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Abstract: 

 

The paper approaches the potential of risk-adjusted performance indicators in life insurance, 

with special reference to a structured policy. The final issue is the computation of risk 

adjusted indicators as a tool to evaluate the portfolio given a policy structure. The 

computation of such indicator could be suitable for the appraisal of both portfolio 

optimization and potential profits of the structured policy. The selection tool is put into an 

asset and liability management decision making context, where the relationship between 

expected surplus and capital at risk are compared. 

The analysis is applied to a structured temporary annuity and is treated by means of Monte 

Carlo simulations. 

 

Keywords: Life insurance, Risk-adjusted performance. 

JEL Classification: G22, G28. 

                                                
*
 Although the paper is the result of a common work, sections 1 and 2 are by R. Cocozza and the remaining ones 

are by E. Di Lorenzo, A. Orlando and M. Sibillo. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Salerno

https://core.ac.uk/display/53764336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 

1. Introduction 

One of the most recent innovation in insurance’s management process has been the 

introduction of Value-at-Risk methodologies (Cocozza et al. 2006). Typically, VaR is defined 

as “the predicted worst-case loss at a specific confidence level over a certain period of time”. 

This definition is based on the identification of the probability density function for the one-

period profit or loss of a portfolio and on the capability of summarizing the distribution with a 

single statistic, often reported as the maximum loss that can occur within a given confidence 

interval. VaR methodologies serve many applications. One of the most interesting is the 

opportunity to compare a profit or margin measure with the capital absorbed by a unit or a 

portfolio, so as to evaluate the profitability/risk combination and build a risk-adjusted 

performance measure. The easiest way to assess the risk adjusted performance is to relate the 

profit measure to the capital at risk, that is to say to relate the profit margin to the value at 

risk. Alternatively, profit can be compared with return required by shareholders and defined 

by the product of the capital at risk by the rate set by top management for capital at risk. The 

difference between profits and required earnings can be regarded as a measure of economic 

added value. The first approach can be directly applied to an insurance portfolio thanks to the 

possibility to measure the Value-at-risk of the mathematical provision and to consider it as a 

measure of the capital at risk, since it includes both the financial and the demographic risk 

factor. Therefore, this is the approach followed in the paper, whose issue is a first step 

towards the computation and the application of such risk adjusted indicators as tools to 

evaluate the portfolio performance given a policy structure. 

To this aim the asset and liability risk structure is recalled in the second section. Then 

the model is applied to a structured policy (GEILA) whose features are given in the third 

section, while the final one refers to the computational application. 

2. The reference scheme 

Life insurance business is characterised by a complex system of risks that can be split 

into two main type of drivers: actuarial and financial. Both the aspects can be regarded at the 

same time as risk drivers and value drivers, since they can give rise to a loss – or a profit – if 

the ex ante expected values prove to be higher – or lower – than the ex post actual 

realizations. If we regard the value of the reserve as the net present value of the residual debt 

towards the policyholders evaluated at current interest rates and, eventually, at current 
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mortality rates, the VaR of the mathematical provision can be regarded as a first proxy of the 

capital absorbed by the portfolio under analysis. This guess can be explained by the 

consideration that the mathematical provision, and more precisely its value, is directly 

influenced by the demographic and financial risk factors and therefore can be properly regard 

as a capital at  a risk on a specific portfolio of policies, also because its value is the value of 

the residual debt towards policy holders and therefore is the amount that has to be repaid. 

As far as the VaR application is concerned, some specifications are needed. To begin 

with, worst cases coincide with an increases in the value of the liability, because these rises 

are the counterparty of expenses or, better, additional costs which may result in either a profit 

shrinkage or a proper loss. Therefore, the classical portfolio return distribution can be 

redesigned as a liability cost distribution, where critical values lie in the right-hand tail.  

Moreover, for a liability the cost distribution has to be centered on the expected cost. 

In the case of the mathematical provision the expected cost can be easily linked to the 

expected value of the reserve at the end of the risk horizon which is the value of the reserve 

without any modification of relevant risk factors (Cocozza et al., 2004c; 2005), secluding the 

time passage. In this perspective the expected reserve is the predicted value of the reserve at 

end of the risk horizon calculated using the informative set available at the beginning of the 

risk horizon.  

Finally, there is the risk horizon. In a risk management perspective the risk horizon 

could either coincide with the duration of the policy portfolio or with any other intermediate 

period that cam be regarded as significant for performance appraisal. Therefore, the VaR of 

the mathematical provision can be defined as the predicted worst case additional cost at a 

specific confidence level over a period of time consistent with the risk analysis. 

As far as the risk factors are concerned, a full VaR estimation should consider both 

financial and actuarial risk factors. Setting apart the actuarial risk components, a first order 

approximation of the performance variation due to a change in the evaluation interest rate can 

be obtained through the cash flow mapping of the reserve. The mathematical provision can be 

assimilated to a portfolio of zero coupon bonds – whose nominal value is the certain-

equivalent of the conditional payment – with maturity equal the each single critical 

(remaining) instant and with portfolio contribution equal to ratio of the individual present 

value of each cash flow to the total present value. 
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Once the VaR of the reserve over a certain risk horizon is estimated, the ratio of the 

portfolio expected consistent profit and the VaR of the reserve gives rise to a risk-adjusted 

performance indicator that can be used as a measure of overall profitability of the portfolio 

under observation. 

In evaluating the problems linked to the definition of risk-adjusted performance 

measures, it is necessary to bear in mind that they can be applied to different objects and used 

for different purposes. In the case of insurance portfolios, a company may wish to know the 

return on capital at risk obtained by issuing a certain policy or by serving a certain market 

segment. In this case the risk-adjusted performance measure can be useful in orienting top 

management decisions and thus it should be as precise and accurate as possible. At the same 

time, this kind of measures can also be calculated with reference to a specific business unit. In 

this case it can have a double function. On the one hand, it can be used to support top 

management decision and, on the other hand, it can be used to “influence” the business unit 

manager decisions. Therefore, this kind of measures could be useful to decide which business 

areas are preferable on the base of the contribution they provide to the economic result. In this 

perspective, for example, the observation of a “low” risk-adjusted performance indicator can 

give rise either to a reduction (or even the exclusion) of this portfolio through a reinsurance 

agreement or an improvement of the policy design by re-structuring the contract itself. 

3. The contract 

An equity indexed life annuity (EILA) is an annuity due in case of life and 

corresponding the interest linked to a stock or an equity index. The contract is considered here 

in the case of the existence of a guarantee floor for the interest earned at the payment time 

(GEILA). The product payoff, structured as a call option, is hence a combination of two 

elements: the base component, a fixed-rate annuity paying real income protecting the investor 

against inflation risk and providing a stable income, and the variable component, linked to an 

equity index. 

Term by term the company calculates the payment amount reflecting the index 

changes and pays a benefit not lower than that one assigning the minimum interest rate 

guaranteed in the contract. The product desirability is due to the interest rate risk covering 

offered to the owner, this last being a policyholder or a pensioner as well. The agreement is so 

that he thinks improbable losing money rather catching the safety aspect of the position; these 

elements make the GEILA a good vehicle for retirement planning. In the framework 
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pertaining the pension annuities, the GEILA secures to the beneficiary a guaranteed periodic 

income not blocking the possibility of better earnings: the contract assumes the shape of a 

safety tool aiming welfare purposes. 

In what follows we consider the contract beginning time coinciding with the 

accumulation phase ending time, meaning the end of the period during which the annuity is 

being funded. This time is fixed at the beneficiary’s retirement age x birthday and from this 

term on the accumulated amount is turned into the GEILA. At this time the operations of 

valuation and reserving are made. 

It is opportune to notice that the guaranteed annuity option embedded in the contract 

places it within the wide variety of life insurance products characterized by a complex 

structure. That is, the payoff will be non-linear. Of course, the success of this product will 

depend on the shrewd construction of the guarantee rate of interest that replicates the average 

consumption pattern of retired individuals. 

The instability of financial market and the presence of accidental and systematic errors 

in mortality forecasting leads to a careful valuation and reserving, considering that both have 

to follow the guidelines indicated by IASB prospect. 

Obviously the issue of the guaranteed life annuity implies the pensioner’s existence in 

life at the time of valuation and the knowledge of the total amount F0 at disposal for the 

GEILA planning. 

3.1 Notation and cash flow structure in the pure financial case 

Posing in T the contract maturity, with T=1,2,…,w-x and w the ultimate lifetime, we 

consider the fund F0 invested in the reference asset at time 0, this time coinciding with the 

annuity beginning and contextual with the time of valuation. The payments to the survivals 

are made at the beginning (the end) of each year till T years and guarantee at least the annual 

interest rate g. 

Indicating by Ft the value of the reference portfolio at time t, t=1,2,…,T, the interest 

rate maturing on it in the time interval t-1,t is: 

it =
Ft − Ft−1

Ft−1

 

In a purely financial perspective, that is neglecting the uncertainty in the insured’s or 

pensioner’s survival at time t, the cash at time t can be described as follows: 
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The cash in t can be alternatively expressed as: 

( )[ ]
ttgtt RRRB −+= ,

' ,0max         (2) 

The second term on the right hand side of formulas (1) and (2) represent respectively a 

European call and a European put payoff, both issued on Rt with strike Rg,t. In particular, at 

the time of valuation we can recognize T call (put) options, the first a plain vanilla one with 

maturity 1 and the other T-1 path dependent ones with maturity 2,3,…,T and duration one. 

As usually observed, if the European calls (puts) existing in the contract are traded at 

each term and if zero coupon bonds with maturity t (t=1,2,…,T) are traded as well, the 

financial risk embedded in is completely hedged. For example, in the first approach involving 

calls (formula 1) the strategy consists in buying Rg,t unit face zero coupon bonds respectively 

with maturity t=1,2,…,T and T European call options on Rt with strike Rg,t. 

Still neglecting the demographic risk, if c0(t, Rg,t) is the market price at time 0 of a 

European call plain vanilla on R1 if t=1 and of a European call path dependent on Rt with 

maturity t, t=2,3,…,T, we can write the market value p0 of the contract: 

p0 = Rg,tv0 t( )
t=1

T
∑ + c0 t,Rg,t( )

t=1

T
∑         (3) 

3.2 Inserting the demographic risk 

The cash flow develops in a more complex form inserting the contractor’s survival 

uncertainty at the payment terms. 

The scheme consists in T call options, each one expiring at the time of death if this 

happens before maturity. In this sense the calls are like barrier options in relation to the 
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demographic factor, specifically knock-out barrier options. In this hypotheses formula 3 

becomes: 

p0 = 1 Kx >t{ }
t=1

T
∑ Rg,tv0(t) + c0 t,Rg,t( )[ ]       (4) 

where the indicator function 1 Kx >t{ }takes value 1 if the curtate future lifetime kx of the 

pensioner aged x at issue is greater than t, 0 otherwise. 

Taking into account the risk arising from the uncertainty in survival, this implies 

premium amounts lower than those calculated in the case of pure financial risk scheme; but it 

is necessary to notice that the incompleteness of the insurance market makes impossible 

acting hedging strategies replicating the claim contingencies as in the pure financial risk case. 

The demographic risk component has the accidental nature of the deviations of the 

number of deaths from the expected values (mortality risk) and the systematic nature due to 

the betterment in the evolution in time of the industrialized country mortality behaviour 

(longevity risk). Pooling strategies for the mortality risk can avoid its influence and, if the 

pooling aim is reached with a sufficiently large homogeneous portfolio, the mortality risk can 

be considered completely hedged and, as a consequence, the insurer or the Institution 

becomes risk neutral with respect to mortality accidental risk (cf. [1]). 

Formula (4) can be rewritten as follows: 

p0 = t px
t=1

T
∑ Rg,tv0(t) + c0 t,Rg,t( )[ ]        (5) 

with t px  as usual the probability that x lives after t years. 

The mathematical provision at time t calculated in 0 are given by the following 

formula: 

( )[ ]jtgtjtg

tT

j

txjxtt RjtcjttvRppL ++

−
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,),(       (6) 

in which v0(t, t + j )  is the market price expressed in 0 of one unit face zero coupon 

bond issued in t with maturity after j years. 

In the asset-liability perspective, indicating with: 

N
(k)

 the number of survivors at time k belonging to the cohort of N
(0)

 pensioners aged 

x at the benefit flow beginning (time 0) 
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i(k-1,k) the rate of interest for the k
th

 year maturing on the invested fund 

Bk the call payoff at time t as in formula (1) 

the portfolio fund at time t is expressed as: 

Ft = F0 1+ i k −1,k( )[ ]
k=1

t
∏ − N

k( )

k=1

t−1
∑ Bk 1+ i h,h +1( )[ ]

h=k

t−1
∏ + N

t( )
Bt

 

 
 

 

 
     (7) 

with t=2,3,…, and with t=1 

F1 = F0 1+ i 0,1( )[ ]− N
1( )B1         (8) 

The class of contracts we are considering are long term ones. In these cases definitely 

crucial is the hedging problem of the systematic risk known as longevity risk, influencing all 

the contracts in the same direction and hence being not a pooling risk 

Projected model for the survival functions are the most used tools for fronting this 

question and a wide literature on this subject points out the extremely deep interest of 

academic and practitioner world. 

4. Quantile based risk measures: The Conditional VaR  

The Conditional Var or Expected Tail Loss (ETL) is a “Var-like” risk measure in the 

sense that it reflects the quantiles of the loss distribution. It is a risk measure retaining the 

benefits of VaR in terms of probabilistic contents while avoiding its limits. In particular, it 

satisfies the desirable properties of coherence better than VaR, having in particular the 

attraction of being subadditive. Moreover it has the advantage over Var to present a convex 

risk surface. This is important in problems concerning optimization, in the sense that it 

ensures that the risk minimum is a unique global one (Dowd and Blake, 2004). 

Referring to the GEILA scheme described in the previous section, our aim is the 

computation of the ETL for its proper use in a risk-adjusted assessment perspective. 

Indicating by 
)0(

tL the stochastic mathematical provision of the GEILA at time t as in 

formula (6), let us consider the time interval [t,t+h] and the financial positions at its extremes, 

say )()0(
tl  and 

)0(
htL + respectively; the potential periodic loss is defined as : 

0)0( )( htLtlPPL +−=           (9) 

At the confidence level α, the Value at Risk VaR(α) is given by: 
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{ } αα −=> 1)(VaRPPLP          (10) 

The ETL is the expected value of  the worst 1-α losses, that is the average of losses 

exceeding VaR: 

ETL= E[PPL|PPL>VaR]         (11) 

5. Numerical results 

5.1 Financial and mortality scenario 

The example of application we propose is referred to a GEILA contract with duration 

T=15 issued on a life aged 40. The time of valuation is t=5. We pose the guaranteed fixed rate 

g=0.02 and 0F =1000. 

Our goal is the computation of the ETL at time t at a given confidence level of the 

stochastic mathematical provision given by formula (6). To this aim we introduce the 

stochastic background for the interest rate and reference portfolio distribution. 

We consider a term structure of interest rates based on the Cox-Ingersoll-Ross 

stochastic differential equation: 

tttt dWrdtrdr σµα +−−= )(         (12) 

with α �and σ  positive constants, µ the long term mean and tW  a Wiener process. 

In line with much of the work on path dependent options, we assume that the 

underlying asset price follows a geometric Brownian motion with constant volatility:  

tttt dWFdtFdF σδ +=          (13) 

with δ and σ the long term mean and the volatility parameters respectively and tW  a Wiener 

process. 

The solution is: 

tdWt

t eFF
σσδ +−= )2/2(

0          (14) 

5.2 The computational procedure 

The computation of the Expected Tail Loss requires the knowledge of the of the 

potential periodic loss distribution function described in the previous section. To this aim we 

use a Monte Carlo simulation procedure. 
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In order to perform the simulation procedure it is necessary to consider the discrete 

time equation for the chosen SDE describing the evolution in time of the interest rates and the 

reference portfolio. On the basis of the first order Euler scheme the discrete version of 

equation (11),considering the time interval [0,T], is: 

kktktktkt
rrrr εσµα ⋅∆+∆−+=

−− 11
)(  k=1,2,..,n(T-1)    (15) 

where ∆=T/n is the sampling interval, kε  the increment kW∆  of the Wiener process 

between ∆+=+ )1(1 ktk  and ∆= ktk . The increments kW∆  are ),0( ∆N distributed random 

variables.  

In a risk neutral context, the discounting term: 

]))(exp[ ∫−
T

t

dkkr           (16) 

is approximated by the following expression 

)exp(
1

1

∑
−

=

∆⋅−
n

k
kt

r           (17) 

Expression (17) allows us to derive the forward prices )(1

)0( ),( tTjjttv −=+ of equation 

(6). 

The simulation of the (T-t) embedded path dependent call option payoffs: 

max 0,Rg,t+ j − Rt+ j( )
j=1,..,T− t

 

requires the discrete version of equation (14): 

k

ktkt
eFF

εσσδ ∆+∆−

−
= )2/2(

1
*  

In order to obtain an accurate approximation, ∆  have to be sufficiently small and we 

choose a monthly sapling interval. 

By means of formulas (6) and (9), we proceed simulating N values of the potential 

periodic loss PPL at time t. The simulated {PPL(j)}, j=1,2,…,N can be treated as a sample 

from a normal distribution as N increases. In our example we consider N=10000. 

At this point we can estimate the ETL slicing the tail of the loss distribution into n 

slices. Each slice has the same probability mass. Estimating the Value at Risk associated with 

each slice, we can take the average of the VaRs, obtaining the ETL. We should use a value of 

n large enough to give accurate results. 
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For the survival probabilities we use the mortality Italian data for the period 1947-

1999 to evaluate the projection of the mortality factor in a Lee Carter context. We assume for 

the CIR process α= 0.0452, σ= 0.0053, estimated on the 3-month T-Bill January 1996 – 

January 2006. We pose δ = 0.03, θ = 0.020 for the evolution in time of the reference 

portfolio.  

In the following table 1 the characteristic values of the simulated distribution of the 

reserve and of the potential periodic loss over one year, obtained by means of the proposed 

simulation, are reported. 

Table1.: GEILA  Reserve and Loss distribution results obtained for N=10000 simulation paths. 

 

 Mean St. Dev. Skewness Kurtosis 

)0(

tL  2310.352 0.635 0.0004 3.04 

PPL(t) 26.17347 0.405 0.0001 3.03 

 

Table 2. gives the ETL values at a 95% confidence level. 

 

Table2: 95% ETL as a function of the Number of Tail Slices. N=10000 simulation paths 

n 5 10 100 1000 5000 

ETL 26.9422 26.9898 27.0598 27.0688 27.0708 
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