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IFFTC-Based Procedure for Hidden Tone Detection
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Abstract—In this paper a procedure for the detection of hidden
tones in the spectrum of a signal is proposed and experimentally
evaluated. It is based on the “Corrected Interpolated FFT” algo-
rithm for the estimation of spectral parameters of nonhidden tones,
and on the analysis of the disagreement between measured and ex-
pected spectra in order to detect hidden tones. The design of the
procedure takes advantage of experimental design techniques in
the threshold evaluation.

Index Terms—Digital signal processing (DSP), hidden tones, in-
terpolated fast Fourier transform (FFT), spectral resolution.

I. INTRODUCTION

SPECTRAL analysis is one of the most powerful tools in the
field of digital signal processing, since the spectral content

of a signal is often critical information. The availability of effi-
cient analysis algorithms and the continuous improvement of the
performances of microprocessors, and in particular of dedicated
digital signal processors (DSPs), have made the applicability
of numerical measurement systems for spectral analysis more
and more common. In recent years, measurement issues in nu-
merical spectral analysis have been studied, and proposals have
been made in order to increase the performances of these mea-
surement systems. A tool of choice in these systems is the fast
Fourier transform (FFT) algorithm, allowing estimation of the
spectral parameters of a signal (amplitude, frequency and phase
of its spectral components) with relatively small computational
requirements. For these reasons, researchers are devoting efforts
not only to the developments of even more efficient algorithms,
but also to the characterization and the improvement of FFT re-
sults from a metrological point of view. In particular, the re-
duction of the residual bias of the spectral parameters estimated
with the FFT is a topic of fundamental importance. Thus, dif-
ferent interpolation techniques have been proposed; the widely
used being the so-called interpolated-FFT algorithms (IFFT),
which allow improving the measurement accuracy by correcting
deterministic errors on frequency, amplitude and phase due to
the spectral leakage phenomenon [1]–[5].

All the FFT-based techniques adopt a tone detection proce-
dure which finds the relative maxima of the amplitude spectrum
of the signal. An essential hypothesis for these techniques is that
the frequencies of tones to be analyzed are sufficiently distant.
Also the interpolation-based algorithms are limited in the reso-
lution of close tones by the physical resolution of the FFT, which
depends exclusively on the number of samples, on the sampling
frequency and on the window function.

However, this hypothesis of sufficient separation of frequency
components is not adequate in many application fields, such as
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the vibration analysis of mechanical parts, the radar detection,
and the conditioning of acoustic systems. In these cases, because
of the harmonic interference, the analyzed signals typically ex-
hibit tones closely located in frequency, and stronger spectral
components often obscure weaker ones.

This paper proposes a method able to indicate the occurrence
of hidden tones, i.e., tones obscured by near stronger compo-
nents [5], [6]. It is based on an enhancement of the IFFT, pre-
viously developed by the authors in [7], [8], named “Corrected
Interpolated FFT” (IFFTc), which allows correcting the estima-
tion bias due to harmonic interference. The proposed technique
applies the IFFTc to the estimation of spectral parameters of
nonhidden tones, and then analyzes the disagreement between
measured and expected spectra in order to detect hidden tones,
where the expected spectrum is synthesized on the basis of the
previous IFFTc results. Following this approach, a threshold has
to be set in order to signal the occurrence of a hidden tone when
the disagreement is greater than the threshold value. The high
number of parameters to be considered for the choice of the op-
timal threshold would require too high computational effort. For
this purpose, an experimental design (ED) approach [9] has been
followed in order to cover the entire possible experimental plan
with an adequate number of tests. Such an approach allows the
definition of an experimental plan in advance, in order to max-
imize the amount of “information” that can be obtained for a
given amount of experimental effort.

In the paper, at first the IFFTc algorithm is explained in de-
tail; then the proposed technique is introduced and illustrated.
A section is devoted to the description of the ED procedure fol-
lowed in order to find the threshold value; in particular, the Latin
Hypercube Sampling is used. Several numerical tests are carried
out for the evaluation of the detection procedure performance.

II. CORRECTED INTERPOLATED FFT (IFFTc)

In this paragraph a brief recall of the so-called IFFTc algo-
rithm, proposed by the authors in [7], [8], will be given. Basi-
cally, it applies a two-point IFFT [1]–[3] and corrects the effects
of the harmonic interference.

The amplitude spectrum of a signal with frequency
components

(1)

is composed of peaks, if no tone is hidden. The peak cor-
responding to the th tone frequency is located at index :

, where is the DFT frequency resolution.
The frequency of the ith component is evaluated as

where (2)
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The 2-point IFFT evaluates considering the ratio, , be-
tween the two largest samples corresponding to the peak

(3)

where .
Considering the window frequency spectrum , we

have [1]–[3]

(4)

The is obtained from (3) and (4); in particular, simple re-
lationships exist for the Hanning window

(5)

(6)

Equation (4) is valid for a single tone signal but it cannot be
extended to multifrequency signals when harmonic interference
is present. In fact, and depend not only on
the main lobe of the windowed ith sinusoidal component but
also on those of the other sinusoids, since each discrete Fourier
transform (DFT) sample can be obtained as

(7)

(8)

being ; ,
.

Equation (7) can be rewritten in the neighborhood of , high-
lighting the contribution due to the th sinusoid; termed

and , the relationships (8) follow.
Substituting (8) in (4) we obtain

(9)

Using this corrected , the new can be evaluated, and the
amplitude and the phase of the ith spectral components can be
calculated for the Hanning window

(10)

(11)

The correction factors and , depend on the frequency,
amplitude and phase of the signal tones. The proposed solution
consists in using the value measured with the 2-point IFFT in
the evaluation of the correction factors, and . As expected,
the obtained correction factors are still corrupted by harmonic
interference, but the residual errors obtained using these values,
instead of the actual ones, and are negligible, as shown in
[7] and [8]. The proposed procedure is, thus, the following:

• application of the 2-point IFFT for each peak in order
to estimate frequency, amplitude and phase of the corre-
sponding spectral component, neglecting the harmonic in-
terference effects;

• , evaluation using the 2-points IFFT estimations;
• computation of the correction factors for each peak;
• determination of frequencies , ampli-

tudes, , and phases , corrected by the harmonic inter-
ference effects using (10) and (11).

This procedure could be iterated more than once, but the im-
provement achievable with more than one step is negligible. As
a consequence only one step of correction is run; this solution
represent a good compromise between accuracy and computa-
tional burden. With respect to the iterative methods presented in
[10], [11], the proposed IFFTc allows to estimate all the com-
ponents at the same time and with lower computational burden,
especially in case of signal with several spectral components.
Moreover, parametric methods require the a priori knowledge
of some parameter of the signal, such as the number of its spec-
tral components, and some methods presented in literature (such
as the ESPRIT method) do not allow to estimate the amplitudes
of spectral components directly, but only their frequencies.

III. PROPOSED METHOD FOR HIDDEN TONE DETECTION

As illustrated in [7] and [8], if hidden tones are not present,
the IFFTc algorithm corrects all the significant systematic ef-
fects which can occur in the signal parameter estimation. Using
the so measured parameters, the amplitude spectrum, , can
be reconstructed

(12)
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Fig. 1. (a) Windowed amplitude spectrum and (a ) �M(k) with two interfering but resolvable tones. (b) Windowed amplitude spectrum and (b ) �M(k) in
presence of a hidden tone.

where

(13)

In this case, this spectrum is very similar to the measured one

(14)

In particular, differs from for the residual error
[7], [8], which is very low, in the estimation of the characteristics
of the signal and for the effects of the uncertainty on the input
samples.

Vice versa, if in there are hidden tones, these alter the
signal parameter estimations ( , , ), and consequently the
obtained amplitude spectrum differs significantly from
the measured one in frequency neighborhoods centered
on the hidden tone frequencies. Then, in order to detect pos-
sible hidden tones, we propose to evaluate and analyze
the difference

(15)

If all the tones are detected, is very low for each
, while it increases significantly near an unresolved tone

[see Fig. 1(b )]. Thus, the hidden tones are detected
by comparing the difference spectrum with a suitable
threshold.

The choice of the threshold is a very crucial task since it di-
rectly affects the sensitivity and the reliability of the detection
algorithm; moreover the threshold value depends on the hard-
ware configuration [mainly on the uncertainty on the input sam-
ples due to the analog-to-digital (ADC) converter] and on the
operating conditions (number of processed points ).

IV. THRESHOLD TUNING

Aiming to optimally and automatically set the threshold
value, the performance of the IFFTc, in terms of ,
has to be evaluated for different input signals and operating
conditions. In the following, two contributions to will

be distinguished: the former due to the residual errors in the
parameter estimations with the IFFTc algorithm, and the latter
due to the uncertainty of the input samples, as it propagates
through the measurement algorithm.

A. Contribution to due to the Residual Errors

For the evaluation of the maximum residual error on ,
, analytical or experimental approaches can be followed.

The analytical approach can not be applied due to the com-
plexity of the formulation and to the high number of parame-
ters which it depends on. As a consequence an experimental ap-
proach is preferred. Because of the dependence of the error from
the signal characteristics, this characterization would require a
unmanageable number of tests; in order to run a reduced but ef-
fective number of tests, an ED [9], [12]–[15] approach was fol-
lowed. The basic idea of ED is to obtain the best possible char-
acterization in terms of coverage of the entire experimental plan.
To this aim, the sampling of the whole L-dimensional space to
be explored plays a key role. The simple random sampling is
inefficient because it typically assigns higher probability to the
middle of a distribution rather than to its tails, especially in the
case of a higher number of dimensions. A more efficient scheme
should sample the tails quickly.

The Latin Hypercube Sampling (LHS) method is one of such
schemes [12]–[15]. Stein [14] showed that this scheme can
behave substantially better than simple random sampling. The
Latin hypercube sampling provides an orthogonal array that
randomly samples the entire design space broken down into
equal-probability regions (where is the number of runs, and

is the number of input variables).
Suppose we have a -dimensional random vector

and we want to get a sample of size from the
joint distribution of . If the components of are independent,
then the scheme is simple, namely:

• divide the range of each component random variable in
intervals of equal probability;

• rndomly sample one observation for each component
random variable in each of the corresponding intervals;

• randomly combine the components to create the test set.
The first step in the LHS implementation is the definition

of the design space, i.e., the definition of and of its vari-
ability range. In the following, the LHS method will be adopted
in determining the residual error level for a representative
number of cases. Since essentially depends on the signal



136 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 1, FEBRUARY 2007

TABLE I
C (k) AND C (k) VALUES VERSUS K

spectrum contents and on the frequency resolution, the samples
{ } of multifrequency signals [see (1)] have to be consid-
ered

for

(16)

An exhaustive analysis should be done for all the possible
combinations of the parameters ( , , , ), where the
number of , , depends on P; however, some simplifi-
cations can be made using the results obtained in [7] and [8],
where the evaluation of the performance of the IFFTc param-
eter estimation is reported.

In [7], it was shown that the number of tones does not in-
fluence significantly the IFFTc performance, while the error de-
pends strongly on the nearest components. As a consequence
in our tests, has been considered constant and set equal to
2. Moreover, in [7], it was shown also that, after the values of

and have been set in (16), there is no dependence of the
residual errors on the number of the processed points : in our
tests it has been considered constant and set equal to 256 (inter-
mediate value in order to satisfy both the exigency of short elab-
oration time and number of tones in the spectrum). Thus, termed

the A/D full scale, , ,
the vector become

(17)

The range variability of the components is fixed as follows:
• , : resulting in a tone amplitude vari-

ability of ;
• : the lowermost value has been chosen

equal to 10 since the IFFTc error increases for very low
[7], while the topmost value depends on and on the

maximum ;
• : the whole range of possible values;
• , : the whole range of possible values;
• : since errors decrease significantly with

the [7], only small distances were investigated.
Then, each one of these ranges is divided in intervals of equal
probability; for each parameter, one observation is sampled for
each interval, and finally, the observations are randomly com-
posed in order to create the test set. For each element of the test
set:

• the signal samples { } are generated;
• the IFFTc algorithm is run on these samples;
• the amplitude spectrum is calculated using the pa-

rameters obtained with the IFFTc;

• if all the signal tones are detected, the difference is
computed, and, the maximum of is evaluated.

The maximum acceptable difference is deducted from
all the elements of the test.

B. Contribution to due to the Uncertainty

The uncertainty on the input samples { } determines a
variability of the amplitude signal spectrum ; as a result,
also in absence of any error in the signal parameters estima-
tion ( , , ), the difference
differs from zero. The uncertainty on { } determines also
a variability of the signal parameters estimation that causes,
on turn, an uncertainty contribution on , that can be ne-
glected, and consequently . As for the uncer-
tainty on , the authors in [16]–[18], obtained analytical
relationships between the uncertainty of the and the un-
certainty of the acquired samples .

As for the sample uncertainty, , all the contributions are
considered as due to the A/D conversion, since in [16] it was
shown as the most relevant cause of uncertainty; the following
model was adopted:

(18)

where is the A/D full scale and is the number of ef-
fective bit (including also the input noise) of the A/D converter
used. With this model, all uncertainty causes are supposed to
be taken into account by the effective number of bits. The un-
certainty on can be propagated through the relationships
between and using the uncertainty combination law
suggested by the ISO GUM [19], obtaining, as shown in [17]

(19)

where and and are reported in Table I.
When is equal to , (19) becomes

(20)

Thus, uncertainty on and consequently on de-
pends on the input uncertainty (it depends on turn on and

) and on the number of processed points , while it is in-
dependent on the signal spectrum contents. Moreover ,
depends on but if it is always less or equal to

(21)
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Fig. 2. Observed E in a test set of M = 10000elements, for different number of processed points N .

TABLE II
MAXIMUM OF �M(k), E , MEASURED FOR DIFFERENT NUMBER

OF TONES P

C. : Composition of Contributes

In the evaluation of the suitable threshold , both the system-
atic and the random contributions have been taken into account.
A simple relationship is assumed

(22)

is the maximum observed in all the tests and
represents the residual errors contribution; expresses the
contribution of the uncertainty and was posed equal to

(23)

namely four times the uncertainty on . For a Gaussian
distribution of the uncertainty, the probability that is
less than is greater than 0.999999.

V. NUMERICAL RESULTS: THRESHOLD TUNING

Five different test sets with were generated as
detailed in Section IV-A, and the maximum value of the
for each set is measured; the following results were obtained:

.
In order to verify that the error does not depend on , the

same test sets were made by changing from 64 to 1024,
proving that the maximum of does not change signif-
icantly. For instance, Fig. 2 shows the measured normal-
ized by in each one of the signals present in a test set for
different values of . A similar check was made for changing
values of . In particular, tones have been added progressively
to a first pair of tones; the results, reported in Table II, prove that
the number of tones does not affect the value measured for .

From the abovementioned results, can be chosen
equal to 0.003 , i.e., equal to the maximum measured
in all the tests. This choice privileges the reliability of the
detection rather than the sensitivity. However, the results of

TABLE III
CONTRIBUTION DUE TO THE UNCERTAINTY �E ON THE ADC FULL SCALE A
(�E=A ) VERSUS THE NUMBER OF PROCESSED POINTS N AND THE NUMBER

OF THE A/D EFFECTIVE BITSNbit

TABLE IV
PERFORMANCE OF THE PROPOSED PROCEDURE IN TERMS OF FALSE ALARM

(FA) AND MISSED DETECTION (MD) WHEN ME = 0:003A

Fig. 3. Example of signal for which the procedure gives an FA.

these tests could suggest different values based on a different
compromise between a low probability of missed tones (sensi-
bility) and a low probability of false detection (reliability).

As the uncertainty is concerned, (22) is used in order to eval-
uate for different values of processed points and effective
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Fig. 4. For four different kinds of signal: the measured amplitude spectrum,M(k). Solid line: the reconstructed one, M̂(k). Dotted line: the position of nominal
tones, circles; the calculated �M(k); and the nominal characteristics of the signals.

number of bits of the A/D converter . The results are sum-
marized in Table III. As can be seen, is comparable with
only for low numbers of bits (very high uncertainty on the input
samples).

VI. NUMERICAL RESULTS: PERFORMANCE EVALUATION

After having obtained the thresholds, tests were carried out
in order to evaluate the reliability and the sensitivity of the pro-
posed method. Also for the validation phase the LHS approach
was followed: tests have been done with signals with 2 tones and
a low : , in order to evaluate the capability
of detection of hidden tones. Table IV shows the percentages
of missed detection of a hidden tone and of false alarms (i.e.,
the detection of a nonexistent hidden tone), for different input
uncertainties reported as effective numbers of bits, and for dif-
ferent N. The results are fully suitable, and show that the choices
of the two contributions are correct since the percentages do not
change significantly when operating conditions change. Only
for low numbers of points and of bits, a little increase appears
due to the increase of the contribution due to the uncertainty.
Moreover, false alarms occur in cases of very close tones and
when the resolvability is very low (as can be seen in Fig. 3). On
the other hand, a missed detection of a tone occurs if it is very
close and its amplitude is significantly lower than
the amplitude of the tone that hides it .

Finally, tests have been carried out in the case of one hidden
tone among a number of other tones. The results are summarized
in Fig. 4, which shows the measured and the reconstructed am-
plitude spectra, and the difference for signals having a different

spectral content. As can be seen, the detection is good both in
case of a few tones [Fig. 4(a) and (d)] and for a greater number
of tones [Fig. 4(b) and (c)] (it does not depend on ) and re-
gardless of the amplitude of the hiding tones. In Fig. 4(a), the
results concerning a signal with two tones hidden by a greater
one are reported; as you can see, because of the missed detection
of the two low tones, the increases in correspondence
of both frequencies. In the case of Fig. 4(c), it is interesting to
note that the tones in the first group are so close and so low that
they are not detected by the IFFTc and then cause an increase
of , causing the signaling of hidden tones. The tones of
the second group are distant and strong enough to be detected
by the IFFTc; then is low and hidden tones are not sig-
naled, as expected.

VII. CONCLUSIONS

A method for the detection of spectral components hidden by
the spectral leakage of other components in an FFT analysis of a
signal has been described in its analytical formulation. The pro-
posed method thresholds the difference between the expected
amplitude spectrum based on the results of a first detection of
spectral components obtained with the IFFTc and the real am-
plitude spectrum. The choice of the threshold value has been
discussed, and a procedure which follows an ED approach has
been adopted.

The performances have been evaluated with several tests in
terms of percentages of missed and of false alarms, and have
been discussed versus the parameters of the analysis and appear
more than interesting.
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Moreover, one of the aims of the design and of the imple-
mentation of the algorithm was to maintain the computational
burden at reasonable levels in order to employ it in applications
of digital signal processing where the response time is a funda-
mental issue, together with the enhanced performance of resolv-
ability. Early results are encouraging under this point of view,
and future work will be devoted to the implementation of this
improvement in real instrumentation like a digital oscilloscope
of new generation.
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