the baseline 
model. Table 3 showed that Polynomial, WGRA+PSO, and UCW+PSO obtained better SA values than 
random guessing, whereas our proposed model (UCW+PSO) yielded the largest value. It is immediately 
apparent that these models were actually predicting, not guessing since they delivered considerably better 
accuracy levels than random guessing (𝑃0). Thus, these models generated meaningful predictions in this 
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particular study. Surprisingly, FUCP and Karner’s model yielded the worst results signed by the large 
negative values. It is immediately apparent that these two models were not actually predicting since they 
delivered worse accuracy levels than random guessing (𝑃0). Thus, these two models did not generate 
meaningful predictions in this study. 

Conversely, all six models yielded considerably better effect size value than random guessing (𝑃0). 
Four models produced enormous effect size improvement, and two models (Polynomial and MLR) were 
in medium effect size improvement. One can find that Δ of 1.499 (Karner), 1.340 (FUCP), 1.083 
(UCW+PSO), and 1.059 (WGRA+PSO) were regarded as considerable effect size improvement over 
random guessing, which was worthwhile at the margin. Hence, we can be confident that these six models 
were not a chance outcome because the significance test rejected all six null hypotheses (p < 0.05). 
However, due to the negative SA value obtained by FUCP and Karner models, it is immediately clear 
that these two models were discouraging and perturbing in this study. 

Table 3.  The results of SA, Δ, and Sig. considering random guessing as to the baseline model. 

Method SA (%) 
Δ 

Sig. 

Polynomial 66.782*** 0.737 0.00 (p < 0.05) 
MLR 49.159 0.573 0.00 (p < 0.05) 
FUCP -114.949 1.340** 0.00 (p < 0.05) 
Karner -128.541 1.499* 0.00 (p < 0.05) 

WGRA+PSO 96.021** 1.059 0.00 (p < 0.05) 
UCW+PSO 98.161* 1.083*** 0.00 (p < 0.05) 

*First best model ** Second best model *** Third best model 

To confirm the negative results yielded by FUCP and Karner, we added more historical project data 
sets from [39], [56], [69], [70]. The new data sets represented various project domains such as 
educational information systems, social media, ERP, CMS, and CRM. Four unique data sets, D1, D2, 
D3, and D4, consist of 14, 10, 7, and 9 historical projects, respectively. We merged these four data sets 
and formed a new data set, MD1. Finally, we joined MD1 with the primary data set used in this study 
and created a new data set, MD2. Table 4 showed that the D2 and MD2 yielded positive, more 
considerable SA results. It is immediately apparent that these models were actually predicting, not 
guessing, since they delivered considerably better accuracy levels than random guessing (𝑃0). Moreover, 
in terms of Δ, these results were regarded as medium effect size improvement over random guessing, in 
other words, worthwhile at the margin. Hence, we can be confident that these two models were not a 
chance outcome because the significance test rejected both null hypotheses (p < 0.05). 

Table 4.  The accuracy results of UCP, considering random guessing as to the baseline model. 

Data set n SA (%) 
Δ 

Sig. 

D1 10 -41.433 0.597** 0.336 (p > 0.05) 
D2 14 28.180** 0.474 0.040 (p < 0.05) 
D3 8 -598.144 8.865* 0.000 (p < 0.05) 
D4 7 -27.838 0.379 0.647 (p > 0.05) 

MD1 39 -15.2*** 0.204 0.903 (p > 0.05) 
MD2 109 37.407* 0.485*** 0.000 (p < 0.05) 

n = number of projects *First best **Second best ***Third best 
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4.2. RQ2: The performance of Polynomial, MLR, FUCP, WGRA+PSO, and UCW+PSO versus Karner model  

Karner validated Polynomial, MLR, FUCP, WGRA+PSO, and UCW+PSO as the baseline model. 
The Karner model was appointed because the model was the center of all UCP-based effort estimation 
studies. Most of the proposed models compared their results with the Karner model, e.g., [43], [58], 
[71], [72]. From Table 5, we can observe that all models yielded better SA value over the Karner model, 
while our proposed method obtained the largest value. It is immediately apparent that these five models 
were actually predicting, not guessing, since they yielded considerably better accuracy levels than Karner's 
model. 

WGRA+PSO and UCW+PSO yielded more considerable effect size improvement over the Karner 
model. At the same time, the medium effect size is obtained by Polynomial and MLR. In other words, 
WGRA+PSO, UCW+PSO, Polynomial, and MLR were worthwhile at the margin. Hence, we can be 
confident that these four models were not a chance outcome because the significance test rejected all 
four null hypotheses. In contrast, FUCP did not even reach a small effect size (Δ = 0.054), which suggests 
that the impact was not significant (p > 0.05) and not attractive. 

Table 5.  The results of SA and Δ considering Karner as the baseline model. 

Method SA (%) 
Δ 

Sig. 

Polynomial 86.802*** 0.789*** 0.000 (p < 0.05) 
MLR 77.754 0.707 0.000 (p < 0.05) 
FUCP 5.9475 0.054 0.614 (p > 0.05) 

WGRA+PSO 98.419** 0.895** 0.000 (p < 0.05) 
UCW+PSO 99.269* 0.902* 0.000 (p < 0.05) 

*First best **Second best ***Third best 

4.3. RQ3: The accuracy performance of UCW+PSO versus Polynomial, MLR, FUCP, and WGRA+PSO models  

 We validated our proposed model by assigning Polynomial, MLR, FUCP, and WGRA+PSO as the 
benchmark model. We observed that our proposed model yielded better SA and Δ over the four models 
(see Table 6).  

Table 6.  The results of SA and Δ considering MLR, FUCP, Polynomial, and WGRA+PSO as the baseline model. 

Method SA (%) 
Δ 

Sig. 

Polynomial as baseline 94.465 0.409*** 0.00 (p < 0.05) 
MLR as baseline 96.716** 0.942** 0.00 (p < 0.05) 
FUCP as baseline 99.223* 1.283* 0.00 (p < 0.05) 

WGRA+PSO as baseline 53.790*** 0.024 0.00 (p > 0.05) 

*First best **Second best ***Third best 

The accuracy results obtained concerning MAE, MBRE, and MIBRE are presented in Table 7.  The 
results showed that the proposed estimation model performed better than three other models, 
suggesting significant improvements over these three different models. 

The larger SA and Δ value obtained when FUCP and MLR as the baseline models suggest that the 
proposed model was actually estimated. The result was not by chance and significantly improved the 
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largest effect size over these two models (p < 0.05). In comparison, medium (Δ = 0.409) and very small 
effect size (Δ = 0.024) yielded by UCW+PSO over Polynomial and WGRA+PSO, which indicated that 
the result was significant (p < 0.05) but not impressive. However, UCW+PSO obtained a remarkable SA 
value over Polynomial and WGRA+PSO, suggesting the proposed model outperformed Polynomial and 
WGRA+PSO. Hence, we concluded that our proposed method was actually estimating, generating 
meaningful estimation by significance in statistics and practical (e.g., MLR and FUCP) over four models 
in this study. 

Table 7.  MAE, MBRE, and MIBRE results. 

Method MAE MBRE MIBRE 

Polynomial 240.19 0.038*** 0.035*** 
MLR 404.85*** 0.064 0.058 
FUCP 1712 0.589 0.260 
Karner 1820 0.378 0.240 

WGRA+PSO 28.77** 0.00422** 0.00419** 
UCW+PSO 13.29* 0.00210* 0.00212* 

*First best **Second best ***Third best 

  Fig. 3 illustrates the plot of all six models’ actual and estimated effort values. Y-axis is the project 
data set, and the x-axis is the effort value. The solid green line was representative of the actual effort 
value, and the dashed red line was representative of the estimated effort value. All models have tried to 
produce estimated value as closely as possible to the actual effort value. From these figures, we found 
that when the dashed red line was getting closer and reached the same position over the solid green line, 
that means the model was estimated accurately. As we can find, Fig. 3e and 3f have the closest between 
the two-line, suggesting that the two models were estimated with the best accuracy. However, in Fig. 
3e, we found that there were still some red dash lines that were separated slightly by the whitespace, 
suggesting a small gap between the actual and estimated line, whereas, in Fig. 3f, we found the gap itself 
almost did not exist. Thus, it was immediately apparent that the proposed model showed the best 
accurate estimation of these five models. 

 Table 8 shows the results of the Friedman test in ranked using SPSS tools. The Friedman test was 
conducted for multiple comparisons to infer the difference among various estimation models. The 
estimation models deducted a sample of AE found for the given data set. Friedman’s test considered a 
null hypothesis that all estimations are equivalent (H0). From Table 8, we can observe that all models 
were significant differences (p < 0.05), and UCW+PSO was the best performing estimation model. 

Table 8.  Represents the ranks evaluated through the Friedman test (p < 0.05) 

Models Friedman ranks 

Polynomial 3.39 
MLR 3.93 
FUCP 5.19 
Karner 5.26 

WGRA+PSO 2.01 
UCW+PSO 1.23 
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 All results yielded by the proposed model confirmed that the chosen number of particles or swarm 
sizes 70-500 particles has contributed to better performance [67]. This number of particles is different 
from the initial suggestion from [73] and other recommended population sizes of 20-50. Parameter 
settings also influenced the efficiency and effectiveness of the search [74]. For example, when 𝑅1 and 
𝑅2 values are high, the particles are improved the current solution by moving toward the best and global 
positions, whereas the inertia weight parameter (ω) controls the global and local search process to avoid 
premature convergence and the poor global search ability. These results confirmed that optimization 
could be applied right across the spectrum of software engineering, especially for effort estimation studies 
[75]. This also implies that we can establish the automation solution to software engineering problems 
using search-based optimization algorithms. 

 
(a) Estimation results for the Polynomial model  

 
(b) Estimation results for MLR model  

 

(c) Estimation results for FUCP model  
 

(d) Estimation results for Karner model 
 

 
(e) Estimation results for WGRA+PSO model 

 

 
(f) Estimation results for UCW+PSO model 

 

Fig. 3.  Estimation results for (a) polynomial; (b) MLR; (c) FUCP; (d) Karner; (e) WGRA+PSO; (f) 
UCW+PSO model 
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5. Conclusion 

This paper presented a metaheuristic approach to address the abrupt classification issues in the use 
case complexity weight level. We proposed UCW+PSO to search for an optimal value of complexity 
weight level to obtain the minimum absolute error (MAE). Thus, the objective of this study is generally 
to improve the accuracy performance of the UCP-based software development effort estimation. Our 
experimental studies demonstrated that the version of the proposed UCW+PSO model was promising 
and showed significant improvements over other baseline models. The best performance evaluation for 
standardized accuracy, effect size, MAE, MBRE, and MIBRE are 99.223, 1.283, 13.29, 0.0021, and 
0.00212, respectively. Interesting observation of UCW+PSO is the choice of the number of particles in 
the parameter settings, which contributed to the performance. This study focused on a fixed value of 
the control parameter 𝐶1, 𝐶2, and ω. Some objective functions are susceptible to the inappropriate 
selection of control parameters. Hence, further research is needed to determine whether the objective 
function in the proposed method is sensitive or not by applying adaptive inertia weight and automating 
the parameter settings by using a GA. Furthermore, more data is needed to validate the negative results 
obtained by Karner and FUCP model, as described in Section 6. 

Based on these conclusions, practitioners whose organization already has the historical project data 
set should consider UCW+PSO, WGRA+PSO, or MLR model to estimate a new project. Because using 
their historical project data set will help make better predictions. Software organizations with no 
historical project data set would be better using cross-company data set under some circumstances. 
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