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Abstract

This work deals with the qualitative analysis of a nonlinear integro-differential model of immune competition with special
attention to the dynamics of tumor cells contrasted by the immune system. The analysis gives evidence of how initial conditions
and parameters influence the asymptotic behavior of the solutions.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This work deals with the qualitative analysis of a model of competition between progressing (tumor) cells and
immune cells. The analysis refers to class of models proposed in [1]—further developed in [2]—which consists of a
system of nonlinear integro-differential equations with quadratic type nonlinearity. The structure is somewhat similar
to that of classical models of the mathematical kinetic theory [3]. The above model was first proposed to describe
the competition between tumor and immune cells, and then developed to model relatively general phenomena of the
immune competition. In detail, the model describes the interaction and competition of two cell populations. The first
population refers to endothelial cells which, due to DNA corruption, have lost the programmed death cycle and start
progressing towards states which are characterized by clonal replication with the feeding contribution of endothelial
cells, and are characterized by their ability to inhibit the immune system. The second population is that of immune
cells, which contrast (unless inhibited) the progression of the aggressive cells.

Methods of non-equilibrium statistical mechanics and mathematical kinetic theory, as documented in various
review papers, e.g. [4], have been developed, following the pioneering paper [5], to describe the evolution of the
distribution function over the microscopic state (biological activities or functions) of large complex systems of
interacting cells. The literature in the field of biological sciences, with reference to progression phenomena, can
be recovered in [6], while general aspects of the immune competition are documented in [7].

The substantial difference of the above models with respect to classical models of population dynamics consists in
the fact that the interacting microscopic entities, in this case cells of a vertebrate, are characterized by a microscopic
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state somehow related to the relevant biological functions. Interactions may modify the above states (or functions)
and eventually generate birth or death of cells. Mathematical problems consist in the analysis of the influence of
microscopic interaction on the qualitative and quantitative behavior of the solutions.

This work deals with the above problem in the particular case of interactions which modify the microscopic state
of cells but do not yet generate proliferating and destructive events. This situation corresponds to the very early
stage of the immune competition. The analysis should show how the system shifts towards states corresponding to
large values of the progression of tumor cells, related to weakening of immune cells, or vice versa. This means
evolution towards stages which eventually generate proliferation of tumor cells or destruction of tumor cells by
an active immune system. The analysis is developed in two parts: Section 2 briefly describes the mathematical
model, while Section 3 develops the qualitative analysis, reporting also some qualitative interpretation of the related
analysis.

2. The mathematical model

As already mentioned in Section 1, the model dealt with in this work describes the interaction and competition
of two cell populations and is a particular version of a more general model introduced in [1]. The first population
of cells refers to endothelial cells which include progressing cells; the second population refers to immune cells,
which attempt to contrast the progression of tumor cells. The microscopic state, corresponding to the main biological
function, is denoted for each population by the variable u ∈ R. The physical meaning is as follows:

• For the first population of cells, u � 0 corresponds to normal endothelial cells while u > 0 denotes progressing
cells.

• For the second population, u � 0 denotes inhibited immune cells whereas u > 0 stands for active immune cells.

The intensity of the biological activity identified by the microscopic state is related to the value of the variable u.
The state of the system is identified by the distribution function fi = fi (t, u) (where the subscript i = 1 refers to the
endothelial cell population whilst the subscript i = 2 stands for the population of immune cells) which is normalized
with respect to the number of non-progressing endothelial cells at t = 0, denoted by nE

10 = nE
1 (0). The model, in the

absence of proliferating destructive phenomena, is derived within the following framework [1]:

∂ fi

∂ t
(t, u) =

2∑
j=1

(∫
R×R

ηi j (v,w)ϕi j (v,w; u) fi (t, v) f j (t, w) dv dw − fi (t, u)

∫
R

ηi j (u, w) f j (t, w) dw

)
. (2.1)

The parameters ηi j (·, ·) and ϕi j (·, · ; ·) have the following meaning:

• ηi j (v,w) is the encounter rate for meetings between the test cell with state v belonging to the i th population and
the field cell with state w belonging to the j th population.

• ϕi j (v,w; u) is the transition probability density, corresponding to conservative interactions, which gives the
number of test cells with state v belonging to the i th population, which fall into the state u after an interaction with a
field cell, belonging to the j th population, with state w. Detailed assumptions reported also in the review [4] generate
the following model:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ f1

∂ t
(t, u) = 1

1 + α11
n10 f1

(
t,

u

1 + α11

)
− f1(t, u)n10 − n A

2 (t) f1(t, u)χ[0,∞)(u)

+ 1

1 − α12
n A

2 (t) f1

(
t,

u

1 − α12

)
χ[0,∞)(u),

∂ f2

∂ t
(t, u) = nT

1 (t)[ f2(t, u + α21)χ[0,∞)(u + α21) − f2(t, u)χ[0,∞)(u)],

(2.2)

where the total number of cells in each population, by assumption, is constant in time:

n1(t) =
∫ ∞

−∞
f1(t, u) du, n1(0) =: n10 and n2(t) =

∫ ∞

−∞
f2(t, u) du = n2(0) =: n20 ∀t � 0,

while the other densities

nE
1 (t) =

∫ 0

−∞
f1(t, u) du, nT

1 (t) =
∫ ∞

0
f1(t, u) du, nI

2(t) =
∫ 0

−∞
f2(t, u) du, n A

2 (t) =
∫ ∞

0
f2(t, u) du
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depend a priori on time due to modification of the microscopic state related to cell interactions. Here above, χI (·)
stands for the characteristic function of some set I ⊂ R. The model is characterized by three phenomenological
parameters related to mass conservative encounters: α11 is referred to as the variation of the progression due to
encounters between endothelial cells and describes the tendency of a normal cell to degenerate and to increase its
progression; α12 is the parameter corresponding to the ability of the active immune cells to reduce the progression of
tumor cells; α21 is the parameter corresponding to the ability of tumor cells to inhibit the active immune cells. All the
parameters αi j are positive and less than one. Throughout the remainder, nE

10, nT
10, nI

20 and n A
20 will denote respectively

nE
1 (0), nT

1 (0), nI
2(0) and n A

2 (0), so nE
10 + nT

10 = n10 and n A
20 + nI

20 = n20.

3. Qualitative analysis and biological interpretation

The goal of this section is to develop a suitable qualitative analysis of the initial value problem associated with
(2.2). First, we briefly deal with the existence, uniqueness and continuity of the solutions of model (2.2). The abstract
formulation of the initial value problem can be stated in the spirit of [1]. Let L1(R) denote the Lebesgue space of
(real-valued) integrable functions on R with its usual norm ‖ · ‖1 and let X = L1(R) × L1(R) be equipped with its
natural norm. We define the positive cone of X as

X+ = { f = ( f1, f2) ∈ X : f1 � 0, f2 � 0} .

Now, let Y = C([0,∞), X+) be the space of continuous functions on [0,∞) with values on X+, endowed with the
uniform norm ‖ f ‖Y = supt�0 ‖ f ‖. The following existence and uniqueness result is a consequence of [1, Theorem
4.1]:

Theorem 3.1 (Well-posedness). Let f0 ∈ X+. Then, the initial value problem (2.2) has a unique solution f ∈ Y with
f (t) ∈ X+ for any t � 0 and ‖ f (t)‖ = ‖ f0‖, ∀t � 0.

Proof. Arguing as in [1, Theorem 4.1], one gets the local existence, namely, there exists a positive time T > 0 and a
constant a0 > 0 (which depends on T ) such that the initial value problem (2.2) has a unique solution f ∈ C([0, T ], X)

with f (t) ∈ X+ for any t ∈ [0, T ] and supt∈[0,T ] ‖ f (t)‖X � a0‖ f0‖. Actually, as already mentioned, the total number
of cells in each population is constant in time, which reads, for any t ∈ [0, T ], ‖ f (t)‖ = ‖ f0‖ for any t ∈ [0, T ].
This last identity guarantees the global existence of the solution f (t) since it prevents the blow-up of ‖ f (t)‖ from
occurring in finite time. �

From now on, we assume f0 = ( f10, f20) ∈ X+ to be fixed with f10 	= 0, f20 	= 0. We are now in a position to
investigate the asymptotic behavior of the solution f (t) of (2.2) as t → ∞. To be precise, we are interested in the
evolution of the zeroth order moment nE

1 (t), nT
1 (t), n A

2 (t) and nI
2(t) and the first order moments, related to the activity

of each population:

Ai (t) =
∫ ∞

−∞
u fi (t, u)du, i = 1, 2;

and

AT
1 (t) =

∫ ∞

0
u f1(t, u)du � 0, AE

1 (t) =
∫ 0

−∞
u f1(t, u)du � 0,

AA
2 (t) =

∫ ∞

0
u f2(t, u)du � 0, and AI

2(t) =
∫ 0

−∞
u f2(t, u)du � 0.

As above, we use the following notation for the initial activations: A10, A20, AT
10, AE

10, AA
20 and AI

20 denote respectively
A1(0), A2(0), AT

1 (0), AE
1 (0), AA

2 (0) and AI
2(0). Direct computations show that the zeroth order moment of fi (t, u)

fulfills the following:⎧⎪⎨
⎪⎩

d

dt
nT

1 (t) = d

dt
nE

1 (t) = 0,

d

dt
n A

2 (t) = − d

dt
nI

2(t) = −nT
10

∫ α21

0
f2(t, u)du, (t � 0),

(3.1)
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while the evolution of the first order moments is given by⎧⎪⎨
⎪⎩

d

dt
A1(t) = α11n10A1(t) − α12n A

2 (t)AT
1 (t),

d

dt
A2(t) = −α21n A

2 (t)nT
10 (t � 0).

(3.2)

More precisely,⎧⎪⎨
⎪⎩

d

dt
AE

1 (t) = α11n10AE
1 (t),

d

dt
AT

1 (t) = α11n10AT
1 (t) − α12n A

2 (t)AT
1 (t), (t � 0)

(3.3)

and ⎧⎪⎪⎨
⎪⎪⎩

d

dt
AI

2(t) = nT
10

∫ α21

0
(u − α21) f2(t, u)du,

d

dt
AA

2 (t) = −nT
10

∫ α21

0
(u − α21) f2(t, u)du − α21nT

10n A
2 (t), (t � 0).

(3.4)

The zeroth order moments of f2(t, ·) enjoy the following property:

Lemma 3.1. The integral I2 := ∫∞
0 n A

2 (s)ds is finite. In particular, limt→∞ n A
2 (t) = 0, and limt→∞ nI

2(t) = n20.

Proof. According to (3.4) and using that 0 �
∫ α21

0 (u − α21) f2(t, u)du � −α21
∫ α21

0 f2(t, u)du, one has

d

dt
AA

2 (t) � α21nT
10

∫ α21

0
f2(t, u)du − α21nT

10n A
2 (t) � 0.

Now, using that
∫ α21

0 f2(t, u)du = − 1
nT

10

d
dt n A

2 (t), we get d
dt AA

2 (t) � −α21
d
dt n A

2 (t) − α21nT
10n A

2 (t). Integrating over

(0, t) leads to

AA
2 (t) − AA

20 � −α21(n
A
2 (t) − n A

20) − α21nT
10

∫ t

0
n A

2 (s)ds

so 0 � AA
2 (t) � AA

20 + α21n A
20 − α21nT

10

∫ t
0 n A

2 (s)ds. In other words,

α21nT
10

∫ t

0
n A

2 (s)ds � AA
20 + α21n A

20. (3.5)

Therefore I2 := ∫∞
0 n A

2 (s)ds is finite. The conclusion then follows easily from the identity n A
2 (t) + nI

2(t) = n2(t) =
n20 for any t � 0. �

We are now in a position to state the main result of this section.

Theorem 3.2. Let f0 ∈ X+ be given and let f = ( f1, f2) be the unique solution to (2.2). Then,{
nT

1 (t) = nT
10, nE

1 (t) = nE
10, n1(t) = n10 = nE

10 + nT
10, for any t � 0,

lim
t→∞ n A

2 (t) = 0, lim
t→∞ nI

2(t) = n20 = lim
t→∞ n2(t),⎧⎨

⎩
lim

t→∞ A2(t) = A20 − α21nT
10I2 = lim

t→∞ AI
2(t), lim

t→∞ AA
2 (t) = 0,

lim
t→∞ AE

1 (t) = −∞, lim
t→∞ AT

1 (t) = ∞,

and

lim
t→∞ A1(t) =

{
−∞ if AE

10 + AT
10 exp(−α21I2) < 0,

+∞ if AE
10 + AT

10 exp(−α21I2) > 0,
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where I2 = ∫∞
0 n A

2 (t)dt < ∞ is such that

max

(
0,

A20

α21nT
10

)
� I2 �

AA
20 + α21n A

20

α21nT
10

. (3.6)

Finally, if AE
10AT

10 exp(−α21I2) = 0, lim inft→∞ A1(t) � 0.

Proof. The asymptotic behavior of the zeroth order moments of f1(t, ·) and f2(t, ·) is provided by Lemma 3.1. Direct
integration of (3.3) and (3.4) yields, for any t � 0,

AE
1 (t) = AE

10 exp(α11n10t) and AT
1 (t) = AT

10 exp

(
α11n10t − α12

∫ t

0
n A

2 (s)ds

)
.

Since
∫ t

0 n A
2 (s)ds → I2 < ∞ as t → ∞, the limits as t → ∞ of AE

1 (t), AT
1 (t) and A1(t) = AE

1 (t) + AT
1 (t) easily

follow. More specifically, if AE
10 + AT

10 exp(−α21I2) = 0, then

A1(t) = AT
10 exp(α11n10t)

(
exp

(
−α12

∫ t

0
n A

2 (s)ds

)
− exp

(
−α21

∫ ∞

0
n A

2 (s)ds

))
� 0, t � 0,

so lim inft→∞ A1(t) � 0. On the other hand, one deduces easily from Eq. (3.4) and Lemma 3.1 that

lim
t→∞ A2(t) = A20 − α21nT

10I2.

Now, since AI
2(·) is a decreasing function, the limit limt→∞ AI

2(t) exists in [−∞, AI
20]. Since both AI

2(t) and A2(t)
converge to finite limits, one also gets that limt→∞ AA

2 (t) = AA
2 (∞) exists and

0 � AA
2 (∞) � AA

20 + α21n A
20 − α21nT

10I2 < ∞.

Actually, let us show that
∫∞

0 AA
2 (s)ds < ∞ which would imply that AA

2 (∞) = 0. Let us write B(t) =∫∞
0 u2 f2(t, u)du; one can check that

d

dt
B(t) = −

∫ α21

0
(u − α21)

2 f2(t, u)du + α2
21n A

2 (t) − 2α21AA
2 (t).

Therefore,

d

dt
B(t) � α2

21n A
2 (t) − 2α21AA

2 (t).

Integrating over (0, t) leads to B(t) − B(0) � α2
21

∫ t
0 n A

2 (s)ds − 2α21
∫ t

0 AA
2 (s)ds. Since B(t) � 0, one gets that

2α21

∫ ∞

0
AA

2 (s)ds � B(0) + α2
21I2 < ∞.

This concludes the proof. The estimate on I2 comes from Eq. (3.5) and from the fact that AI
2(t) � 0 for any

t � 0. �

Remark 3.1. The above Theorem leaves open the case AE
10 + AT

10 exp(−α21I2) = 0. To conclude in this case, one
should have a precise estimate of the rate of convergence of

∫ t
0 n A

2 (s)ds to I2 as t goes to infinity. Note however, that,
if A10 � 0, then limt→∞ A1(t) = −∞.

Remark 3.2. The asymptotic behaviors of A1(t) and A2(t) depend on the quantity I2 which is not a given data of the
problem. Nevertheless, this quantity can be estimated from known data of the system thanks to (3.6). Note also that
the right-hand side of (3.6) provides useful information only if A20 � 0. In particular, in this case,

AE
10 + AT

10 exp

(
−AA

20 + α21n A
20

nT
10

)
� AE

10 + AT
10 exp(−α21I2) � AE

10 + AT
10 exp

(
−A20

nT
10

)
.
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In conclusion, let us stress that the analysis developed in this work is limited to a simplified model where the outset
of nonconservative interactions is not yet relevant. In this relatively simple case, the qualitative analysis provides
information on the first order moments. Note that this is relevant information towards the biological interpretation
considering that the zeroth order moments simply give the number of cells, while the first order moments also take
into account the biological activities of the cells. The various results reviewed in [4] were limited to the analysis of
the evolution of the number of cells. Certainly an interesting research perspective is the generalization of our analysis
to the case of models including the description of nonconservative events.
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